• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    采用系統(tǒng)的方法自動構(gòu)建鏈烷烴高溫燃燒反應機理

    2014-09-17 06:59:54郭俊江華曉筱談寧馨李象遠
    物理化學學報 2014年6期
    關(guān)鍵詞:全德四川大學物理化學

    郭俊江 華曉筱 王 繁 談寧馨,* 李象遠

    (1四川大學化學工程學院,成都610065; 2四川大學化學學院,成都610065)

    1 Introduction

    In recent years,great efforts have been invested to explore combustion processes of practical fuels for clean energy and engine design.However,it is difficult to investigate combustion of fuels by experiment alone.Combustion mechanisms play a critical role in elucidating the complex behavior and phe-nomena in combustion.A basic understanding of the combustion kinetics of practical fuels is also crucial in optimal design of engine.Practical fuels such as gasoline,diesel,jet fuel or kerosene are composed of thousands of different hydrocarbon compounds.A direct kinetic simulation of their chemical and physical properties is not feasible because of the complexity of practical fuels,and a viable method is to develop surrogate mixtures containing several kinds of representative pure compounds to simulate combustion behaviors.Surrogates for practical fuels are usually classified based on molecular structure,i.e.,normal alkanes,branched or iso-alkanes,cycloalkanes,olefins,aromatics,and oxygenated hydrocarbons.1-8To date,nalkane is always chosen as a representative in almost all suggested surrogate mixtures.n-Heptane is a primary reference fuel(PRF)used to define a research octane number of 0 and it is a common n-alkane representative for gasoline surrogates,9while iso-octane is used as a model compound for branched alkane components found particularly in gasoline and diesel.10,11n-Decane and n-dodecane are frequently chosen as surrogate components in different studies.12-17

    Extensive experimental and kinetic modeling studies on combustion properties of alkanes have been reported.Shen and coworkers18,19investigated the ignition of n-alkane/air mixtures and iso-octane/air mixtures at elevated pressures.Beerer and McDonell20measured auto-ignition delay time of individual alkanes and mixtures of alkanes.More recently,Liu et al.21reported the ignition temperatures of non-premixed C3and C5-C12n-alkane flame.The ignition delay time of n-decane/oxidizer mixtures were studied by Zhukov,22Olchanski,23and,Kumar24et al..Laminar flame speed of C1-C12alkanes and various PRF mixtures were measured at atmospheric pressure.25-28Kelley et al.29reported laminar flame speed for iso-octane at pressures up to 1.0×106Pa and C5-C8n-alkanes up to 2.0×106Pa.

    There have been substantial previous efforts aimed at kinetic modeling of alkanes.30-44Battin-Leclerc and coworkers32,33carried out a detailed modeling of the oxidation of n-octane and ndecane.Ranzi et al.16developed a lumped mechanism for investigating the combustion of n-decane,n-dodecane,and n-hexadecane,and the mechanism lumping reduces the size of each mechanism.A comprehensive detailed chemical reaction mechanism describing the oxidation of n-alkanes from n-octane to nhexadecane was developed by Westbrook group.1The mechanism for these n-alkanes is presented in a single detailed mechanism containing 2116 species and 8130 reactions.A high-temperature chemical kinetic model of n-alkane oxidation(JetSurF version 1.0,194 species,1459 reactions)was proposed by Wang group.34You et al.35proposed a high-temperature detailed kinetic model for the combustion of n-alkanes up to n-dodecane.Curran and coworkers36,37developed the detailed mechanisms for n-heptane and iso-octane oxidation,respectively.Computational fluid dynamics(CFD)plays a key role in designing the combustor.However,the use of CFD simulations requires accurately predictive and highly reduced models of the combustion of fuels.38These mechanisms are much too complicated to be used in CFD simulations.Some reduced mechanisms for n-alkane computation have been developed using various reduction techniques.31,39-47For example,a new skeletal mechanism which includes 36 species and 128 reactions was developed by Chang et al.48to describe the oxidation of n-alkanes from n-octane to n-hexadecane.This small-size mechanism can be easily integrated into the CFD simulation.

    Although lots of mechanisms for the combustion of alkanes have been reported,a systematic approach which combines constructing,simplifying,validating,and analyzing the hightemperature combustion mechanisms of alkanes has not been proposed.In this paper,we develop such a systematic approach to construct reliable and reduced high-temperature combustion mechanisms of alkanes which would be helpful to CFD for engine design.Detailed mechanisms of combustion of alkanes usually contain numerous elementary reactions in addition to kinetic and thermodynamic parameters.Such comprehensive chemical kinetic mechanisms are very difficult to be composed manually and the use of an automatic program of mechanisms could facilitate this step significantly.Battin-Leclerc et al.49developed an automatic mechanism generation system EXGAS.Ranzi et al.50developed a computer code named MAMOX.Muharam and Warnatz51developed MOLEC to generate mechanisms for the combustion of large hydrocarbons.These mechanism generators are based on the reaction classes.Based on this rule,a mechanism generation program(named ReaxGen)7,17for the high and low temperature oxidation mechanism construction of alkanes and cycloalkanes has been developed in our research group.Detailed mechanisms of several alkanes,i.e.,n-heptane,iso-octane,n-decane,and n-dodecane,were constructed automatically using ReaxGen.These mechanisms were reduced using rate-of-production(ROP)analysis to obtain semi-detailed mechanisms,and skeletal mechanisms were achieved from the semi-detailed mechanisms based on path flux analysis(PFA)52.In order to verify the mechanisms,simulation results were compared with available experimental data on ignition delay time,laminar flame speed,and the concentration profile of important species.Reaction path analysis and sensitivity analysis were also employed to elucidate reaction pathways in the high-temperature oxidation of alkanes and reactions which are most important to ignition delay time,respectively.In the further study,this systematic approach will be adopted to construct oxidation mechanisms of other hydrocarbon fuels such as cycloalkanes,aromatic hydrocarbons,and alternative fuels.

    2 Mechanism construction

    2.1 Semi-detailed mechanism

    Fig.1 Primary flow chart of ReaxGen

    In this work,all detailed mechanisms for the high-temperature combustion of alkanes consist of two parts,a validated core mechanism53and a sub-mechanism produced by ReaxGen.The fundamental concept in generating mechanism is the reaction class.Reaction classes are related to the species reactivity which is based solely on structural features around the reaction center.Whenever these structures are found in reactants,products can be generated.54ReaxGen mainly services for Cn(n≥5)species.In ReaxGen,the generation of a mechanism is achieved by iteratively applying a list of reaction classes to a set of molecules.First,a new set of species are obtained according to the reaction classes related to a set of initial reactant molecules.Secondly,a produced species is checked whether it is new.If this species is new,it and the reactions involved in this species are added in the reaction mechanism.If this species is not new,it is not added,and the reactions involved in this species are judged whether they are new.Then,new reactions will be added in the mechanism,while the symmetry factors of the existed reactions will be modified.In the iterative application,the reaction rules are applied to all the species until no new species are formed.Thermochemical data of species and kinetic data of reactions are automatically obtained from the databases in ReaxGen.The primary flow chart of ReaxGen is depicted in Fig.1.

    The main reaction classes for the high-temperature combustion of alkanes include the following:1,36

    (1)unimolecular decomposition of alkanes;

    (2)H-abstraction from C atoms in alkanes by O,H,OH,O2,CH3,and HO2;

    (3)mutual isomerization of the alkyl radical;

    (4)decomposition of alkyl radical;

    (5)oxidation of alkyl radical to form alkene;

    (6)H-abstraction from the alkenes;

    (7)decomposition of alkene;

    (8)addition of alkenes to O,CH3,H,H2O2,and OH;

    (9)decomposition of alkenyl radical.

