• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Flexural behaviors of FRP strengthened corroded RC beams

    2014-09-06 10:49:27PanJinlongWangLupingYuanFangHuangYifang
    關(guān)鍵詞:屈服撓度承載力

    Pan Jinlong Wang Luping Yuan Fang Huang Yifang

    (1Key Laboratory of Concrete and Pre-stressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China)(2China United Engineering Corporation, Hangzhou 310022, China)

    ?

    Flexural behaviors of FRP strengthened corroded RC beams

    Pan Jinlong1Wang Luping1Yuan Fang1Huang Yifang2

    (1Key Laboratory of Concrete and Pre-stressed Concrete Structures of Ministry of Education, Southeast University, Nanjing 210096, China)(2China United Engineering Corporation, Hangzhou 310022, China)

    The flexural behavior of eight FRP (fiber reinforced polymer) strengthened RC (reinforced concrete) beams with different steel corrosion rates are numerically studied by Ansys finite element software. The influences of the corrosion rate on crack pattern, failure mechanism, ultimate strength, ductility and deformation capacity are also analyzed. Modeling results show that the beams with low corrosion rates fail by the crushing of the concrete in the compression zone. For the beams with medium corrosion rates, the bond slip between the concrete and the longitudinal reinforcement occurs after steel yielding, and the beams finally fail by the debonding of the FRP plates. For the beams with high corrosion rates, the bond slip occurs before steel yielding, and the beams finally fail by the crushing of the concrete in the compression zone. The higher the corrosion rates of the longitudinal reinforcement, the more the carrying capacity of FRP strengthened RC beams reduces. The carrying capacity of RCB-1 (the corrosion rate is 0) is 115 kN, and the carrying capacity of RCB-7 (the corrosion rate is 20%) is 42 kN. The deformation capacity of FRP strengthened corroded RC beams is higher than that of FRP strengthened uncorroded RC beams. The ultimate deflection of RCB-1 and RCB-7 are 20 mm and 35 mm, respectively, and the ultimate deflection of RCB-5 (the corrosion rate is 10%) reaches 60 mm.

    corroded; reinforced concrete beam; FRP (fiber reinforced polymer); strengthening; numerical analysis; flexural behavior

    Concrete is one of the most widely used construction materials in civil engineering. Cracking and durability problems are the great challenges for the application of concrete in civil infrastructures[1]. For the durability issues, the corrosion of steel reinforcement is a major durability problem for concrete structures under severe environments. A potential solution of the corrosion problem is the application of the non-corroding fiber reinforced polymer (FRP) as strengthening or reinforcement materials for structural members[2].

    The use of the FRP material in structural engineering has attracted great attention due to its high tensile strength, good fatigue performance and inherent corrosion resistance[3]. For corroded RC beams, the bonding of FRP sheets on the tensile side can effectively improve the flexural strength and stiffness, as well as the crack control ability of the beams[4]. Previous studies indicated that the failure modes of FRP strengthened RC beams include the rupture of FRP plates, the crushing of the concrete in the compression zone with or without the tensile steel yielding and debonding of the FRP[5-6]. In this paper, several FRP strengthened RC beams with different steel corrosion rates are numerically studied to investigate the failure mechanism of the beams. With the numerical models, the effect of steel corrosion rate on the ultimate strength, deformation capacity and ductility of the beams are comprehensively studied.

