• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    過渡金屬改性的ZSM-5催化劑應用于甲硫醚轉化制甲硫醇

    2014-09-17 06:59:58陳世萍王偉明劉迎偉魏育才袁成龍方維平楊意泉
    物理化學學報 2014年6期
    關鍵詞:福建廈門元華化工學院

    陳世萍 王偉明 劉迎偉 魏育才 袁成龍 方維平 楊意泉,*

    (1廈門大學化學化工學院化學工程與生物工程系,福建廈門361005;2廈門大學化學化工學院化學系,福建廈門361005)

    1 Introduction

    The sulfur-containing compounds such as dimethyl sulfide(DMS),methanethiol(MT),and H2S are referred to as total reduced sulfur(TRS)compounds,and they all have malodorous odor.1,2Among them,MT is now used as an important chemical intermediate to produce organosulfur compounds such as methionine,widely used as feed additive.With increasing demand for methionine,the production of MT becomes more important.3Industrially,it is synthesized from methanol and hydrogen sulfide over alumina-supported metal oxide catalysts;and DMS,a major byproduct,is always formed along with methanethiol.4In the H2S atmosphere,DMS can be converted into MT in the presence of a catalyst,so as to boost the yield of methanethiol and lower the content of DMS in wastewater,which is economically as well as environmentally attractive for better carbon management.

    Several solid acid catalysts like Al2O3,phosphorus promoted Al2O3,and WO3/ZrO2,have been studied for the synthesis of MT from DMS at 623-673 K with byproduct methane.5-12Besides,the effect of temperature,space velocity,and molar ratio of H2S to DMS was investigated in our previous study.6

    There is still a constant search for the development of novel catalysts with high activity and selectivity for the conversion of DMS to MT.In this regard,less attention has been paid towards the ZSM-5 catalysts.Plaisance and Dooley13reported the production of DMS and MT by condensation of methanol and hydrogen sulfide in the presence of a kind of zeolite,and deduced that the zeolite with stronger acid sites can easily adsorb DMS and MT.Satokawa et al.14found that DMS was efficiently adsorbed on silver-exchanged Y zeolites(Ag/Na-Y)at room temperature.Hwang and Tai15have used Ag/ZSM-5,Mn/ZSM-5,and Ag-Mn/ZSM-5 as catalysts to catalyze the oxidation of DMS with ozone;they concluded that ion-exchanged ZSM-5 strengthened the adsorption and oxidation of DMS.

    It is well known that transition metals(W,Ni,Co,Mo)have an ability to catalyze sulfurization.14-19However,to the best of our knowledge,these transition metals supported on ZSM-5 have not been systematically studied for the reaction of DMS with H2S.The aim of this work is to carry out a systematic comparison of the performance of ZSM-5-supported W,Ni,Co,and Mo catalysts for the reaction.The performance-structure correlation of different catalysts was discussed as well.

    2 Experimental

    2.1 Catalyst preparation

    The catalysts were prepared by incipient wetness impregnation method.Ammonium metatungstate,nickel nitrate,cobalt nitrate,and ammonium molybdate(all are 99%of purity,Sinopharm Chemical Reagent Co.,Ltd.)were used as precursors of the said transition metals.Appropriate amount of transition metal salt was dissolved in distilled water to produce an aqueous solution,in which then the support material ZSM-5,(proton form,n(SiO2)/n(Al2O3)=38(molar ratio),Catalyst Factory of NanKai University)was soaked at room temperature.The impregnated sample was dried at 353 K for 24 h and then calcined in air at 773 K for 2 h.After pressing into wafer,crushing and sieving,the catalyst particles of 30-60 mesh were collected for use;the as-prepared catalysts are denoted as M/ZSM-5,(M=W,Ni,Co,Mo),the stoichiometric metal content was 2%(mass fraction).Besides,the used catalyst is marked as M/ZSM-5-A

    2.2 Catalyst activity evaluation

    DMS conversion reaction was conducted in a glass tubular fixed bed reactor with an internal diameter of 10 mm;typically,2.0 mL of the catalyst with 30-60 mesh was filled into the reactor,with a thin layer of glass fiber and a layer of quartz powder(30-60 mesh)covered on the catalyst bed.Before experiment,the catalyst was sulfurized with H2S for 1 h at 673 K to activate the catalyst;the H2S flow rate was maintained by mass flow controller(Beijing Seven star,D08-1F).Then the sulfurized catalyst was tested at 593,633,and 673 K in turn for 2 h,respectively,and the system pressure was held at 0.5 MPa with the aid of a back-pressure regulator.The DMS solution was injected into the catalyst bed by precision metering pump(Beijing Satellite Manufactory,2ZB-1L10).The outlet stream temperature was kept at 400 K with heater band and analyzed by an on-line gas-chromatograph equipped with a Porapak Q(2 m×Ф 3 mm)column connected to a thermal conductivity detector(TCD).

    2.3 Catalyst characterization

    XRD measurements were performed on a Panalytical X′pert PRO X-ray diffractometer utilizing monochromatic Cu Kαradiation(λ=0.15418 nm,tube voltage:40 kV,tube current:30 mA)in the 2θ range from 5°to 50°.Unmodified ZSM-5 zeolite sample was used as reference for crystallinity comparison.The degree of crystallinity of M/ZSM-5 was defined utilizing the main X-ray diffraction peak(2θ=22.0°-25.0°)by the following equation:

    The surface areas of the catalysts were measured using nitrogen adsorption at 77 K with a Micromeritics Tristar 3000 surface area and pore analyzer.Prior to N2physisorption measurement,all samples were degassed at 393 K for 1 h and then evacuated at 573 K for 3 h to remove physically adsorbed impurities.The specific surface area(SBET)was determined by the Brunauer-Emmett-Teller(BET)method and the pore size distributions were calculated by Barrett-Joyner-Halenda(BJH)method according to the desorption branch of the isotherms.The Si/Al mole ratios and actual metal compositions of the M/ZSM-5 samples were determined by a Bruker S8 TIGER X-ray fluorescence(XRF)spectrometer.The contents of carbon and sulfur on the tested catalysts were measured on CHNS Equipment(Vario EL III elemental analyser)with the limit of detection(LOD)being 0.03-20 mg for carbon and 0.03-6 mg for sulfur.