    The core mechanism(C0-C4)is very important in constructing the mechanisms of high carbon hydrocarbons.In this study,the updated USC-Mech II53,55with 111 species and 784 reactions was used as the core mechanism,which has been validated against a wide range of experimental data.53The sub-mechanisms for high carbon species Cn(n≥5)generated by ReaxGen were coupled with the C0-C4core mechanism53to construct the detailed chemical kinetic mechanisms for the high-temperature oxidation of n-heptane(271 species taking part in 1374 reactions),n-decane(615 species taking part in 2637 reactions),isooctane(432 species taking part in 1918 reactions),and n-dodecane(1008 species taking part in 4105 reactions).Thermodynamic parameters of species in sub-mechanisms were estimated based on the group additivity method,56,57while corresponding data in core mechanism were obtained from the reference.53Transport data of species were calculated through the diffusion coefficients using the approach similar to that in the reference.58In order to improve the computational efficiency,reactions and species that have negligible effect in combustion process were removed from the mechanism based on the method of ROP analysis.This method was carried out as the following:in Chemkin 2.0 output file,ROP data are the normalized contributions of each reaction to the production and consumption of each species at every time step.For obtaining the contributions of each reaction to the production and consumption of each species during the whole reaction process,ROP data were taken time to integrate over the whole reaction time through a program written by ourselves.Those reactions whose contributions to all species are less than a given threshold will be deleted.In the meantime,those species which are not involved in any reaction of the mechanism will be removed from the mechanism.This method can also be used to analyse the overall reaction path.Thus the semi-detailed mechanisms with a reasonable size can be obtained:135 species and 552 reactions for nheptane(threshold:1×10-4mol· m-3),169 species and 535 reactions for n-decane(threshold:5.5×10-4mol·m-3),202 species and 738 reactions for n-dodecane(threshold:1×10-5mol·m-3),and 115 species and 328 reactions for iso-octane(threshold:8.5×10-3mol·m-3).Our calculations show that simulation results using the semi-detailed mechanisms are almost the same as those with the detailed mechanisms.

    2.2 Skeletal mechanism

    Semi-detailed mechanisms were reduced to achieve skeletal mechanisms using the PFA approach.52As proposed by Lu and Law,59a two-stage reduction strategy is adequate for the reduction of large mechanisms.So in this study,a two-stage PFA reduction was implemented in order to obtain skeletal mechanisms with minimum number of species.The more details of PFA approach can be found in the reference.52rABwhich shows importance of species B to species A in PFA approach is calculated based on production and consumption of species A via B as the following:52

    where the interaction coefficientsaredefined as:

    In Eqs.(2)-(3),I is the total number of elementary reactions,ωiis the reaction rate of the ith reaction,νA,iis the stoichiometric coefficient of species A in the ith reaction.If the reaction involved species B,equals to 1,otherwiseBequals to 0.PABand DABare the production and consumption rates of species A due to species B,respectively.PAand DAdenote,respectively,production and consumption fluxes of speciesA.

    The interaction coefficientsoandof the second generation in Eq.(1)are the measures of flux ratios between A and B via a third reactant(Mi)for the second generation and are defined as:

    Here the summation includes all possible reaction paths(fluxes)relatingAand B.To carry out mechanism reduction using PFA,a threshold value ε and a set of preselected species(e.g.,A)need to be specified.If rAB<ε,species B will be removed from the mechanism.On the other hand,species B is selected when rAB≥ ε.After deleting unimportant species and involved reactions,the skeletal mechanism can be obtained.52,60The PFA program has been implemented through an interface to Chemkin-SENKIN.61,62

    In mechanism reduction,ignition delay time was chosen as the target parameter.The ignition delay time was defined as the time with the maximum value of(dxOH/dt),where xOHis the concentration(mole fraction)of the radical OH.To achieve skeletal mechanisms with wide applicability,reaction rates at points around ignition delay time under conditions of high-temperatures(1000-1600 K),high pressures(1.0×105,5.0×105,1.0×106Pa),and equivalence ratios(?=0.5,1.0,2.0)from simulations using Chemkin-SENKIN61,62were used in PFA.The fuel,oxygen,and nitrogen were chosen as initial components in mechanism reduction,and numbers of species and reactions in the obtained skeletal mechanisms for these alkanes are listed in Table 1.Because adequate threshold values selected for four alkanes were different for obtaining the smallest error in reduction process,numbers of species and reactions of reduced mechanisms do not increase as the number of carbon atoms in alkanes increases.

    According to our simulations,ignition delay times calculated using final skeletal mechanisms are consistent with thosebased on semi-detailed mechanisms for these alkanes.Results for n-decane are illustrated in Fig.2.One can see that simulation results of skeletal mechanisms are in good agreement with those using semi-detailed mechanisms over a wide range of parameters.

    Table 1 Numbers of species and reactions in skeletal mechanisms for combustion of n-heptane,iso-octane,n-decane,and n-dodecane

    3 Validation of the mechanism

    Mechanism validation was fulfilled by comparing calculation results with available experimental data on ignition delay time,laminar flame speed,and the concentration profile of important species in the literature,which are highly important parameters describing global combustion properties.In this work,semi-detailed and skeletal mechanisms of n-heptane,iso-octane,n-decane,and n-dodecane were validated against ignition delay time behind reflected shock wave,laminar flame speed,and the concentration profile of important species in a jetstirred reactor(JSR).

    Fig.2 Igniton delay times calculated using semi-detailed and skeletal mechanisms for n-decane

    3.1 Ignition delay time

    The semi-detailed and skeletal mechanisms of these alkanes were employed to simulate the ignition delay times under the same experimental conditions reported by Shen and coworkers18,19using Chemkin 2.0 software package.61In addition,our results were also compared with those based on mechanisms developed by Wang34and Curran36,37et al.to demonstrate reliability of our mechanisms.Both the Curran′s n-heptane model(550 species and 2450 reactions)and iso-octane model(860 species and 3600 reactions)can be used over a wide range of temperature from 550-1700 K.Experimental ignition delay times together with the calculated ones are presented in Fig.3.Ignition delay times of n-dodecane at 1.4×106Pa versus the inverse of initial temperatures at 0.5 equivalence ratio are illustrated in Fig.3(a).Experimentally derived and numerically predicted ignition delay times for n-decane and n-heptane at 1.0 equivalence ratio and high pressures(1.2×106and 5.0×106Pa)are shown in Figs.3(b)and 3(c),respectively.The ignition delay times of iso-octane at 1.0×106Pa pressure and 1.0 equivalence ratio are given in Fig.3(d).As can be seen from Fig.3,results based on skeletal mechanisms closely resemble those using semi-detailed mechanisms,which show reliability of the skeletal mechanisms.In addition,ignition delay times for hightemperature oxidation of four kinds of alkanes obtained with our mechanisms agree reasonably well with experimental data except for those at 5.0×106Pa pressure.It can also be seen from this figure that ignition delay times from our mechanisms are generally smaller than those with other mechanisms and our results are in better agreement with experimental data.It should be noted that only high-temperature chemical reaction classes are included in our mechanisms,so they can only be applied to simulate combustions at a relatively high temperature.Moreover,compared with experimental data,ignition delay times at 5.0×106Pa pressure with our mechanisms are overestimated.This indicates that influence of pressure on kinetic and thermodynamic parameters may be important and it is also possible that alternative pathways which are not described properly in our mechanism could play a role under high pressure.

    3.2 Laminar flame speed

    Laminar flame speeds at 1.0×105Pa and different equivalence ratios for combustion of n-heptane,n-decane,iso-octane,and n-dodecane were calculated using the PREMIX code63coupled with the Chemkin 2.0.61Besides our models,JetSurF 1.0 developed by Wang et al.34and the model of iso-octane from Blanquart et al.64were also adopted in simulations.The Blanquart′s model including 149 species and 1651 reactions is aimed at the formation of soot precursors for fuel surrogates for premixed and diffusion.Calculated results together with available experimental data are demonstrated in Fig.4(a)for ndodecane,Fig.4(b)for n-decane,Fig.4(c)for n-heptane,and Fig.4(d)for iso-octane.Experimental values of laminar flame speeds were taken from the literature by Ji,28Kumar,26,27Kelley,29and Davis25et al.