    1 Finite Element Models

    1.1 Model and material parameters

    In the numerical simulations, the dimensions of the beam models are 150 mm in width, 200 mm in height, and 2 200 mm in length. A total of eight FRP strengthened beams are simulated to investigate the influence of the steel corrosion rate on the flexural behaviors. Each beam is loaded under four-point bending with a span of 1 800 mm, and the external loads are applied symmetrically at the locations with 600 mm from the supports[7]. The loading configuration is shown in Fig.1. For the concrete, the Young’s modulus and compressive strength are 30 GPa and 22.9 MPa, respectively. For the FRP sheet, the elastic modulus and the tensile strength are 234 GPa and 4 200 MPa, respectively. Tab.1 shows the mechanical parameters of the steel reinforcement. In this numerical analysis, the constitutive model of the concrete is described by the stress-strain relationship from “Code for design of concrete structures of China (GB 50010—2010)”[8]. The steel reinforcement is assumed to be perfectly elastic-plastic. According to Ref.[9], the yield strength of the corroded reinforcement is calculated by whereαsis the reduction factor of the yield strength of the corroded reinforcement;fy0is the yield strength of the non-corroded reinforcement;As0is the cross section area of the reinforcement. In this numerical analysis, the bond-slip model for the interface element between the steel reinforcement and the concrete is determined based on “CEB-FIB model code 1990”[10]. The bond-slip relationship is shown in Fig.2. The bond-slip relationship between the FRP sheet and the concrete is described by a three-parameter model proposed by Leung and Tung[11], whereτmax,τ0andSmaxare the maximum shear stress, the residual shear stress and the maximum slip, which are assumed to be 9 MPa, 3 MPa and 4 mm, respectively.

    Fig.1 Schematic illustration of test setup and specimen details (unit: mm)

    SteeltypeDiameter/mmModulusofelasticityEf/GPaYieldstrengthfu/MPaMildbar10210210Deformedbar14200380

    Pyc=αsfy0As0

    (1)

    Fig.2 Bond-slip model between steel and concrete in CEB-FIP code

    Eight corrosion rates (0, 2%, 5%, 7%, 10%, 15%, 20% and 25%, which are represented by RCB-1, RCB-2, RCB-3, RCB-4, RCB-5, RCB-6, RCB-7 and RCB-8, respectively) are selected for numerical analysis. The corrosion rate herein is defined by the degree of degradation between the longitudinal reinforcement and the concrete. For example, a corrosion rate of 5% represents that the bond strength of the corroded reinforcement degrades to 95% of that for the non-corroded reinforcement.

    1.2 Model setup

    According to the symmetry of the beam about its vertical axis, a half of the beam model is set up for numerical analysis. The whole loading process is conducted by displacement control. Elements Solid65, Link8 and Shell63 are selected to simulate the concrete, the steel reinforcement and the FRP sheet, respectively. The nonlinear element Combin39 is adopted to simulate the bond-slip relationship between the concrete and the FRP plate or the steel reinforcement.

    2 Simulation Results and Discussions

    2.1 Crack patterns and failure modes

    The failure modes of the beams can be divided into three types, which can be represented by specimens RCB-1, RCB-5 and RCB-7. Fig.3 shows the crack distributions at different load levels for specimen RCB-1. Flexural cracks first occur at a load of 17.8 kN (see Fig.3(a)). With increasing loading, several inclined flexural shear cracks are found to form in the shear span and extend towards the loading point. Finally, specimen RCB-1 fails by the crushing of the concrete in the compression zone. The final crack pattern of specimen RCB-1 is shown in Fig.3(d).

    Fig.3 Crack patterns of RCB-1. (a) 17.8 kN; (b) 43.8 kN; (c) 61.4 kN; (d) 100.0 kN

    For specimen RCB-5, flexural cracks are first observed at a load of 12.4 kN (see Fig.4(a)). With increasing external loading, flexural cracks tend to extend from the bottom of the beam to its top surface. However, the bond strength between the concrete and the longitudinal reinforcement decreases with the steel corrosion rate, resulting in a poor interfacial shear stress transfer. Therefore, the cracks of specimen RCB-5 are mainly concentrated near the pure bending region. Specimen RCB-5 finally fails in a brittle manner with the full development of flexural cracks. The final crack pattern of specimen RCB-5 is shown in Fig.4(d).