    CO2and NH3temperature-programmed desorption(TPD)measurements of the catalysts were conducted in a quartz tube reactor filled with 80 mg catalyst.For CO2-TPD experiment,the catalyst was pretreated in Ar at 673 K for 1 h,then cooled down to 323 K;carbon dioxide adsorption was performed for about 0.5 h in a CO2stream at a flow rate of 30 mL·min-1.Weakly adsorbed CO2was removed by Ar sweeping at 323 K,and then the temperature was increased to 1073 K at a heating rate of 10 K·min-1.The desorbed CO2component was monitored with a mass spectrometry(MS)signal of m/e=44 in multiple ion detection(MID)mode.So did the NH3-TPD experiment as CO2-TPD with NH3substituting for CO2.The NH3-TPD experiment was conducted from 323 to 873 K.Desorbed NH3and H2O were monitored with a MS signal of m/e=16,17 in MID mode,and a MS signal of m/e=18,respectively.

    O2temperature-programmed oxidation(TPO)experiment for the used catalysts was performed in a quartz reactor.For each experiment,80 mg sample was pretreated in Ar at 323 K for 1 h,and then swept with 5%O2/Ar at a rate of 20 mL·min-1until the base line on the recorder remained unchanged.Finally,the sample was heated at a rate of 10 K·min-1in 5%O2/Ar.CO2and SO2formed were analyzed with a MS signal of m/e=44,64 in MID mode,respectively.

    3 Results and discussion

    3.1 Catalytic activity

    The evaluation results of the catalysts as a function of temperature are shown in Fig.1;the activity data of the catalysts with different molar ratios of H2S to DMS at 593 K are summarized in Table 1.Earlier studies5-7indicated that the reaction of H2S with DMS to form MT is accompanied with by-product methane;two reactions,i.e.,CH3SH→CH4+S+C,and CH3SCH3→CH4+C2H6+S+C,led to the formation of methane at the expense of MT and DMS.

    The data of DMS conversion and selectivities toward MT and methane are listed in Table 1.The conversions of DMS at 593 K for all catalysts are similar,and the selectivity toward MT is found to be higher than 98%for all catalysts.The modified ZSM-5 sample exhibits a relatively high activity,which may be due to the strong Lewis acid sites on ZSM-5.In the transition metal-modified ZSM-5 catalysts,the Co/ZSM-5 sample shows the best conversion at both H2S/DMS mole ratio cases,followed by Mo-,Ni-,and W-modified samples in turn.Several lines of evidences verified that both DMS and MT were adsorbed on the Al3+cation of ZSM-5 by electronic pairs,20-22the above activity results show that the additive ions(W6+,Ni2+,Co3+,and Mo6+)are more efficient than Al3+in adsorbing DMS and MT.

    Fig.1 Conversion of DMS as a function of temperature over(a)W/ZSM-5,(b)Ni/ZSM-5,(c)Co/ZSM-5,(d)Mo/ZSM-5

    Table 1 Conversion of DMS at different mole ratios of H2S to DMS over the catalysts at 593 K

    The shapes of conversion and selectivity curves for W-,Ni-,Co-and Mo-containing catalysts are similar(Fig.1).We observed that increasing in the reaction temperature led to the enhancement in the conversion of DMS and decline in the selectivity towards MT.It might be due to the inevitable decomposition of DMS and MT with the temperature increasing.23W/ZSM-5 exhibits the lowest conversion and the highest selectivity towards methanethiol as the increase of temperature with respect to the four transition metal-modified catalysts,whereas the Co/ZSM-5 catalyst is most active and the selectivity towards methanethiol severely decreases with temperature increasing.The decreasing rate of the selectivity towards methanethiol follows the sequence:Co/ZSM-5>Mo/ZSM-5>Ni/ZSM-5>W/ZSM-5.In other words,the transition metal-modified ZSM-5 catalysts not only strengthen the adsorption of DMS and MT,but also improve the decomposition of DMS and MT on active metal sites.Low selectivity towards MT of the Co-containing catalyst for this reaction is rather unexpected although the severe decomposition of DMS and MT may generate much carbon and sulfur deposition,which will clog the pore.When the amount of carbon accumulated has been over 20%(mass fraction)on the surface,the catalyst would be deactivated.5

    For the four catalysts,the conversion of DMS is relative to the concentration of DMS in the feed.At H2S/DMS molar ratio of 4,the conversion of DMS is close to twice as many as that at H2S/DMS molar ratio of 2.This phenomenon is accordance with the result reported in the literature23for γ-Al2O3used in the reaction of DMS with H2S.

    3.2 Catalyst characterization

    3.2.1 Physicochemical properties

    The XRD patterns of the metal-modified ZSM-5(M/ZSM-5)samples(both fresh and used samples)are shown in Fig.2.As can be observed from Fig.2a,all the fresh M/ZSM-5 samples exhibit typical peaks due to ZSM-5,indicating that the structure of the zeolite remained intact after metal loading.However,the crystallinity of different metal-modified catalysts drops to some extent(Table 2),possibly owing to the dealumination of the zeolite during the modification process(impregnating,drying,and calcining).The transition metal cations(W6+,Ni2+,Co3+,Mo6+)anchor to the negative framework charge held in the Al―O―(Si―O)2―Al cluster on the surface of ZSM-5 and replace for some of Al3+sites,24so the mole ratio of Si/Al for the modified catalysts exhibits a little increase.No diffraction peaks due to metal oxides(metal=W,Ni,Co,Mo)can be detected,indicating that the active metal component on the catalyst surface is highly dispersed or lower than the XRD detection limit.The XRD patterns of the used catalysts illustrate that the support ZSM-5 in all metal-modified ZSM-5 samples still preserves typical structure even under harsh reaction conditions,obviously,the crystallinity drops to varying degrees,which is estimated from Fig.2b;this may be attributed to carbon deposition on the surface.