    Fig.3 Ignition delay times for the high-temperature combustion of(a)n-dodecane,(b)n-decane,(c)n-heptane,(d)iso-octane

    Fig.4 Laminar flame speeds of(a)n-dodecane,(b)n-decane,(c)n-heptane,(d)iso-octane versus equivalence ratio at fresh gas temperatures 403,400,and 298 K and 1.0×105Pa pressure

    According to Fig.4,laminar flame speeds in present work are generally in reasonable agreement with experimental data at various equivalence ratios,and calculated results using semidetailed mechanisms agree better with experimental values than those using skeletal mechanisms.Difference in laminar flame speeds between semi-detailed mechanism and skeletal mechanism shows up and reaches 5 cm·s-1for fuel-lean mixtures,while this difference is much smaller for richest mixtures.It has been discussed previously35that flame propagation is sensitive to the rates of H2/CO/C1-C2reaction,so this difference could be a result of an oversimplification of the core mechanism.It can be seen from Fig.4 that our results are in good agreement with the experimental data of Kumar and coworkers26,27and the fuel-lean data from Ji et al.28On the other hand,laminar flame speeds using JetSurF 1.0 reaction model are smaller than our results and are more close to experimental data reported by Ji et al.28It should be noted that the data of Kumar and coworkers26,27for fuel rich mixtures are higher than those data reported by Ji et al.28,which is related to the fact that the values of Kumar and coworkers26,27were obtained by linear extrapolation while those of Ji et al.28were derived from nonlinear extrapolation.In general,results with our mechanisms agree better with experimental data derived from linear extrapolation,while results using JetSurF 1.0 are more consistent with those obtained by non-linear extrapolation.

    3.3 Concentration profile of species

    Dagaut and coworkers65-67have experimentally studied the oxidation of several kinds of alkanes in a JSR.The measured concentrations of many species are useful for the validation of mechanisms of alkanes.Because the consumption of reactants and production of products play a very important role during combustion,special attention is paid to the evolution of the concentrations of alkanes,oxygen,CO,CO2in this section.Simulations were performed using a zero-dimensional model under constant-pressure,isothermal conditions.

    Both our semi-detailed and skeletal mechanisms of alkanes were chosen to validate the species concentration in a JSR.Simulations were implemented under the same experimental conditions reported by Dagaut and coworkers.65-67Simulation conditions were equivalence ratio ?=1.0,0.1%alkanes diluted in nitrogen at 1.0×106Pa,and 1.0 s residence time.Simulation results and experimental data for the mole fraction profiles of alkanes,oxygen,CO,CO2are depicted in Fig.5.The models developed by Wang(JetSurF 1.0),34Curran,36and Blanquart64et al.were also employed to simulate species concentrations under the same conditions.Simulation results and experimental data are depicted in Fig.6.

    It can be seen in Figs.5-6 that all calculated concentration profiles of species using our mechanisms and published models are in qualitatively agreement with available experimental data derived from literature.65-67Simulation results from our semidetailed mechanisms are the same as those results obtained by skeletal mechanisms.That means that skeletal mechanisms maintain major reaction pathways of semi-detailed mechanisms.As the temperature is below 800 K,there are some quan-titative differences between calculated and experimental results for the species of n-dodecane,n-decane,and n-heptane oxidation using our mechanisms in Fig.5,while the same results appear in Fig.6(a,b)using JetSurF 1.0 models.The reason is that low temperature reactions have not been included in our mechanisms and JetSurF 1.0 models.The mole fraction profiles of alkanes and CO are reasonably reproduced by these models.The production of CO2is accurately reproduced by our n-do-decane model,n-dodecane model of JetSutF 1.0,Curran′s nheptane model,and Blanquart′s iso-octane model,while the consumption of oxygen is also accurately reproduced by our ndecane,n-heptane,iso-octane models,and n-decane model of Jet-SurF 1.0.However,there are still some quantitative differences between calculated results and experimental data of some species for some models,such as CO2in our n-decane model and oxygen in Curran′s n-heptane model.This result is similar to the result reported by the reference.68

    Fig.5 Chemical species concentrations simulated with our mechanisms in a JSR for 0.1%alkanesn-dodecane;(b,b′)n-decane;n-heptane;(d,d′)iso-octane)diluted in nitrogen at 1.0×106Pa pressure,?=1.0,and 1.0 s residence time

    Fig.6 Chemical species concentrations simulated with published mechanisms in a JSR for 0.1%alkanes((a)n-dodecane;(b)n-decane;(c)n-heptane;(d)iso-octane))diluted in nitrogen at 1.0×106Pa pressure,?=1.0,and 1.0 s residence time

    In order to further verify the rationality of our mechanisms,the simulations of concentration profiles of important species in a JSR under other conditions were implemented.Simulation results and experimental data for the mole fraction profiles of alkanes,oxygen,CO,CO2are depicted in Figs.7-9.

    Under the conditions of equivalence ratio ?=0.5,0.1%alkanes diluted in nitrogen at 1.0×106Pa pressure,and 1.0 s residence time,the simulations of concentration profiles of important species in a JSR for all alkanes except n-decane,which is short of available experimental data under the same conditions,are illustrated in Fig.7.It can be seen in Fig.7 that all calculated concentration profiles of species using our mechanisms are still in qualitatively agreement with available experimental data derived from literature.65,67Calculated results using these models show great agreement with experimental data for the formation of CO and CO2especially for n-heptane and iso-octane.The conversion of iso-octane is also excellently reproduced by the semi-detailed and skeletal mechanisms.However,there are still some quantitative differences between calculated results and experimental data of some species in the models,such as oxygen in our n-heptane and iso-octane models.The simulations for the n-decane oxidation in a JSR under the conditions,equivalence ratios ?=1.0 and 1.5,0.1%n-decane diluted in nitrogen at 1.0×106Pa pressure and 0.5 s residence time,were carried out in our study.Simulation results and experimental data are depicted in Figs.8-9.As can be seen from Figs.8-9,the concentrations of decane and CO2are reproduced by our semi-detailed and skeletal mechanisms.Comparing with experimental data,there are still some quantitative differences of the results for the concentrations of oxygen and COsimulatedby our n-decane model.That means the further investigation should be carried out in order to accurately reproduce all kinds of species involved in alkane oxidation.

    4 Analysis of the mechanism and discussion

    4.1 Reaction pathway analysis

    To better understand combustion process and further optimize the combustion mechanisms of hydrocarbon fuels,reaction pathway analysis were carried out.In reaction pathway analysis,contribution of each reaction to the production and consumption of every species were first calculated using the method of ROP analysis at each time step in the whole reaction progress.Overall production and consumption reaction pathways of main species of the mechanism can be obtained by integration over the whole reaction time.The reaction pathway analysis for combustion of four alkanes based on the skeletal mechanisms was performed using the closed homogeneous batch reactor model in Chemkin 2.0 at 0.5 equivalence ratio,1×105Pa pressure,and 1150 K temperature.Main reaction routes in combustion of these alkanes are presented in Figs.10-13.

    Fig.7 Chemical species concentrations in a JSR for 0.1%alkanesn-dodecane;(b,b′)iso-octane;n-heptane)diluted in nitrogen at 1.0×106Pa pressure,?=0.5,and 1.0 s residence time

    It can be seen from these figures that the fuels,i.e.,n-heptane,iso-octane,n-decane,and n-dodecane,are mainly consumed through H-abstraction reactions with H,OH,and O radicals(over 85%)to generate different alkyl radicals.Mutual isomerization will take place between isomers of these alkyl radicals.In addition,these alkyl radicals will undergo β-scission reactions to form olefins and smaller alkyl radicals.These smaller alkyl radicals either isomerize to form other radicals or are further consumed through β-scission reactions to produce even smaller molecules and radicals.Taken n-dodecane as an example,six different types of dodecyl radicals are generated through H-abstraction reactions.They can convert from one type to another type of dodecyl radical through isomerization or go through β-scission reactions to produce lowmolecular weight olefins and small alkyl radicals.These small alkyls can further decompose to olefin and smaller alkyls through βscission reactions.Based on comprehensive analysis of the reaction pathway in combustion of n-dodecane,we found that the consumption of 2-dodecyl radicals was the main reaction pathway.Once produced,2-dodecyl radicals decompose to propylene(C3H6)molecule and 1-nonyl(1-C9H19)radicals.1-Nonyl radicals mainly undergo isomerization to form 5-nonyl radicals and small hydrocarbon molecules(such as methane,ethylene,methyl,ethyl,1,3-butadiene)can be produced resulting from βscission reactions of 5-nonyl radicals.