    For specimen RCB-7, flexural cracks are first observed at a load of 11.1 kN (see Fig.5(a)).With increasing external loading, flexural cracks tend to extend from the bottom of the beam to its top surface. Compared with specimen RCB-5(Fig.4(b)), specimen RCB-7 shows a larger amount of flexural and flexural shear cracks under the same load of about 42 kN(see Fig.5(c)).The flexural stiffness of the specimen with a larger steel corrosion rate degrades more quickly due to the weakened stress transferring between the longitudinal reinforcement and the concrete. With further increasing loading, flexural cracks extend to the top surface of the beam(see Fig.5(d)), resulting in the premature failure of the concrete in the compression zone.

    Fig.4 Crack patterns of RCB-5.(a) 12.4 kN; (b) 41.2 kN; (c) 66.8 kN; (d) 79.8 kN

    Fig.5 Crack patterns of RCB-7.(a) 11.1 kN; (b) 24.8 kN; (c) 42.0 kN; (d) 60.1 kN

    2.2 Load-displacement curves

    The load-deflection curves for specimens are shown in Fig.6. For the specimens with low corrosion rates (RCB-1, RCB-2, RCB-3 and RCB-4), the load-displacement curves can be divided into three stages. The external load first increases linearly with corresponding deflection before a first cracking load of 10 kN is reached. After that, the slope of the curve drops and keeps almost constant up to a yield load of 80 kN. Beyond yielding, the flexural and flexural shear cracks extend to the top surface of the beam. The inelastic deformation of the beam increases substantially with the increase of the load carrying capacity due to the strengthening effect of the FRP plate. When the load reaches about 115 kN, the beam fails by the crushing of the concrete in the compression zone, which can be considered as a typical flexural failure mode.

    Fig.6 The load-deflection curves of eight specimens

    For the specimen with medium corrosion rates (RCB-5), the load-deflection relationship is similar to that of specimen RCB-1 before a yielding load of 75 kN. The flexural stiffness of specimen RCB-5 is lower than that of specimen RCB-1 due to much more flexural and flexural shear cracks formed in specimen RCB-5.When the external load reaches 80 kN, the bond strength between the concrete and the longitudinal reinforcement drops and bond slip occurs, followed by a sudden drop of external loading. After that, the external load increases linearly with corresponding deflection until the ultimate load of 102 kN is reached due to the partial debonding of the FRP plate, followed by the second drop of external loading. The beam finally fails by the full debonding of the FRP plate with a failure deflection of 60 mm.

    For the specimen with serious steel corrosion, such as RCB-7, the external load suddenly drops due to the occurrence of the bond slip between the concrete and the longitudinal reinforcement. With the increasing displacement, the external load increases with the deflection of the beam due to the strengthening effect of the FRP plate. When the load reaches about 105 kN, the beam fails by the crushing of the concrete in the compression zone. FRP debonding does not occur during the loading process. It is the full development of flexural deformation that leads to the premature failure of specimen RCB-7.

    2.3 Stress and strain development of longitudinal bars

    Fig.7(a) shows the strain distributions along the longitudinal bars at different load levels for specimen RCB-1. It can be observed that the strain values in the pure bending region are identical and the strain value in the flexural shear region decreases with the distance from the middle span of the beam. The strain distributions are the same as the moment distributions, which indicates that there is no bond slip between the concrete and the longitudinal reinforcement. Steel yielding occurs when the strain value reaches 1.9×10-3and the stress value reaches a yield strength of 380 MPa. From the stress-deflection curve of specimen RCB-1 (see Fig.7(b)), it can be seen that the stress value first increases linearly with the middle span deflection before the yield strength is reached. After that, the slope of the curve stays almost constant up to final failure.