    Fig.2 XRD patterns of the metal-modified ZSM-5 samples before and after using

    The surface area,pore diameter,and pore volume of the M/ZSM-5 samples are found to be lower than those of ZSM-5 sample(Table 3).The surface area of Ni/ZSM-5 is lower than those of the others;the difference may be due to different particle sizes of these metal oxides and their different interactions with ZSM-5.It is observed that the porosity and specific surface area of the used catalyst reduce much;the losses in the sur-face area(compared with the surface area of the fresh catalyst)are 29.7%for W/ZSM-5,33.75%for Ni/ZSM-5,37%for Co/ASM-5,and 40.5%for Mo/ZSM-5.The distinct loss of the porosity and specific surface area may be ascribed to the deposition of carbon and sulfur on the surface,leading to blocking up the pore;these depositions caused by DMS conversion are subjected to oxidation treatment at above 773 K repeatedly to rejuvenate the catalyst in industrial process.6,7

    Table 2 Chemical composition of the different M/ZSM-5 samples

    Table 3 Textural properties of M/ZSM-5 samples before and after using

    3.2.2 Surface acid-base properties

    The NH3-TPD and CO2-TPD measurement results are depicted in Figs.3 and 4.Two outstanding desorption peaks appear in the NH3-TPD patterns arising from the catalysts.A low temperature peak at near 420 K due to the ammonia species,which is desorbed from week acidic sites,in all catalysts appears;whereas a high temperature peak at near 730 K due to the ammonia species desorbed from strong acidic sites in W/ZSM-5,Ni/ZSM-5,Mo/ZSM-5 catalysts occurs.25,26Compared with ZSM-5 sample,the samples modified with M(M=W,Ni,Co,Mo)have a small shoulder peak at near 520 K in the NH3-TPD profile,indicating that small amounts of moderate acidic sites in all modified catalysts appear.In summary,the area below the curve increases as the addition of transition metal,this indicates that the total acidity of ZSM-5 is enhanced by the modification with transition metal;the addition of W,Ni,and Mo intensifies the strong acid of the catalysts,while Co makes the weak acidic sites increase.On the other hand,the intensities and quantities of basic sites on the modified catalysts are changed to some extent,especially in Co/ZSM-5 and Mo/ZSM-5.For Co/ZSM-5 catalyst,doping cobalt oxide results in the disappearance of the most of moderate basic sites with a CO2desorption peak occurring at 700 K,27and in the appearance of strong basic sites with a CO2desorption peak occurring at 800 K.A shoulder peak at 750 K appears in the profile for the Mo/ZSM-5 catalyst,indicating that Mo-modified ZSM-5 expresses more mild basicity.Weak basic sites shown by CO2desorption peak at 410 K do not exhibit significant change for all catalysts.

    Fig.3 NH3-TPD profiles of M/ZSM-5 samples

    Fig.4 CO2-TPD profiles of M/ZSM-5 samples

    The transformation of the acidities and basicities induced by doping transition metal oxides could be explained by the reaction of metal active sites and the acidic(basic)sites on the ZSM-5 surface.Therefore,the different metal-modified ZSM-5 zeolites result in various metal-sulfur interactions during the presulfurization with H2S.27The C―S bond is activated via acid site on the catalyst surface and cleaves to a methylthiolate group.14The increase of the acidity increases the capacity of the catalysts to carry out the C―S bond incision,28-31and subsequently improves the catalytic behaviors in converting DMS.The above catalyst activity test and characterization results strongly suggest that metal active sites and the acidic sites closely situated have a strong synergistic effect;therefore,the interactions of transition metals with DMS become stronger and the acid sites favor the cleavage of C―S bond.Furthermore,the MT selectivity decreases apparently with increasing in the surface basicity on Co/ZSM-5 and Mo/ZSM-5,this may be due to the decompositions of DMS and MT,which are easy to carry out on basic sites on the catalyst surface.

    3.2.3 Investigation of C and S deposition measured by using O2-TPO

    As we briefly mentioned above,the accumulation of carbon and sulfur on the surface may block up the pore,leading to the losses of porosity and specific surface area.The data of surface contents of C and S on used catalysts are listed in Table 3.DMS and MT decompositions are the main routes for coke and sulfur formation,resulting in the highest content of C and S on the Co/ZSM-5 catalyst owing to the strongest effect of Co3+on C―S bond incision.

    Fig.5 O2-TPO profiles of M/ZSM-5 samples

    O2-TPO measurements for the used catalysts are depicted in Fig.5,the reaction includes the oxidation of the deposited carbon and sulfur along with the residual adsorbed TRS(DMS,MT,and H2S),resulting in the formation of CO2,SO2,and water,which are the complete oxidation products.It is evident that there are three regions of CO2formation with respect to the maximum peaks occurring at 690,750,and 860 K,respectively,which can be assigned to some carbonaceous deposits within the ZSM-5 zeolite channels.The M/ZSM-5 catalysts except Mo/ZSM-5 show a higher and stronger peak at 890 K,suggesting more carbon deposition existing,thus,higher temperature is needed when the reactivation of the catalyst is wanted.The release of SO2is more complicated,there is one apparent peak for ZSM-5 at 720 K,while,two small and broad peaks occur at 530 and 900 K for M/ZSM-5,whereas all the peaks of the M/ZSM-5 catalysts exhibit a small shift toward lower temperature for the oxidation of sulfur,The action of Co/ZSM-5 leads to producing largest amount of SO2,followed by that of Mo,Ni,W,indicating that the severest reaction occurs on Co/ZSM-5.