    Fig.8 Chemical species concentrations in a JSR for 0.1%ndecane diluted in nitrogen at 1.0×106Pa pressure,?=1.0,and 0.5 s residence time

    4.2 Sensitivity analysis

    In order to illustrate key reactions affecting ignition during high-temperature combustion of alkanes,sensitivity analysis for ignition delay times of n-dodecane,n-decane,n-heptane,and iso-octane were performed at ?=0.5,1150 K initial temperature,and 1.0×105Pa pressure.The method proposed in reference69was adopted to calculate sensitivity of the ignition delay time concerning reaction i as the following:

    where τignis ignition delay ti,me calculated by the original combustion mechanism,τign(2ki)is ignition delay time simulated using this mechanism in which the rate constant of reaction i is doubled through multiplying the pre-exponential factor of reaction i by 2.A positive sensitivity implies that the related reaction has an inhibiting effect on ignition;on the contrary,a negative sensitivity indicates a promoting effect.

    Fig.9 Chemical species concentrations in a JSR for 0.1%ndecane diluted in nitrogen at 1.0×106Pa pressure,?=1.5,and 0.5 s residence time

    Fig.14 demonstrates reactions that have greater effect on ignition delay times according to Eq.(6)as well as corresponding sensitivity values in our semi-detailed and skeletal mechanisms.One can see from this figure that results derived from skeletal mechanisms agree approximately with those using semi-detailed mechanisms.Furthermore,reactions in core mechanism are very important for ignition delay time,while reactions in a set of generated Cn(n≥5)sub-mechanism are less important except for iso-octane,although they are critical in initial steps in combustion.Two reactions with higher negative sensitivity values are always H+O2=OH+O and CH3+HO2=CH3O+OH during combustion of these alkanes.These two reactions thus play an important role in high-temperature chemical process.On the other hand,the reaction C2H3+O2=CHO+HCHO exhibits the largest inhibiting effect among all the reactions for straightchain alkanes,while the radical-radical combination reaction 2CH3(+M)=C2H6(+M)has the largest positive sensitivity value for the branched alkane iso-octane.Moreover,reactions involving HO2/H/OH/CH3/C2H3radicals have large influence on ignition delay time prediction at high temperature for straightchain alkanes.For iso-octane,reactions(H+O2=OH+O and CH3+HO2=CH3O+OH)as well as the fuel-consuming reactions involved the breaking of C―C bond(i-C8H18→CH3+i-C7H15-2,1-i-C8H17→i-C4H9+i-C4H8,i-C8H18→t-C4H9+i-C4H9and i-C8H17-4→CH3+i-C7H14-4)also play an important role in ignition of iso-octane at high temperature.

    It is noted that the sensitivity absolute values of several reac-

    those above mentioned reactions are larger in the skeletal mechanisms than in the semi-detailed mechanisms for n-dodecane/air and n-heptane/air combustion.On the contrary,one can draw the conclusion that the consumption of 1-decatyl radicals is the main reaction pathway for n-decane from Fig.11.It is ethene not propylene that is produced through the decomposition of 1-decatyl.So the sensitivity absolute values of reactions involved in the consumption of propylene are smaller in the skeletal mechanism than in the semi-detailed mechanism for n-decane.But it is noted that the sensitivity absolute value of reaction involved in the consumption of ethene C2H4+OH=C2H3+H2O is also smaller in the skeletal mechanism than in the semi-detailed mechanism for n-decane.Because the ignition delay time used in this work is defined as the time when the largest changing rate(dxOH/dt)of OH radical concentration occurs,more ethenes produced from 1-decatyl decomposition react with more OH radicals,and then this will result in a consequence that the sensitivity value of the reaction C2H4+OH=C2H3+H2O shifts towards inhibited ignition in the skeletal mechanism.

    5 Conclusions

    Detailed mechanisms for high-temperature combustion of the following alkanes:n-heptane,n-decane,n-dodecane,and iso-octane were generated using the automatic mechanism generation program(ReaxGen).Because of the complexity of detailed mechanisms,these mechanisms were reduced first by employing the method of rate-of-production analysis to generate semi-detailed mechanisms.Highly reduced skeletal mechanisms were subsequently obtained using path flux analysis based on the semi-detailed mechanisms.Our results demonstrate that the skeletal mechanisms can accurately and comprehensively reproduce results of the detailed mechanisms.These mechanisms were validated against experimental data over a wide range of conditions to investigate their reliability.Simulation results show that these mechanisms are able to provide a reasonable prediction on ignition delay time,laminar flame speed,and the concentration profile of species.This indicates that the detailed and skeletal mechanisms are reliable in describing combustion behaviors of these alkanes under various conditions.Main pathways in combustion process of the alkanes at high temperature were illustrated based on the reaction path analysis.Furthermore,sensitivity analysis was also carried out,and our results indicate that reactions involving small molecules and radicals in core mechanism have great influence on ignition delay time.The reaction of H+O2=OH+O is found to be the most important reaction to promote the ignition during high-temperature combustion.

    Our results show that combustion mechanisms for these alkanes,which were produced based on reaction classes and a given core mechanism,are reliable in describing high-temperature combustion process.Skeletal mechanisms with smaller numbers of species and reactions could also be helpful in understanding reaction processes and in computational fluid dynamics for engine design.Moreover,the method,which combines constructing,simplifying,validating,and analyzing the high-temperature combustion mechanisms of alkanes,could also be used to generate the mechanism of other hydrocarbons for high-temperature combustion.Mechanisms for low-temperature combustion are also of great importance and it will be desirable to be generated automatically.Work in this direction is in progress.

    Supporting Information: The input files with Chemkin format about mechanisms of n-heptane,iso-octane,n-decane,and n-dodecane are available free of charge via the internet at http://www.whxb.pku.edu.cn and http://www.ccg.scu.edu.cn.

    (1) Westbrook,C.K.;Pitz,W.J.;Herbinet,O.;Curran,H.J.;Silke,E.J.Combust.Flame 2009,156,181.doi:10.1016/j.combustflame.2008.07.014

    (2) Oehlschlaeger,M.A.;Steinberg,J.;Westbrook,C.K.;Pitz,W.J.Combust.Flame 2009,156,2165.doi:10.1016/j.combustflame.2009.05.007

    (3)Mehl,M.;Vanhove,G.;Pitz,W.J.;Ranzi,E.Combust.Flame 2008,155,756.doi:10.1016/j.combustflame.2008.07.004

    (4) Mehl,M.;Pitz,W.J.;Westbrook,C.K.;Yasunaga,K.;Conroy,C.;Curran,H.J.Proc.Combust.Inst.2011,33,201.doi:10.1016/j.proci.2010.05.040

    (5) Mehl,M.;Pitz,W.J.;Westbrook,C.K.;Curran,H.J.Proc.Combust.Inst.2011,33,193.doi:10.1016/j.proci.2010.05.027

    (6) Oehlschlaeger,M.A.;Shen,H.P.S.;Frassoldati,A.;Pierucci,S.;Ranzi,E.Energy Fuels 2009,23,1464.doi:10.1021/ef800892y

    (7)Tan,N.X.;Wang,J.B.;Hua,X.X.;Li,Z.R.;Li,X.Y.Chem.J.Chin.Univ.2011,32,1832.[談寧馨,王靜波,華曉筱,李澤榮,李象遠.高等學?;瘜W學報,2011,32,1832.]

    (8) Yao,T.;Zhong,B.J.Acta.Phys.-Chim.Sin.2013,29,237.[姚 通,鐘北京.物理化學學報,2013,29,237.]doi:10.3866/PKU.WHXB201211271

    (9) Andrae,J.C.G.;Bj?rnbom,P.;Cracknell,R.F.;Kalghatgi,G.T.Combust.Flame 2007,149,2.doi:10.1016/j.combustflame.2006.12.014

    (10) Zheng,D.;Zhong,B.J.Acta.Phys.-Chim.Sin.2012,28,2029.[鄭 東,鐘北京.物理化學學報,2012,28,2029.]doi:10.3866/PKU.WHXB201207042

    (11) Pang,B.;Xie,M.Z.;Jia,M.;Liu,Y.D.Acta.Phys.-Chim.Sin.2013,29,2523.[龐 斌,謝茂昭,賈 明,劉耀東.物理化學學報,2013,29,2523.]doi:10.3866/PKU.WHXB201310161

    (12) Jahangirian,S.;McEnally,C.S.;Gomez,A.Combust.Flame 2009,156,1799.doi:10.1016/j.combustflame.2009.03.003

    (13) Honnet,S.;Seshadri,K.;Niemann,U.;Peters,N.Proc.Combust.Inst.2009,32,485.doi:10.1016/j.proci.2008.06.218

    (14) Natelson,R.H.;Kurman,M.S.;Cernansky,N.P.;Miller,D.L.Fuel 2008,87,2339.doi:10.1016/j.fuel.2007.11.009

    (15) Dagaut,P.;Bakali,A.E.;Ristori,A.Fuel 2006,85,944.doi:10.1016/j.fuel.2005.10.008

    (16) Ranzi,E.;Frassoldati,A.;Granata,S.;Faravelli,T.Ind.Eng.Chem.Res.2005,44,5170.