    The stress and strain variations in longitudinal bars for specimen RCB-5 are shown in Fig.8. When the external load is lower than 79.8 kN, no sign of slip between the concrete and the longitudinal reinforcement is observed and the strain distributions are identical to those of specimen RCB-1. With increasing external loading, the strain values outside the pure bending region decrease substantially due to the bond slip between the concrete and the longitudinal bars. After that, the increase of deflection results in a decrease in strain values in the pure bending region but has little effect on the strain values outside the pure bending zone. The FRP plate provides a main flexural resistance of the beam in this period. It can be seen from Fig.8(b) that the stress value of the tensile reinforcement at midspan first increases linearly with deflection. After an ultimate stress value of 350 MPa is reached, the stress value decreases with the midspan deflection due to the bond slip between the concrete and the longitudinal bars. With the further increase of deflection, the stress value decreases rapidly due to the debonding of the FRP plate. Afterwards, the stress value keeps almost constant up to final failure.

    (a)

    (b)

    Fig.7 Stress and strain variations in longitudinal bars for specimen RCB-1. (a) Strain distributions along tensile bars; (b) Stress-deflection curve at midspan

    (a)

    (b)

    Fig.8 Stress and strain variations in longitudinal bars for specimen RCB-5. (a) Strain distributions along tensile bars;(b) Stress-deflection curve at midspan

    The strain distributions along the tensile reinforcement of specimen RCB-7 are shown in Fig.9(a). The strain values increase with the external loading when the load is lower than 42 kN. The bond strength between the concrete and the longitudinal reinforcement degrades due to the serious corrosion of the steel reinforcement, and the strain values in the pure bending region decrease with the distance from the midspan of the beam. After that, the strain values show a sudden drop due to the bond slip between the concrete and the longitudinal bars. With the increasing external loading, the strain values keep almost constant and the FRP plate makes significant contributions to the ultimate load capacity. From the stress-deflection curve of specimen RCB-7 (see Fig.9(b)), it can be clearly seen that the stress value first increases linearly with the midspan deflection until an ultimate stress of 170 MPa is reached, followed by a sudden drop of external load. The bond slip between the concrete and the longitudinal bars occurs and bond strength degrades rapidly. With the increasing deflection, the stress value of the longitudinal bars keeps constant while the stress value of the FRP plate increases gradually until final compressive failure occurs.

    (a)

    (b)

    Fig.9 Stress and strain variations in longitudinal bars for specimen RCB-7. (a) Strain distributions along tensile bars;(b) Stress-deflection curve at midspan

    2.4 Bond stress between concrete and longitudinal reinforcement

    Fig.10(a) shows the bond force distributions between the concrete and the longitudinal reinforcement for specimen RCB-1. The bond force herein is defined by the tensile force of the spring element in numerical modeling. In the pure bending region, the bond force maintains around zero before initial flexural cracking is observed. With the increasing external loading, a tiny bond force occurs due to the stress concentration at the vicinity of flexural cracks.

    (a)

    (b)

    (c)

    Fig.10 Bond force distributions between concrete and longitudinal reinforcement. (a) RCB-1; (b) RCB-5; (c) RCB-7

    In the flexural shear region, the bond force increases in the shear flexural region due to the variation in the tensile stress of the steel reinforcement. It can be seen from Fig.10(a) that there are force fluctuations along the beam span. This is due to the fact that many flexural and flexural shear cracks are found to occur along the beam, leading to stress concentrations along the longitudinal bars. The bond force outside the supports reduces to zero gradually.

    The bond force distributions between the concrete and the longitudinal reinforcement at different load levels for specimen RCB-5 are shown in Fig.10(b). When the external load is lower than 79.8 kN, no sign of slip between the concrete and the longitudinal reinforcement is observed and the bond force distributions are identical to those of specimen RCB-1. With the increasing external loading, the bond slip occurs between the concrete and the longitudinal bars, and the bond force increases with the distance from middle span. With the increasing deflection, the bond slip between the concrete and the longitudinal reinforcement increases, and the FRP plate provides more and more contributions to the flexural load capacity. For the regions with large bond slip, bond force degrades to residual bond strength. The region with high bond stress tends to shift towards the midspan with the increasing deflection.