    4 Conclusions

    The reaction of H2S with DMS to form MT was studied over the transition metals(W,Ni,Co,Mo)modified ZSM-5 catalysts,the metal active sites and the acidic sites closely situated have a strong synergistic effect.The transition metal cations(W6+,Ni2+,Co3+,Mo6+)replace some of Al3+sites,since the transition metal cations are more efficient than Al3+in adsorbing DMS and MT,leading to more intense conversion of DMS.The total acidity of ZSM-5 was found to be enhanced by doping transition metal promoters,the addition of W,Ni,and Mo intensified the acidity of strong acid sites of the catalysts,while Co made the weak acidic sites increase.The increase of the acidity increases the capacity of the catalysts to carry out C―S bond incising,and subsequently improves the catalytic behavior in converting DMS.On the other hand,the MT selectivity decreases apparently with increasing in the surface basicity on Co/ZSM-5 and Mo/ZSM-5,which may be due to the fact that the decompositions of DMS and MT are easy to carry out on basic sites on the surface of the catalysts.

    The used catalysts suffer from deactivation because of carbon and sulfur deposition on the surface;they cause distinct losses of the porosity and specific surface area,and subsequently block the pore and hinder the transport of reactants(H2S,DMS)to the surface,and,as a result,reduce the reaction rate.The oxidation treatment can efficiently rejuvenate the catalysts.

    (1) Kastner,J.R.;Buquoi,Q.;Gangavaram,R.;Das,K.C.Envir.Sci.Technol.2005,39,1835.doi:10.1021/es0499492

    (2) Demessie,E.S.;Devulapelli,V.G.Appl.Catal.B:Environ.2008,84,408.doi:10.1016/j.apcatb.2008.04.025

    (3) Gutiérrez,O.;Kaufmann,C.;Hrabar,A.;Zhu,Y.;Lercher,J.J.Catal.2011,280,264.doi:10.1016/j.jcat.2011.03.027

    (4) Chandra,S.;Soni,K.;Bunkar,R.;Sharma,M.;Singh,B.;Mahato,A.N.;Vijayaraghavan,R.Catal.Commun.2009,11,77.doi:10.1016/j.catcom.2009.08.014

    (5) Beach,L.K.Preparation ofAlkyl Mercaptans.US Patent 2667515,1954-1-26.

    (6)Chen,S.P.;Zhang,Y.H.;Wu,M.;Fang,W.P.;Yang,Y.Q.Appl.Catal.A 2012,431-432,151.

    (7)Chen,S.P.;Wang,W.M.;Zhang,Y.H.;Wei,Y.C.;Fang,W.P.;Yang,Y.Q.J.Mol.Catal.A:Chem.2012,365,60.doi:10.1016/j.molcata.2012.08.009

    (8) Chang,J.S.;Yu,H.B.;Jiang,X.D.;Ma,Y.Q.;Cheng,H.;Zhao,H.Ind.Catal.2005,13,32.[常俊石,于海斌,姜雪丹,馬月謙,成 宏,趙 虹.工業(yè)催化,2005,13,32.]

    (9)Zhang,Y.H.;Chen,S.P.;Yuan,C.L.;Fang,W.P.;Yang,Y.Q.Chin.J.Catal.2012,33,317.[張元華,陳世萍,袁成龍,方維平,楊意泉.催化學報,2012,33,317.]

    (10) Barth,J.O.Process for Preparing Methyl Mercaptan from Dialkyl Sulphides and Dialkyl Polysulphides.US Patent 7576243,2009-8-18.

    (11) Mashkina,A.V.Petro.Chem.2009,49,441.

    (12) Ziolek,M.;Kujawa,J.;Saur,O.;Lavalley,J.C.J.Phys.Chem.1993,97,9761.doi:10.1021/j100140a037

    (13) Plaisance,C.P.;Dooley,K.M.Catal.Lett.2009,128,449.doi:10.1007/s10562-008-9772-2

    (14) Satokawa,S.;Kobayashi,Y.;Fujiki,H.Appl.Catal.B:Environ.2005,56,51.doi:10.1016/j.apcatb.2004.06.022

    (15) Hwang,C.L.;Tai,N.H.Appl.Catal.A 2011,393,251.doi:10.1016/j.apcata.2010.12.004

    (16)Ding,L.H.;Zheng,Y.Catal Commun.2006,7,1035.doi:10.1016/j.catcom.2006.05.006

    (17)Chen,A.P.;Wang,Q.;Li,Q.L.;Hao,Y.J.;Fang,W.P.;Yang,Y.Q.J.Mol.Catal.A:Chem.2008,238,69.

    (18) Fan,X.L.;Liu,Y.;Du,X.J.;Liu,C.;Zhang,C.Acta Phys.-Chim.Sin.2013,29,263.[范曉麗,劉 燕,杜秀娟,劉 崇,張 超.物理化學學報,2013,29,263.]doi:10.3866/PKU.WHXB201211231

    (19) Koranyi,T.I.;Moreau,F.;Rozanov,V.V.;Rozanova,E.A.J.Mol.Struct.1997,410,103.