    (17)Hua,X.X.;Wang,J.B.;Wang,Q.D.;Tan,N.X.;Li,X.Y.Acta Phys.-Chim.Sin.2011,27,2755.[華曉筱,王靜波,王全德,談寧馨,李象遠.物理化學學報,2011,27,2755.]doi:10.3866/PKU.WHXB20112755

    (18) Shen,H.P.S.;Steinberg,J.;Vanderover,J.;Oehlschlaeger,M.A.Energy Fuels 2009,23,2482.doi:10.1021/ef8011036

    (19) Shen,H.P.S.;Vanderover,J.;Oehlschlaeger,M.A.Combust.Flame 2008,155,739.doi:10.1016/j.combustflame.2008.06.001

    (20) Beerer,D.J.;McDonell,V.G.Proc.Combust.Inst.2011,33,301.doi:10.1016/j.proci.2010.05.015

    (21) Liu,N.;Ji,C.;Egolfopoulos,F.N.Combust.Flame 2012,159,465.doi:10.1016/j.combustflame.2011.07.012

    (22) Zhukov,V.P.;Sechenov,V.A.;Starikovskii,A.Y.Combust.Flame 2008,153,130.doi:10.1016/j.combustflame.2007.09.006

    (23) Olchanski,E.;Burcat,A.Int.J.Chem.Kinet.2006,38,703.doi:10.1002/kin.20204

    (24) Kumar,K.;Mittal,G.;Sung,C.J.Combust.Flame 2009,156,1278.doi:10.1016/j.combustflame.2009.01.009

    (25) Davis,S.G.;Law,C.K.Combust.Sci.Technol.1998,140,427.doi:10.1080/00102209808915781

    (26) Kumar,K.;Freeh,J.E.;Sung,C.J.;Huang,Y.J.Propul.Power 2007,23,428.doi:10.2514/1.24391

    (27) Kumar,K.;Sung,C.J.Combust.Flame 2007,151,209.doi:10.1016/j.combustflame.2007.05.002

    (28) Ji,C.;Dames,E.;Wang,Y.L.;Wang,H.;Egolfopoulos,F.N.Combust.Flame 2010,157,277.doi:10.1016/j.combustflame.2009.06.011

    (29) Kelley,A.P.;Liu,W.;Xin,Y.X.;Smallbone,A.J.;Law,C.K.Proc.Combust.Inst.2011,33,501.doi:10.1016/j.proci.2010.05.058

    (30) Jahangirian,S.;Dooley,S.;Haas,F.M.;Dryer,F.L.Combust.Flame 2012,159,30.doi:10.1016/j.combustflame.2011.07.002

    (31) Sheen,D.A.;Wang,H.Combust.Flame 2011,158,645.doi:10.1016/j.combustflame.2010.12.016

    (32) Glaude,P.A.;Warth,V.;Fournet,R.;Battin-Leclerc,F.;Scacchi,G.;Co?me,G.M.Int.J.Chem.Kinet.1998,30,949.doi:10.1002/(SICI)1097-4601(1998)30:12<949::AID-KIN10>3.0.CO;2-G

    (33) Battin-Leclerc,F.Prog.Energy Combust.Sci.2008,34,440.doi:10.1016/j.pecs.2007.10.002

    (34) Sirjean,B.;Dames,E.;Sheen,D.A.;You,X.Q.;Sung,C.;Holley,A.T.;Egolfopoulos,F.N.;Wang,H.;Vasu,S.S.;Davidson,D.F.;Hanson,R.K.;Pitsch,H.;Bowman,C.T.;Kelley,A.;Law,C.K.;Tsang,W.;Cernansky,N.P.;Miller,D.L.;Violi,A.;Lindstedt,R.P.A High-Temperature Chemical Kinetic Model of n-Alkane Oxidation,JetSurF Version 1.0.http://melchior.usc.edu/JetSurF/Version1_0/index.html(accessed September 15,2009).

    (35)You,X.;Egolfopoulos,F.N.;Wang,H.Proc.Combust.Inst.2009,32,403.doi:10.1016/j.proci.2008.06.041

    (36) Curran,H.J.;Gaffuri,P.;Pitz,W.J.;Westbrook,C.K Combust.Flame 1998,114,149.doi:10.1016/S0010-2180(97)00282-4

    (37) Curran,H.J.;Gaffuri,P.;Pitz,W.J.;Westbrook,C.K.Combust.Flame 2002,129,253.doi:10.1016/S0010-2180(01)00373-X

    (38)Wang,Q.D.;Wang,J.B.;Li,J.Q.;Tan,N.X.;Li,X.Y.Combust.Flame 2011,158,217.doi:10.1016/j.combustflame.2010.08.010

    (39) Wen,F.;Zhong,B.J.Acta Phys.-Chim.Sin.2012,28,1306.[文 斐,鐘北京.物理化學學報,2012,28,1306.]doi:10.3866/PKU.WHXB201204012

    (40)Zeuch,T.;Moréac,G.;Ahmed,S.S.;Mauss,F.Combust.Flame 2008,155,651.doi:10.1016/j.combustflame.2008.05.007

    (41) Lu,T.;Law,C.K.Combust.Flame 2008,154,153.doi:10.1016/j.combustflame.2007.11.013

    (42) Sarathy,S.M.;Westbrook,C.K.;Mehl,M.;Pitz,W.J.;Togbe,C.;Dagaut,P.;Wang,H.;Oehlschlaeger,M.A.;Niemann,U.;Seshadri,K.;Veloo,P.S.;Ji,C.;Egolfopoulos,F.N.;Lu,T.Combust.Flame 2011,158,2338.doi:10.1016/j.combustflame.2011.05.007

    (43)Fang,Y.M.;Wang,Q.D.;Wang,F.;Li,X.Y.Acta Phys.-Chim.Sin.2012,28,2536.[方亞梅,王全德,王 繁,李象遠.物理化學學報,2012,28,2536.]doi:10.3866/PKU.WHXB201208201

    (44) Bikas,G.;Peters,N.Combust.Flame 2001,126,1456.doi:10.1016/S0010-2180(01)00254-1

    (45) Zeppieri,S.P.;Klotz,S.D.;Dryer,F.L.Proc.Combust.Inst.2000,28,1587.doi:10.1016/S0082-0784(00)80556-1

    (46) Zhong,B.J.;Yao,T.;Wen,F.Acta Phys.-Chim.Sin.2014,30,210.[鐘北京,姚 通,文 斐.物理化學學報,2014,30,210.]doi:10.3866/PKU.WHXB201312103

    (47) Jiang,Y.;Qiu,R.Acta Phys.-Chim.Sin.2009,25,1019.[蔣 勇,邱 榕.物理化學學報,2009,25,1019.]doi:10.3866/PKU.WHXB20090426

    (48) Chang,Y.;Jia,M.;Liu,Y.;Li,Y.;Xie,M.;Yin,H.Energy Fuels 2013,27,3467.doi:10.1021/ef400460d

    (49) Warth,V.;Battin-Leclerc,F.;Fournet,R.;Glaude,P.A.;Co?me,G.M.;Scacchi,G.Comput.Chem.2000,24,541.doi:10.1016/S0097-8485(99)00092-3

    (50) Ranzi,E.;Faravelli,T.;Gaffuri,P.;Garavaglia,E.;Goldaniga,A.Ind.Eng.Chem.Res.1997,36,3336.doi:10.1021/ie960603c

    (51) Muharam,Y.;Warnatz,J.Phys.Chem.Chem.Phys.2007,9,4218.doi:10.1039/b703415f

    (52) Sun,W.;Chen,Z.;Gou,X.;Ju,Y.Combust.Flame 2010,157,1298.doi:10.1016/j.combustflame.2010.03.006

    (53) Wang,H.;You,X.Q.;Joshi,A.V.;Davis,S.G.;Laskin,A.;Egolfopoulos,F.N.;Law,C.K.USC Mech Version II.High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds.http://ignis.usc.edu/USC_Mech_II.htm(accessed May,2007).