    Fig.10(c) shows the bond force distributions at different levels for specimen RCB-7. The bond force between the steel and the concrete increases with the external load, when the load is smaller than 42 kN. The bond force is very large outside the pure bending region due to the moment variations. With the increasing external loading, the bond slip increases with the distance from the midspan. As a result, the bond force outside the pure bending region degrades to residual bond strength. The region with high bond stress between the steel reinforcement and the concrete is close to the midspan. In this stage, the FRP plate plays an important role in resisting external loading.

    2.5 Strain distribution of FRP sheet and bond-slip behavior between concrete and FRP plate

    Fig.11(a) shows the strain distributions along the FRP sheet at different load levels for specimen RCB-1. The strain values keep almost constant in the pure bending region but decrease with the distance from the midspan outside the pure bending region. The strain distributions are similar to the moment distributions of the beam, which indicates a good deformation compatibility between the FRP and the concrete. Fig.11(b) shows the bond force distributions between the FRP plate and the concrete for specimen RCB-1. It is clearly seen that the bond force in the pure bending region stays around zero, but is much larger in the flexural shear region due to the moment variations. In addition, the development of flexural shear cracks results in bond force fluctuation along the FRP plate.

    (a)

    (b)

    Fig.11 Strain and bond force distributions for specimen RCB-1. (a) Strain distributions of FRP plate; (b)Bond force distributions between FRP plate and concrete

    The strain distributions of the FRP plate for specimen RCB-5 are shown in Fig.12(a). When the external load is lower than 103.0 kN, no sign of slip between the concrete and the FRP sheet is observed and the strain distributions are identical to those of specimen RCB-1. With the increasing external loading, FRP debonding occurs at the end of the FRP plate. As a result, the strain values of the FRP plate reduces to zero in the FRP debonding region. Outside the FRP debonding region, the strain values also reduce substantially due to the sudden drop of flexural resistance. Fig.12(b) shows the bond force distributions between the FRP plate and the concrete for specimen RCB-5. Before FRP debonding, the bond force between the FRP sheet and the concrete increases with the external load. After FRP debonding, the bond force reduces to zero in the FRP debonding region and the region with the concentration of bond stress propagates towards the crack tip of interfacial debonding. The debonding of the FRP plate leads to a substantial drop of flexural resistance of the beam but has little effect on the bond force between the FRP plate and the concrete in the flexural bending region.

    Fig.13(a) shows the strain distributions along the FRP plate at different load levels for specimen RCB-8. The strain values of specimen RCB-8 are greater than those of specimen RCB-1 under the same load level. As a result of serious corrosion, the bond strength between the concrete and the longitudinal reinforcement of specimen RCB-8 degrades and the FRP plate provides a sufficient flexural resistance to the beam. No sign of sudden strain drop of the FRP plate is observed during the loading process, indicating that the debonding of the FRP plate does not occur. Fig.13(b) shows the bond force distributions between the FRP plate and the concrete for specimen RCB-8. It is seen from Fig.13(b) that the bond force increases with the external load. Under the same load level, the bond force between the FRP plate and the concrete of specimen RCB-8 is much larger than that of specimen RCB-1 due to the bond slip between the concrete and the longitudinal reinforcement of specimen RCB-8.

    (a)

    (b)

    Fig.12 Strain and bond force distributions for specimen RCB-5. (a) Strain distributions of FRP plate; (b) Bond force distributions between FRP plate and concrete

    (a)

    (b)

    Fig.13 Strain and bond force distributions for specimen RCB-8. (a) Strain distributions of FRP plate; (b) Bond force distributions between FRP plate and concrete

    3 Conclusion

    In this paper, the beams with low corrosion rates (lower than 7%) fail by the crushing of the concrete in the compression zone. For the beam with a corrosion rate of 10%, the bond slip between the concrete and the longitudinal reinforcement occurs after steel yielding and it finally fails by the debonding of the FRP plate. For the beam with a serious corrosion rate (20%), the bond slip between the concrete and the longitudinal reinforcement occurs before yielding and flexural cracks extend to the bottom of the top surface of the beam, resulting in the premature failure of the concrete in the compression zone. The flexural resistance and stiffness of the beam decreases with the steel corrosion rate due to the weakened mechanical performance of the corroded reinforcement and poor bond strength between the concrete and the longitudinal reinforcement. However, the increase of the corrosion rate results in better deformation ability. The beam with a corrosion rate of 10% shows a significantly improved deformation ability due to the fully debonding of the FRP plate without the crushing failure of the concrete in the compression zone.