    (20) Hwang,C.L.;Tai,N.H.Appl.Catal.B 2010,93,363.doi:10.1016/j.apcatb.2009.10.009

    (21) Maia,A.J.;Louis,B.;Lam,Y.L.;Pereira,M.M.J.Catal.2010,269,103.doi:10.1016/j.jcat.2009.10.021

    (22) Garcia,C.L.;Johannes,A.L.J.Phys.Chem.1991,95,10729.doi:10.1021/j100179a040

    (23) Mashkina,V.Y.Appl.Catal.A 1994,109,45.doi:10.1016/0926-860X(94)85002-X

    (24) Sazama,P.;Dedecek,J.;Gábová,V.;Wichterlová,B.;Spoto,G.;Bordiga,S.J.Catal.2008,254,180.doi:10.1016/j.jcat.2007.12.005

    (25)Luz,R.G.;Hermes,F.;Bertmer,M.;Enrique,R.C.;Antonio,J.L.;Simon,U.Appl.Catal.A 2007,328,174.doi:10.1016/j.apcata.2007.06.003

    (26) Wang,W.L.;Liu,B.J.;Zeng,X.J.Acta Phys.-Chim.Sin.2008,24,2102.[王文蘭,劉百軍,曾賢君.物理化學學報,2008,24,2102.]doi:10.3866/PKU.WHXB20081128

    (27)Seong,M.J.;Demoulin,O.;Grange,P.J.Mol.Catal.A:Chem.2005,236,94.doi:10.1016/j.molcata.2005.03.028

    (28) Pecoraro,T.A.;Chianelli,F.R.J.Catal.1981,67,430.doi:10.1016/0021-9517(81)90303-1

    (29) Mashkina,A.V.;Gruncald,V.R.;Borodin,B.P.;Nasteka,V.I.;Yakovleva,V.N.;Khairulina,L.N.React.Kinet.Catal.Lett.1991,43,361.doi:10.1007/BF02064698

    (30) Koshelev,S.N.;Paukshtis,E.A.;Sagitullin,R.S.;Bezrukov,A.V.;Mashkina,A.V.React.Kinet.Catal.Lett.1985,27,387.doi:10.1007/BF02070480

    (31) Ziolek,M.;Kujawa,J.;Saur,O.;Lavalley,J.C.J.Mol.Catal.A 1995,97,49.doi:10.1016/1381-1169(94)00068-9