    (54) Moreác,G.;Blurock,E.S.;Mauss,F.Combust.Sci.Technol.2006,178,2025.doi:10.1080/00102200600793262

    (55)Davis,S.G.;Law,C.K.;Wang,H.Combust.Flame 1999,119,375.doi:10.1016/S0010-2180(99)00070-X

    (56) Benson,S.W.Thermochemical Kinetics,2nd ed.;John Wiley and Sons:New York,1976;pp 19-72.

    (57) Lay,T.H.;Bozzelli,J.W.;Dean,A.M.;Ritter,E.R.J.Phys.Chem.1995,99,14514.doi:10.1021/j100039a045

    (58)Wang,H.;Frenklach,M.Combust.Flame 1994,96,163.doi:10.1016/0010-2180(94)90167-8

    (59) Lu,T.;Law,C.K.Combust.Flame 2006,144,24.doi:10.1016/j.combustflame.2005.02.015

    (60)Wang,Q.D.;Fang,Y.M.;Wang,F.;Li,X.Y.Combust.Flame 2012,159,91.doi:10.1016/j.combustflame.2011.05.019

    (61) Kee,R.J.;Rupley,F.M.;Miller,J.A.Chemkin-II:a Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics.Report SAND89-8009,Sandia,1989.

    (62) Lutz,A.E.;Kee,R.J.;Miller,J.A.SENKIN:a Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis.Report SAND87-8248,Sandia,1987.

    (63)Kee,R.J.;Grcar,J.F.;Smooke,M.D.;Miller,J.A.PREMIX:a Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames.Report SAND85-8240,Sandia,1985.

    (64) Blanquart,G.;Pepiot-Desjardins,P.;Pitsch,H.Combust.Flame 2009,156,588.doi:10.1016/j.combustflame.2008.12.007

    (65) Dagaut,P.;Reuillon,M.;Cathonnet,M.Combust.Sci.Technol.1994,95,233.

    (66) Dagaut,P.;Reuillon,M.;Cathonnet,M.Combust.Sci.Technol.1994,103,349.doi:10.1080/00102209408907703

    (67)Mzé-Ahmed,A.;Hadj-Ali,K.;Dagaut,P.;Dayma,G.Energy Fuels 2012,26,4253.doi:10.1021/ef300588j

    (68) Chang,Y.;Jia,M.;Liu,Y.;Li,Y.;Xie,M.Combust.Flame 2013,160,1315.doi:10.1016/j.combustflame.2013.02.017

    (69)Kumar,K.;Mittal,G.;Sung,C.J.;Law,C.K.Combust.Flame 2008,153,343.doi:10.1016/j.combustflame.2007.11.012