    [1]Mehta P K. Reducing the environmental impact of concrete [J].ConcreteInternational, 2001, 23(10): 61-66.

    [2]Ritchie P A, Thomas D A, Lu L W, et al. External reinforcement of concrete beams using fiber reinforced plastics [J].ACIStructuralJournal, 1991, 88(4): 490-500.

    [3]Hollaway L C. The evolution of and the way forward for advanced polymer composites in the civil infrastructure [J].ConstructionandBuildingMaterials, 2003, 17(6): 365-378.

    [4]Chajes M J, Thomson T A Jr, Januszka T F, et al. Flexural strengthening of concrete beams using externally bonded composite materials [J].ConstructionandBuildingMaterials, 1994, 8(3): 191-201.

    [5]Teng J G, Chen J F, Smith S T, et al.FRP:strengthenedRCstructures[M]. Weinheim, Germany: Wiley-VCH, 2002.

    [6]Smith S T, Teng J G. FRP-strengthened RC beams. Ⅰ: review of debonding strength models [J].EngineeringStructures, 2002, 24(4): 385-395.

    [7]Wang X G, Gu X L, Zhang W P. Flexural stiffness of corroded reinforced concrete beams strengthened with carbon fiber composite sheets [J].JournalofBuildingStructures, 2009, 30(5): 169-176.

    [8]Ministry of Housing and Urban-Rural Development of the People’s Republic of China. GB 50010—2010 Code for design of concrete structures [S]. Beijing: China Architecture and Building Press, 2010. (in Chinese)

    [9]Xi’an University of Architecture and Technology. CECS220:2007 Standard for durability assessment of concrete structure [S]. Beijing: China Architecture and Building Press, 2007. (in Chinese)

    [10]Comité euro-international du béton. CEB-FIP model code 1990: design code [S]. London: FIB-Féd. Int. du Béton, 1993.

    [11]Leung C K, Tung W K. Three-parameter model for debonding of FRP plate from concrete substrate [J].JournalofEngineeringMechanics, 2006, 132(5): 509-518.

    FRP加固銹蝕鋼筋混凝土梁的受彎性能分析

    潘金龍1王路平1袁 方1黃毅芳2

    (1東南大學(xué)混凝土及預(yù)應(yīng)力混凝土教育部重點(diǎn)實(shí)驗(yàn)室,南京210096) (2中國聯(lián)合工程公司,杭州310022)

    采用Ansys有限元軟件對8根不同銹蝕率的FRP片材加固鋼筋混凝土梁的受彎性能進(jìn)行數(shù)值分析,研究縱筋銹蝕率對FRP加固梁的裂紋開展、破壞模式、承載能力以及延性和變形能力的影響.研究結(jié)果表明:低鋼筋銹蝕率的梁發(fā)生受壓區(qū)混凝土壓碎破壞;中等銹蝕率的梁鋼筋屈服后,鋼筋與混凝土界面發(fā)生黏結(jié)滑移,最后FRP剝離破壞;高銹蝕率的梁鋼筋沒有達(dá)到屈服強(qiáng)度便發(fā)生黏結(jié)滑移,最后發(fā)生受壓區(qū)混凝土壓碎破壞.鋼筋銹蝕越嚴(yán)重,FRP加固鋼筋混凝土梁的承載力降低得越多.試件RCB-1(銹蝕率為0)的承載力為115 kN,而試件RCB-7(銹蝕率為20%)的承載力僅為42 kN.與FRP加固未銹蝕的鋼筋混凝土梁相比,FRP加固銹蝕鋼筋混凝土梁的變形能力較高.試件RCB-1和試件RCB-7的最大跨中撓度分別為20 mm和35 mm,而試件RCB-5(銹蝕率為10%) 的最大跨中撓度達(dá)到了60 mm.