    猜你喜歡
    福建廈門元華化工學院
    使固態(tài)化學反應100%完成的方法
    開學第一課
    珍貴樹種黃檀栽培技術
    國家開放大學石油和化工學院學習中心列表
    【鏈接】國家開放大學石油和化工學院學習中心(第四批)名單
    福建廈門
    雕塑藝術在食品造型中的應用研究
    詩書畫苑
    晚晴(2019年7期)2019-08-26 01:33:53
    讓詩詞插上音樂的翅膀——中華詩詞學會顧問李元華訪談錄
    中華詩詞(2016年11期)2016-07-21 14:56:16
    凌辱還是自愿?兒子刀下之人是否“第三者”
    久久天躁狠狠躁夜夜2o2o| 黑人巨大精品欧美一区二区mp4| 一区在线观看完整版| 精品视频人人做人人爽| 国产成人a∨麻豆精品| 别揉我奶头~嗯~啊~动态视频 | 亚洲精品美女久久av网站| 亚洲欧美清纯卡通| 日韩有码中文字幕| 亚洲第一青青草原| 老熟妇乱子伦视频在线观看 | 久久精品久久久久久噜噜老黄| av视频免费观看在线观看| 大片免费播放器 马上看| 久久久国产成人免费| 国产成人系列免费观看| 大片免费播放器 马上看| 我的亚洲天堂| 精品欧美一区二区三区在线| 亚洲国产av新网站| 欧美日韩福利视频一区二区| 免费高清在线观看视频在线观看| 高清黄色对白视频在线免费看| 久久女婷五月综合色啪小说| 视频区欧美日本亚洲| 深夜精品福利| 国产在线视频一区二区| 深夜精品福利| 国产精品二区激情视频| 国产伦理片在线播放av一区| 国产91精品成人一区二区三区 | 多毛熟女@视频| 免费观看a级毛片全部| 国产精品成人在线| 亚洲国产欧美一区二区综合| 欧美激情高清一区二区三区| 成年人免费黄色播放视频| 亚洲男人天堂网一区| 国产淫语在线视频| 午夜免费观看性视频| 少妇被粗大的猛进出69影院| 考比视频在线观看| 欧美老熟妇乱子伦牲交| 久久av网站| 人人妻人人爽人人添夜夜欢视频| 久久久欧美国产精品| 欧美激情 高清一区二区三区| 亚洲男人天堂网一区| 男女床上黄色一级片免费看| 国产伦理片在线播放av一区| 精品少妇黑人巨大在线播放| 18禁国产床啪视频网站| 久久精品国产亚洲av香蕉五月 | 中文字幕色久视频| 狂野欧美激情性xxxx| 人妻久久中文字幕网| 欧美中文综合在线视频| www.精华液| 国产高清国产精品国产三级| 国产精品免费大片| 正在播放国产对白刺激| 人人澡人人妻人| 中国国产av一级| 各种免费的搞黄视频| 午夜久久久在线观看| 正在播放国产对白刺激| 亚洲 欧美一区二区三区| 午夜福利视频精品| 大片免费播放器 马上看| 一区二区三区乱码不卡18| 无限看片的www在线观看| 亚洲专区国产一区二区| 久久久久国产精品人妻一区二区| 午夜视频精品福利| 午夜91福利影院| 精品亚洲成a人片在线观看| 国产无遮挡羞羞视频在线观看| av不卡在线播放| 亚洲午夜精品一区,二区,三区| 精品第一国产精品| 爱豆传媒免费全集在线观看| 一级毛片电影观看| 国产99久久九九免费精品| 国产成人a∨麻豆精品| 99国产精品一区二区三区| 动漫黄色视频在线观看| 丝瓜视频免费看黄片| 国产日韩欧美在线精品| 亚洲,欧美精品.| 日韩熟女老妇一区二区性免费视频| 最近中文字幕2019免费版| 天天操日日干夜夜撸| 18在线观看网站| 热99re8久久精品国产| 爱豆传媒免费全集在线观看| 男女国产视频网站| 午夜日韩欧美国产| www日本在线高清视频| 大片免费播放器 马上看| 国产成+人综合+亚洲专区| 黄色视频在线播放观看不卡| 久久久精品区二区三区| 成人国产一区最新在线观看| 青春草视频在线免费观看| 91精品三级在线观看| 精品久久久久久久毛片微露脸 | 免费久久久久久久精品成人欧美视频| 91麻豆精品激情在线观看国产 | 啪啪无遮挡十八禁网站| 大型av网站在线播放| 丝袜人妻中文字幕| 制服诱惑二区| 最新在线观看一区二区三区| 欧美中文综合在线视频| 黄色毛片三级朝国网站| 不卡av一区二区三区| 黄网站色视频无遮挡免费观看| 老熟女久久久| 日韩电影二区| 一二三四社区在线视频社区8| 精品国产一区二区三区四区第35| 天天影视国产精品| 老汉色av国产亚洲站长工具| 国产有黄有色有爽视频| 久久久久国内视频| 精品一区二区三区四区五区乱码| av网站在线播放免费| 免费在线观看日本一区| 欧美性长视频在线观看| 亚洲精品中文字幕在线视频| 国产野战对白在线观看| 宅男免费午夜| 午夜福利在线免费观看网站| av超薄肉色丝袜交足视频| 欧美人与性动交α欧美精品济南到| 免费看十八禁软件| 99热网站在线观看| 国产男人的电影天堂91| 91老司机精品| 欧美国产精品va在线观看不卡| 97精品久久久久久久久久精品| 精品人妻1区二区| 一本一本久久a久久精品综合妖精| 中文字幕另类日韩欧美亚洲嫩草| 国产精品 国内视频| 色婷婷av一区二区三区视频| 国产成人av激情在线播放| 久久精品亚洲熟妇少妇任你| 一区二区三区激情视频| 日本欧美视频一区| 老汉色av国产亚洲站长工具| 高清黄色对白视频在线免费看| 青草久久国产| 热99re8久久精品国产| 正在播放国产对白刺激| 一本大道久久a久久精品| 免费在线观看影片大全网站| 在线观看免费视频网站a站| 免费高清在线观看日韩| 十八禁人妻一区二区| 少妇的丰满在线观看| 窝窝影院91人妻| 美女国产高潮福利片在线看| 妹子高潮喷水视频| 欧美精品高潮呻吟av久久| 黄色视频不卡| 中亚洲国语对白在线视频| 操美女的视频在线观看| 精品少妇久久久久久888优播| 热re99久久国产66热| 曰老女人黄片| av不卡在线播放| 9热在线视频观看99| 午夜免费成人在线视频| 一本一本久久a久久精品综合妖精| 日本a在线网址| 日本一区二区免费在线视频| 黄片播放在线免费| 女性被躁到高潮视频| 日韩欧美国产一区二区入口| 久久精品国产亚洲av香蕉五月 | 美国免费a级毛片| 纯流量卡能插随身wifi吗| 亚洲av美国av| 亚洲精华国产精华精| 久久久久视频综合| 亚洲中文日韩欧美视频| 亚洲精品国产区一区二| 男人舔女人的私密视频| 高清视频免费观看一区二区| 国产成人精品无人区| 