    猜你喜歡
    全德四川大學物理化學
    物理化學課程教學改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學課堂教學改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    四川大學西航港實驗小學
    中小學校長(2021年9期)2021-10-14 14:36:16
    關(guān)于痔瘡防治的科普知識
    百歲翁的健腦方
    百歲翁的健腦方
    特別健康(2018年8期)2018-09-07 00:35:50
    Chemical Concepts from Density Functional Theory
    百年精誠 譽從信來——走進四川大學華西眼視光之一
    四川大學華西醫(yī)院
    四川大學信息顯示研究所
    液晶與顯示(2014年2期)2014-02-28 21:12:58
    欧美另类一区| 中文精品一卡2卡3卡4更新| 欧美精品一区二区免费开放| 亚洲精品久久久久久婷婷小说| 一区二区三区精品91| 亚洲熟女精品中文字幕| 搡女人真爽免费视频火全软件| 日韩中文字幕视频在线看片| 青青草视频在线视频观看| 看免费av毛片| 人人妻人人添人人爽欧美一区卜| 国产视频首页在线观看| 亚洲精品色激情综合| av片东京热男人的天堂| www.色视频.com| 成人黄色视频免费在线看| 国产精品偷伦视频观看了| 亚洲精品乱码久久久久久按摩| 久久人妻熟女aⅴ| 亚洲人成77777在线视频| 亚洲经典国产精华液单| 欧美最新免费一区二区三区| 成人亚洲精品一区在线观看| 亚洲人成77777在线视频| 久久久久久久久久人人人人人人| 欧美日韩综合久久久久久| 日本-黄色视频高清免费观看| 大话2 男鬼变身卡| 精品福利永久在线观看| 亚洲av中文av极速乱| 1024视频免费在线观看| 午夜日本视频在线| 91aial.com中文字幕在线观看| av福利片在线| 欧美日韩成人在线一区二区| 日本与韩国留学比较| 成人黄色视频免费在线看| 日本vs欧美在线观看视频| 各种免费的搞黄视频| 欧美精品国产亚洲| 久久青草综合色| 国产高清国产精品国产三级| 精品第一国产精品| 国产av国产精品国产| 欧美人与性动交α欧美软件 | 亚洲第一av免费看| 精品一区二区三卡| 国产精品麻豆人妻色哟哟久久| 极品少妇高潮喷水抽搐| 欧美精品高潮呻吟av久久| 人妻 亚洲 视频| 亚洲精品一二三| 五月开心婷婷网| 国产免费福利视频在线观看| 22中文网久久字幕| 国产精品偷伦视频观看了| 又大又黄又爽视频免费| 色吧在线观看| 亚洲一级一片aⅴ在线观看| 免费久久久久久久精品成人欧美视频 | 欧美97在线视频| 国产伦理片在线播放av一区| 国产欧美亚洲国产| 熟女电影av网| 日本免费在线观看一区| 亚洲精品aⅴ在线观看| 国产免费一级a男人的天堂| 国产精品 国内视频| 街头女战士在线观看网站| 少妇被粗大猛烈的视频| 色吧在线观看| 色哟哟·www| 国产高清国产精品国产三级| 91精品国产国语对白视频| 国产亚洲精品久久久com| 秋霞在线观看毛片| 国产无遮挡羞羞视频在线观看| 午夜精品国产一区二区电影| 乱码一卡2卡4卡精品| 一区二区日韩欧美中文字幕 | 久久免费观看电影| 国产精品无大码| 亚洲欧美成人综合另类久久久| 国产成人免费观看mmmm| 国产激情久久老熟女| 日本爱情动作片www.在线观看| 国产精品久久久久久av不卡| 欧美 亚洲 国产 日韩一| 久久99热6这里只有精品| 自线自在国产av| 99热这里只有是精品在线观看| 黄色 视频免费看| 国产爽快片一区二区三区| 免费黄色在线免费观看| 久久久久网色| 91精品伊人久久大香线蕉| 国产1区2区3区精品| 亚洲国产最新在线播放| 九色亚洲精品在线播放| 久热久热在线精品观看| 在线观看一区二区三区激情| 另类亚洲欧美激情| 五月开心婷婷网| 成年美女黄网站色视频大全免费| 午夜av观看不卡| 中国国产av一级| 美女内射精品一级片tv| 97人妻天天添夜夜摸| 亚洲精品中文字幕在线视频| 十八禁高潮呻吟视频| 男女无遮挡免费网站观看| 亚洲性久久影院| 精品国产一区二区三区久久久樱花| 成人毛片a级毛片在线播放| 欧美精品一区二区免费开放| 亚洲欧洲国产日韩| 97在线视频观看| 亚洲成人手机| 国产精品99久久99久久久不卡 | 亚洲av成人精品一二三区| 日本wwww免费看| 日韩av免费高清视频| 综合色丁香网| 亚洲av免费高清在线观看| 99热全是精品| 新久久久久国产一级毛片| 午夜免费男女啪啪视频观看| av有码第一页| 伊人亚洲综合成人网| 亚洲av.av天堂| 欧美老熟妇乱子伦牲交| videosex国产| 午夜av观看不卡| 两个人看的免费小视频| 九色亚洲精品在线播放| 巨乳人妻的诱惑在线观看| 精品国产露脸久久av麻豆| 视频区图区小说| 国产成人a∨麻豆精品| 亚洲图色成人| 人人妻人人澡人人爽人人夜夜| 国产精品一国产av| 狂野欧美激情性xxxx在线观看| 久久国内精品自在自线图片| 久久久a久久爽久久v久久| 在线观看免费视频网站a站| 日本黄色日本黄色录像| 五月伊人婷婷丁香| 美女xxoo啪啪120秒动态图| 久久久久网色| 成年女人在线观看亚洲视频| 日韩人妻精品一区2区三区| 国产男女内射视频| 黄色视频在线播放观看不卡| 成年动漫av网址| 亚洲av中文av极速乱| 男女国产视频网站| 99热6这里只有精品| 亚洲人成网站在线观看播放| 久久久久久久久久久久大奶| 国国产精品蜜臀av免费| 中文乱码字字幕精品一区二区三区| 亚洲美女搞黄在线观看| 在线精品无人区一区二区三| 欧美亚洲 丝袜 人妻 在线| 成人国语在线视频| 久久午夜福利片| 丝袜喷水一区| 亚洲一码二码三码区别大吗| 久久久久视频综合| 国产成人免费无遮挡视频| 热re99久久精品国产66热6| 久久精品aⅴ一区二区三区四区 | 欧美人与善性xxx| 国产有黄有色有爽视频| 亚洲精品,欧美精品| av又黄又爽大尺度在线免费看| 精品少妇久久久久久888优播| 国产精品久久久久久精品电影小说| 亚洲av在线观看美女高潮| 国产探花极品一区二区| 久久免费观看电影| 少妇人妻久久综合中文| 免费大片18禁| 九色亚洲精品在线播放| 少妇精品久久久久久久| 久久精品人人爽人人爽视色| 永久免费av网站大全| 亚洲美女视频黄频| 日本爱情动作片www.在线观看| 欧美精品亚洲一区二区| 中文字幕制服av| 国产av一区二区精品久久| 久久国产精品大桥未久av| 婷婷色综合大香蕉| 搡老乐熟女国产| 9热在线视频观看99| 精品亚洲乱码少妇综合久久| 人人妻人人澡人人爽人人夜夜| 人人妻人人澡人人看| 国产1区2区3区精品| 亚洲美女搞黄在线观看| 国产一区二区激情短视频 | 欧美丝袜亚洲另类| 韩国精品一区二区三区 | 菩萨蛮人人尽说江南好唐韦庄| 黄片播放在线免费| 日韩一区二区三区影片| 免费人成在线观看视频色| 九九在线视频观看精品| 精品国产乱码久久久久久小说| 国产精品一区二区在线不卡| 亚洲国产色片| 免费黄频网站在线观看国产| 免费大片黄手机在线观看| 久久久亚洲精品成人影院| 五月玫瑰六月丁香| 视频中文字幕在线观看| 麻豆乱淫一区二区| 亚洲三级黄色毛片| 全区人妻精品视频| 日本wwww免费看| 国产综合精华液| 免费黄色在线免费观看| 精品一品国产午夜福利视频| 全区人妻精品视频| 一区二区av电影网| 免费观看无遮挡的男女| 亚洲成人一二三区av| 人妻 亚洲 视频| 天堂中文最新版在线下载| av片东京热男人的天堂| 久久97久久精品| 欧美3d第一页| 色5月婷婷丁香| 日产精品乱码卡一卡2卡三| 大码成人一级视频| 美国免费a级毛片| 亚洲国产精品国产精品| 国产欧美亚洲国产| 99热国产这里只有精品6| 王馨瑶露胸无遮挡在线观看| 内地一区二区视频在线| 亚洲精品美女久久av网站| 免费观看a级毛片全部| 制服人妻中文乱码| 国产精品一区www在线观看| 国产日韩欧美在线精品| 高清黄色对白视频在线免费看| 亚洲精品乱久久久久久| 高清欧美精品videossex| 国产高清三级在线| 夫妻性生交免费视频一级片| 看非洲黑人一级黄片| 最近中文字幕高清免费大全6| a级毛色黄片| 亚洲精华国产精华液的使用体验| 亚洲一区二区三区欧美精品| 亚洲内射少妇av| 国内精品宾馆在线| 日本91视频免费播放| 插逼视频在线观看| 成人国产av品久久久| 久久久久精品人妻al黑| 国产黄色免费在线视频| 狂野欧美激情性xxxx在线观看| 久久久久国产精品人妻一区二区| 成年动漫av网址| 精品福利永久在线观看| 亚洲综合色网址| www日本在线高清视频| 在线观看一区二区三区激情| 亚洲欧美精品自产自拍| 十分钟在线观看高清视频www| 午夜91福利影院| 涩涩av久久男人的天堂| 美女脱内裤让男人舔精品视频| 免费不卡的大黄色大毛片视频在线观看| 欧美人与性动交α欧美软件 | 七月丁香在线播放| 亚洲综合精品二区| 男女午夜视频在线观看 | 老司机影院成人| 少妇精品久久久久久久| 中文字幕另类日韩欧美亚洲嫩草| 最近最新中文字幕免费大全7| 亚洲国产最新在线播放| 免费黄频网站在线观看国产| 