日韩中文字幕视频在线看片| 91老司机精品| 日韩一区二区三区影片| 午夜福利乱码中文字幕| 久久99一区二区三区| 免费不卡黄色视频| 色播在线永久视频| 每晚都被弄得嗷嗷叫到高潮| 人妻一区二区av| 免费高清在线观看视频在线观看| 老司机福利观看| 一本大道久久a久久精品| 午夜视频精品福利| 亚洲精品粉嫩美女一区| 欧美精品人与动牲交sv欧美| 少妇的丰满在线观看| 男男h啪啪无遮挡| 国产无遮挡羞羞视频在线观看| 男人添女人高潮全过程视频| 90打野战视频偷拍视频| 欧美精品一区二区免费开放| av网站在线播放免费| 99久久综合免费| 国产日韩欧美视频二区| 三上悠亚av全集在线观看| 80岁老熟妇乱子伦牲交| 国产精品久久久久久人妻精品电影 | 大片电影免费在线观看免费| 中文精品一卡2卡3卡4更新| 中文字幕高清在线视频| 啦啦啦啦在线视频资源| 一区福利在线观看| 狠狠婷婷综合久久久久久88av| 中文欧美无线码| 亚洲av电影在线观看一区二区三区| 亚洲va日本ⅴa欧美va伊人久久 | videosex国产| 欧美日韩一级在线毛片| 亚洲情色 制服丝袜| 日韩 亚洲 欧美在线| 欧美97在线视频| 亚洲精品国产精品久久久不卡| 欧美日韩黄片免| 婷婷色av中文字幕| 亚洲成人国产一区在线观看| 国产精品久久久久久人妻精品电影 | 男女床上黄色一级片免费看| 精品福利永久在线观看| 美女扒开内裤让男人捅视频| 亚洲av片天天在线观看| 亚洲精品国产av蜜桃| 99国产精品免费福利视频| 久久精品亚洲av国产电影网| 久久久久精品国产欧美久久久 | 极品少妇高潮喷水抽搐| 午夜福利免费观看在线| 男人操女人黄网站| 两个人看的免费小视频| 欧美日韩精品网址| 欧美在线黄色| 啪啪无遮挡十八禁网站| 自拍欧美九色日韩亚洲蝌蚪91| 超碰成人久久| 在线观看一区二区三区激情| 黑丝袜美女国产一区| 99香蕉大伊视频| 亚洲色图综合在线观看| 免费在线观看影片大全网站| 亚洲久久久国产精品| 大香蕉久久成人网| 老司机福利观看| 亚洲va日本ⅴa欧美va伊人久久 | 欧美日韩中文字幕国产精品一区二区三区 | 一进一出抽搐动态| 午夜免费鲁丝| 性色av一级| 久久久久精品人妻al黑| 中文字幕人妻熟女乱码| 黄色a级毛片大全视频| 久久久久国产精品人妻一区二区| 在线观看免费视频网站a站| 最近最新免费中文字幕在线| 亚洲欧洲精品一区二区精品久久久| 亚洲熟女毛片儿| 亚洲成av片中文字幕在线观看| 欧美精品一区二区免费开放| 久久99热这里只频精品6学生| 飞空精品影院首页| 亚洲av美国av| 十八禁人妻一区二区| √禁漫天堂资源中文www| 日韩 亚洲 欧美在线| 在线永久观看黄色视频| 欧美日韩成人在线一区二区| 成人影院久久| 精品国内亚洲2022精品成人 | 久久av网站| 亚洲性夜色夜夜综合| 别揉我奶头~嗯~啊~动态视频 | 成人国产一区最新在线观看| 91成年电影在线观看| 精品国产乱码久久久久久小说| 久久 成人 亚洲| 日本五十路高清| 天堂中文最新版在线下载| 免费久久久久久久精品成人欧美视频| 老熟妇乱子伦视频在线观看 | 1024视频免费在线观看| √禁漫天堂资源中文www| 一边摸一边抽搐一进一出视频| 波多野结衣av一区二区av| 国产亚洲精品久久久久5区| 老司机福利观看| 国产精品免费视频内射| 人人妻人人爽人人添夜夜欢视频| 波多野结衣一区麻豆| 亚洲中文日韩欧美视频| 国产日韩欧美亚洲二区| 大型av网站在线播放| 伦理电影免费视频| 999久久久精品免费观看国产| 五月开心婷婷网| 桃花免费在线播放| 亚洲va日本ⅴa欧美va伊人久久 | 国产精品久久久久久人妻精品电影 | 交换朋友夫妻互换小说| 久久久久视频综合| 日韩 亚洲 欧美在线| 1024香蕉在线观看| 69精品国产乱码久久久| 国产成人a∨麻豆精品| 亚洲欧美色中文字幕在线| 香蕉丝袜av| 亚洲国产中文字幕在线视频| 久久久久国产精品人妻一区二区| 成年人免费黄色播放视频| 少妇的丰满在线观看| 亚洲成人手机| tube8黄色片| 亚洲精品日韩在线中文字幕| 欧美另类一区| 精品少妇一区二区三区视频日本电影| 99re6热这里在线精品视频| 99香蕉大伊视频| 咕卡用的链子| h视频一区二区三区| 两性夫妻黄色片| 一本大道久久a久久精品| 少妇被粗大的猛进出69影院| 男人操女人黄网站| 无限看片的www在线观看| 久久久欧美国产精品| 美女主播在线视频| 亚洲va日本ⅴa欧美va伊人久久 | 18在线观看网站| 精品高清国产在线一区| 免费黄频网站在线观看国产| 亚洲欧美精品自产自拍| 中文字幕最新亚洲高清| 亚洲国产成人一精品久久久| 午夜福利免费观看在线| 精品久久蜜臀av无| 纯流量卡能插随身wifi吗| 久久久国产欧美日韩av| 满18在线观看网站| 久久久精品94久久精品| 婷婷成人精品国产| 成人亚洲精品一区在线观看| 成人国产av品久久久| 十分钟在线观看高清视频www| 丝袜脚勾引网站| 18禁国产床啪视频网站| 69精品国产乱码久久久| 人妻人人澡人人爽人人| 午夜福利视频在线观看免费| 久久精品成人免费网站| 免费在线观看日本一区| 丝袜喷水一区| 十八禁人妻一区二区| 午夜福利视频精品| 在线观看人妻少妇| 老司机影院毛片| 亚洲欧洲精品一区二区精品久久久| 超碰97精品在线观看| 丝袜美腿诱惑在线| 精品一区在线观看国产| 自线自在国产av| 亚洲av日韩在线播放| 亚洲欧美日韩高清在线视频 | 亚洲第一av免费看| 亚洲人成电影观看| 精品高清国产在线一区| 精品人妻在线不人妻| 欧美人与性动交α欧美精品济南到| 99久久综合免费| 国产精品久久久av美女十八| 免费高清在线观看视频在线观看| 热re99久久国产66热| 久热这里只有精品99| 久久免费观看电影| 国产一区二区 视频在线| 在线观看人妻少妇| 欧美亚洲 丝袜 人妻 在线| 男男h啪啪无遮挡| 国产av一区二区精品久久| 99久久国产精品久久久| 欧美精品亚洲一区二区| 岛国毛片在线播放| 日韩中文字幕视频在线看片| 在线观看www视频免费| 国产精品自产拍在线观看55亚洲 | 十八禁网站免费在线| 日韩中文字幕视频在线看片| 精品国产超薄肉色丝袜足j| 免费观看av网站的网址| 91老司机精品| 午夜影院在线不卡| 69精品国产乱码久久久| 色婷婷久久久亚洲欧美| 捣出白浆h1v1| 国产男人的电影天堂91| 精品国产超薄肉色丝袜足j| 久久国产精品大桥未久av| 免费久久久久久久精品成人欧美视频| 精品久久久精品久久久| 99国产极品粉嫩在线观看| 啪啪无遮挡十八禁网站| 国产免费一区二区三区四区乱码| 日韩欧美一区二区三区在线观看 | 亚洲一区中文字幕在线| 岛国毛片在线播放| 法律面前人人平等表现在哪些方面 | 国产又爽黄色视频| 久久香蕉激情| a 毛片基地| 亚洲av电影在线进入| 欧美另类一区| 久久久国产欧美日韩av| 久久九九热精品免费| 欧美激情久久久久久爽电影 | 高清欧美精品videossex| 一进一出抽搐动态| 99久久99久久久精品蜜桃| 蜜桃在线观看..