人人妻人人澡人人爽人人夜夜| 国产极品粉嫩免费观看在线| 亚洲欧美日韩卡通动漫| 韩国精品一区二区三区 | 国产成人av激情在线播放| 中文字幕亚洲精品专区| 亚洲人成77777在线视频| 久久这里只有精品19| 午夜91福利影院| 亚洲少妇的诱惑av| 满18在线观看网站| 亚洲精品国产色婷婷电影| 在线免费观看不下载黄p国产| 国产成人一区二区在线| 人人妻人人澡人人看| 亚洲高清免费不卡视频| 日本91视频免费播放| 满18在线观看网站| 欧美精品国产亚洲| 国产片特级美女逼逼视频| 一区二区日韩欧美中文字幕 | 有码 亚洲区| a级毛色黄片| 看免费成人av毛片| 成人国产麻豆网| 一级毛片我不卡| 日韩电影二区| 2022亚洲国产成人精品| 色视频在线一区二区三区| 狠狠精品人妻久久久久久综合| 亚洲成色77777| 黑人高潮一二区| 亚洲国产色片| 另类亚洲欧美激情| 国产一区二区三区av在线| 久久精品久久精品一区二区三区| 熟妇人妻不卡中文字幕| 国产免费福利视频在线观看| 男女免费视频国产| 久久这里只有精品19| 日韩免费高清中文字幕av| 日韩视频在线欧美| 日韩av不卡免费在线播放| 欧美国产精品一级二级三级| 另类精品久久| 亚洲人成77777在线视频| 一本—道久久a久久精品蜜桃钙片| 高清欧美精品videossex| 亚洲人成网站在线观看播放| 国产精品无大码| 成人无遮挡网站| 午夜福利视频在线观看免费| 人成视频在线观看免费观看| 大片电影免费在线观看免费| 黄色视频在线播放观看不卡| 高清视频免费观看一区二区| 又大又黄又爽视频免费| 国产在视频线精品| 久久毛片免费看一区二区三区| 午夜福利网站1000一区二区三区| 成人影院久久| 黄网站色视频无遮挡免费观看| 午夜福利,免费看| 草草在线视频免费看| av女优亚洲男人天堂| 一区二区日韩欧美中文字幕 | 日韩av免费高清视频| 国产精品久久久久久精品电影小说| 色5月婷婷丁香| 桃花免费在线播放| 三级国产精品片| 寂寞人妻少妇视频99o| 9色porny在线观看| 亚洲美女搞黄在线观看| 欧美xxⅹ黑人| 色哟哟·www| 女的被弄到高潮叫床怎么办| 成人亚洲精品一区在线观看| 国产男人的电影天堂91| 久久人人爽人人片av| 免费大片黄手机在线观看| 日本wwww免费看| 熟女人妻精品中文字幕| 大香蕉久久网| 中国三级夫妇交换| 麻豆乱淫一区二区| 精品人妻熟女毛片av久久网站| 亚洲伊人久久精品综合| 中文乱码字字幕精品一区二区三区| 午夜福利乱码中文字幕| 哪个播放器可以免费观看大片| 久久97久久精品| 国产亚洲av片在线观看秒播厂| 18在线观看网站| 久久 成人 亚洲| 秋霞伦理黄片| 亚洲色图 男人天堂 中文字幕 | 青春草国产在线视频| 九草在线视频观看| 在线观看三级黄色| 国产精品久久久久久久久免| 国产免费福利视频在线观看| 日韩成人av中文字幕在线观看| 精品亚洲成a人片在线观看| 亚洲精品久久久久久婷婷小说| 午夜老司机福利剧场| 少妇被粗大的猛进出69影院 | 啦啦啦视频在线资源免费观看| 黄色毛片三级朝国网站| 久热久热在线精品观看| 寂寞人妻少妇视频99o| 久久综合国产亚洲精品| 极品少妇高潮喷水抽搐| 成人手机av| 夜夜骑夜夜射夜夜干| 欧美激情国产日韩精品一区| 最近最新中文字幕免费大全7| 国产精品国产三级国产专区5o| 久久久国产精品麻豆| 有码 亚洲区| 九九爱精品视频在线观看| 一级片免费观看大全| 日韩欧美精品免费久久| 欧美老熟妇乱子伦牲交| 七月丁香在线播放| 中文字幕制服av| 亚洲av欧美aⅴ国产| 午夜老司机福利剧场| 在线精品无人区一区二区三| 2018国产大陆天天弄谢| 18禁动态无遮挡网站| 2022亚洲国产成人精品| 国产在视频线精品| 91精品三级在线观看| 日韩三级伦理在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲激情五月婷婷啪啪| 亚洲综合精品二区| 亚洲国产日韩一区二区| 国产精品欧美亚洲77777| 国产日韩欧美亚洲二区| 大香蕉久久成人网| av不卡在线播放| 国产一区二区激情短视频 | 少妇高潮的动态图| 国产欧美另类精品又又久久亚洲欧美| 国产亚洲一区二区精品| 国产成人精品久久久久久| 天美传媒精品一区二区| 成人综合一区亚洲| 亚洲av成人精品一二三区| 三级国产精品片| 国产成人精品久久久久久| 国产成人免费无遮挡视频| 午夜免费男女啪啪视频观看| 少妇人妻久久综合中文| 亚洲成人一二三区av| 午夜福利网站1000一区二区三区| 在线观看免费高清a一片| 蜜桃在线观看..| 成人国产av品久久久| 青春草视频在线免费观看| 国产精品久久久久久精品古装| 波野结衣二区三区在线| 欧美日韩视频高清一区二区三区二| 国产淫语在线视频| 一区二区av电影网| 国产精品久久久久久久久免| 国产黄色免费在线视频| 久久午夜福利片| 午夜视频国产福利| 色吧在线观看| 国产乱人偷精品视频| 亚洲国产av影院在线观看| 亚洲国产成人一精品久久久| 丝袜人妻中文字幕| av女优亚洲男人天堂| 大陆偷拍与自拍| 卡戴珊不雅视频在线播放| 亚洲,欧美,日韩| 黑人猛操日本美女一级片| 国产亚洲av片在线观看秒播厂| 美女主播在线视频| 国产黄色视频一区二区在线观看| 欧美日韩一区二区视频在线观看视频在线| 久久青草综合色| 国产又爽黄色视频| www.色视频.com| 高清毛片免费看| 日本与韩国留学比较| 欧美xxxx性猛交bbbb| 欧美xxⅹ黑人| 亚洲国产最新在线播放| 性高湖久久久久久久久免费观看| 综合色丁香网| 中国美白少妇内射xxxbb| √禁漫天堂资源中文www| 成人综合一区亚洲| 一本色道久久久久久精品综合| 亚洲国产成人一精品久久久| 欧美精品一区二区免费开放| 午夜激情av网站| 日本黄大片高清| av电影中文网址| 亚洲人成77777在线视频| 亚洲欧美日韩卡通动漫| 国产成人一区二区在线| 伦理电影免费视频| 午夜福利乱码中文字幕| xxx大片免费视频| 久久久久久久亚洲中文字幕| 国产麻豆69| 自线自在国产av| 免费在线观看黄色视频的| 侵犯人妻中文字幕一二三四区| 纵有疾风起免费观看全集完整版| av不卡在线播放| 国产精品久久久久久久电影| 日韩欧美精品免费久久| 亚洲经典国产精华液单| 美女福利国产在线| 女性生殖器流出的白浆| 一区二区三区四区激情视频| 日本黄色日本黄色录像| 人人妻人人添人人爽欧美一区卜| a级片在线免费高清观看视频| 国产精品欧美亚洲77777| 男女无遮挡免费网站观看| 日日撸夜夜添| 精品亚洲成a人片在线观看| 亚洲av.av天堂| 亚洲少妇的诱惑av| 亚洲av.av天堂| 精品亚洲成a人片在线观看| 久久久久久伊人网av| 亚洲少妇的诱惑av| 亚洲av男天堂| 丁香六月天网| 日日撸夜夜添| 亚洲少妇的诱惑av| 国产成人免费观看mmmm| 亚洲伊人色综图| 女人精品久久久久毛片| 精品亚洲成国产av| 我的女老师完整版在线观看| 极品少妇高潮喷水抽搐| 最近最新中文字幕免费大全7| 伊人久久国产一区二区| 七月丁香在线播放| 老女人水多毛片| 亚洲精品色激情综合| 天天影视国产精品| 亚洲综合色网址| 80岁老熟妇乱子伦牲交| 国产视频首页在线观看| 亚洲精华国产精华液的使用体验| 国产精品一区二区在线不卡| 中国美白少妇内射xxxbb| 日韩成人av中文字幕在线观看| www.av在线官网国产| 男男h啪啪无遮挡| 夫妻性生交免费视频一级片| 春色校园在线视频观看| 久久99一区二区三区| 久久久久网色| 国产精品 国内视频| 久久久久久久久久成人| 成人影院久久| 人妻一区二区av| 亚洲 欧美一区二区三区| 国产欧美亚洲国产| 亚洲色图综合在线观看| 伦理电影大哥的女人| av国产久精品久网站免费入址| 久久久久久久久久久免费av| 王馨瑶露胸无遮挡在线观看| 国产有黄有色有爽视频| 欧美国产精品va在线观看不卡| 人成视频在线观看免费观看| 一二三四在线观看免费中文在 | 欧美国产精品一级二级三级| 国产成人精品一,二区| 亚洲成国产人片在线观看| 国产精品蜜桃在线观看| 国产成人精品久久久久久| 日日摸夜夜添夜夜爱| 国产不卡av网站在线观看| 国产欧美另类精品又又久久亚洲欧美| 欧美成人精品欧美一级黄| 大香蕉久久成人网| 丝袜脚勾引网站| 国产精品久久久久久久电影| 校园人妻丝袜中文字幕| 在线观看免费视频网站a站| 九色成人免费人妻av| 国产高清三级在线| 少妇的丰满在线观看| 亚洲三级黄色毛片| 中文字幕最新亚洲高清| 伦精品一区二区三区| 看免费av毛片| 夫妻性生交免费视频一级片| 国产在视频线精品| 中文天堂在线官网| 性色av一级| 看非洲黑人一级黄片| 老女人水多毛片| 男女边吃奶边做爰视频| 宅男免费午夜| 久久97久久精品| 全区人妻精品视频| 亚洲人与动物交配视频| 久久99蜜桃精品久久| 欧美成人午夜免费资源| 少妇的丰满在线观看| 少妇的逼水好多| 日本av手机在线免费观看| 久久久久久久久久人人人人人人| av女优亚洲男人天堂| 91aial.com中文字幕在线观看| 欧美成人午夜免费资源| 亚洲精品色激情综合| 午夜免费男女啪啪视频观看| 久久精品久久精品一区二区三区| 色网站视频免费| 久久精品夜色国产| 波多野结衣一区麻豆|