| 在线观看免费午夜福利视频| 欧美日韩av久久| 国产精品av久久久久免费| xxxhd国产人妻xxx| 国产av一区二区精品久久| 女人精品久久久久毛片| 欧美日韩黄片免| cao死你这个sao货| 热re99久久国产66热| 考比视频在线观看| 亚洲av电影在线进入| 久久久久精品国产欧美久久久 | 丁香六月天网| 男人操女人黄网站| 国产精品1区2区在线观看. | 丰满迷人的少妇在线观看| 日韩视频在线欧美| 亚洲伊人久久精品综合| 热re99久久精品国产66热6| 日本a在线网址| 国产1区2区3区精品| 久久av网站| 男女国产视频网站| 天天影视国产精品| 黄色片一级片一级黄色片| 黄网站色视频无遮挡免费观看| 最近最新中文字幕大全免费视频| 王馨瑶露胸无遮挡在线观看| 日本精品一区二区三区蜜桃| 国产亚洲午夜精品一区二区久久| 无遮挡黄片免费观看| 国产麻豆69| 少妇粗大呻吟视频| 午夜福利在线观看吧| 手机成人av网站| 性色av乱码一区二区三区2| 精品卡一卡二卡四卡免费| 国产91精品成人一区二区三区 | 日韩中文字幕视频在线看片| 人人妻,人人澡人人爽秒播| 精品熟女少妇八av免费久了| 国产精品一二三区在线看| 欧美精品人与动牲交sv欧美| 美女福利国产在线| 99re6热这里在线精品视频| 欧美大码av| 80岁老熟妇乱子伦牲交| 777米奇影视久久| 极品少妇高潮喷水抽搐| 一进一出抽搐动态| 女人被躁到高潮嗷嗷叫费观| 亚洲av国产av综合av卡| 下体分泌物呈黄色| 丝袜美腿诱惑在线| 热re99久久国产66热| 国产精品二区激情视频| 亚洲欧洲精品一区二区精品久久久| 美女午夜性视频免费| 日本vs欧美在线观看视频| 欧美日韩亚洲高清精品| 如日韩欧美国产精品一区二区三区| 九色亚洲精品在线播放| 免费女性裸体啪啪无遮挡网站| 91精品伊人久久大香线蕉| 在线精品无人区一区二区三| 男女高潮啪啪啪动态图| 久久精品熟女亚洲av麻豆精品| 久久久久国产一级毛片高清牌| 丁香六月天网| 国产一区二区在线观看av| 18禁观看日本| 69精品国产乱码久久久| 激情视频va一区二区三区| 亚洲精品日韩在线中文字幕| 亚洲欧美精品综合一区二区三区| 精品福利永久在线观看| 在线十欧美十亚洲十日本专区| 国产有黄有色有爽视频| 午夜日韩欧美国产| 日韩熟女老妇一区二区性免费视频| 久久人人爽av亚洲精品天堂| 国产精品国产av在线观看| av一本久久久久| 国产av一区二区精品久久| 一级片'在线观看视频| 国产真人三级小视频在线观看| e午夜精品久久久久久久| av在线app专区| 日本撒尿小便嘘嘘汇集6| 天堂俺去俺来也www色官网| 国产黄频视频在线观看| 亚洲精品第二区| 最新的欧美精品一区二区| 亚洲精品一卡2卡三卡4卡5卡 | 国产亚洲午夜精品一区二区久久| 精品一区二区三卡| 国产男人的电影天堂91| 巨乳人妻的诱惑在线观看| av又黄又爽大尺度在线免费看| 久久久水蜜桃国产精品网| 黄频高清免费视频| 热re99久久国产66热| 成人免费观看视频高清| 国产精品一区二区在线不卡| 午夜免费观看性视频| 久久久久久亚洲精品国产蜜桃av| 亚洲精品国产av蜜桃| 日韩有码中文字幕| 女人被躁到高潮嗷嗷叫费观| 国产亚洲av高清不卡| 亚洲激情五月婷婷啪啪| av免费在线观看网站| 久久久久久久久久久久大奶| 97人妻天天添夜夜摸| 天天操日日干夜夜撸| 老熟妇乱子伦视频在线观看 | 日韩大片免费观看网站| 亚洲少妇的诱惑av| 日本vs欧美在线观看视频| 日韩欧美国产一区二区入口| 99久久精品国产亚洲精品| 精品亚洲乱码少妇综合久久| 日本wwww免费看| 99久久人妻综合| 成人国语在线视频| 日韩视频在线欧美| 免费av中文字幕在线| 国产免费av片在线观看野外av| 欧美少妇被猛烈插入视频| 热99久久久久精品小说推荐| 丰满人妻熟妇乱又伦精品不卡| 久久天堂一区二区三区四区| 青春草亚洲视频在线观看| 99精品欧美一区二区三区四区| 免费在线观看日本一区| 在线天堂中文资源库| 国产成人免费无遮挡视频| 国产在线免费精品| 99久久99久久久精品蜜桃| 国产伦人伦偷精品视频| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美少妇被猛烈插入视频| 久久中文看片网| 黄色怎么调成土黄色| 国产在线免费精品| 99九九在线精品视频| 免费av中文字幕在线| 久热这里只有精品99| 国产日韩一区二区三区精品不卡| 1024香蕉在线观看| 淫妇啪啪啪对白视频 | 青草久久国产| 999精品在线视频| 99热国产这里只有精品6| 韩国精品一区二区三区| 99久久精品国产亚洲精品| 巨乳人妻的诱惑在线观看| 中文精品一卡2卡3卡4更新| 国产精品国产av在线观看| 天堂8中文在线网| 五月开心婷婷网| 咕卡用的链子| 国产福利在线免费观看视频| 亚洲精品一卡2卡三卡4卡5卡 | 搡老乐熟女国产| 欧美黑人欧美精品刺激| 中文字幕av电影在线播放| 国产免费现黄频在线看| 我要看黄色一级片免费的| 久久天躁狠狠躁夜夜2o2o| 另类精品久久| 精品熟女少妇八av免费久了| 午夜免费成人在线视频| 亚洲精品乱久久久久久| 精品视频人人做人人爽| 精品一区在线观看国产| 欧美激情极品国产一区二区三区| 99九九在线精品视频| 在线看a的网站| 亚洲成人免费电影在线观看|