    銹蝕鋼筋混凝土梁;FRP;加固;數(shù)值分析;受彎性能

    TU375

    s:The National Natural Science Foundation of China (No.51278118), Scientific and Technological Research Project of Ministry of Education (No.113028A), the Natural Science Foundation of Jiangsu Province (No.BK2012756), the Program for Special Talents in Six Fields of Jiangsu Province (No.2011-JZ-010).

    :Pan Jinlong, Wang Luping, Yuan Fang, et al. Flexural behaviors of FRP strengthened corroded RC beams[J].Journal of Southeast University (English Edition),2014,30(1):77-83.

    10.3969/j.issn.1003-7985.2014.01.015

    10.3969/j.issn.1003-7985.2014.01.015

    Received 2013-11-07.

    Biography:Pan Jinlong (1976—), male, doctor, professor, jinlongp@gmail.com.

    猜你喜歡
    屈服撓度承載力
    牙被拔光也不屈服的史良大律師秘書
    紅巖春秋(2022年1期)2022-04-12 00:37:34
    Spontaneous multivessel coronary artery spasm diagnosed with intravascular ultrasound imaging:A case report
    The Classic Lines of A Love so Beautiful
    勇敢
    CFRP-PCP板加固混凝土梁的抗彎承載力研究
    百折不撓
    耐火鋼圓鋼管混凝土柱耐火極限和承載力
    潛艇極限承載力計(jì)算與分析
    懸高測量在橋梁撓度快速檢測中的應(yīng)用
    對受壓加勁板極限承載力計(jì)算方法的評述
    91aial.com中文字幕在线观看| 日本黄色片子视频| 日韩不卡一区二区三区视频在线| 日韩国内少妇激情av| 久久久久网色| av又黄又爽大尺度在线免费看| 色网站视频免费| 日韩一区二区视频免费看| 亚洲美女搞黄在线观看| 久久影院123| 精品久久久久久久久亚洲| 久久精品国产亚洲av涩爱| 99热网站在线观看| 久久久久网色| 亚洲激情五月婷婷啪啪| 在线免费观看不下载黄p国产| 在线a可以看的网站| 卡戴珊不雅视频在线播放| 成人特级av手机在线观看| 纵有疾风起免费观看全集完整版| 高清毛片免费看| 男女边吃奶边做爰视频| 人妻制服诱惑在线中文字幕| 国产精品久久久久久精品古装| 国产爱豆传媒在线观看| 99久久人妻综合| 国产精品熟女久久久久浪| 18禁在线播放成人免费| 亚洲成人中文字幕在线播放| 两个人的视频大全免费| 免费黄网站久久成人精品| 国产极品天堂在线| 亚洲国产欧美在线一区| www.av在线官网国产| 国产老妇伦熟女老妇高清| 亚洲欧美精品自产自拍| 国产成人精品一,二区| 99久国产av精品国产电影| 日产精品乱码卡一卡2卡三| 夜夜看夜夜爽夜夜摸| 欧美成人a在线观看| 国产成人精品久久久久久| av在线老鸭窝| 亚洲,一卡二卡三卡| 国产女主播在线喷水免费视频网站| 乱系列少妇在线播放| 亚洲一级一片aⅴ在线观看| 国产亚洲5aaaaa淫片| 国产又色又爽无遮挡免| 国内精品宾馆在线| 777米奇影视久久| 三级国产精品欧美在线观看| 亚洲三级黄色毛片| 2021少妇久久久久久久久久久| 国国产精品蜜臀av免费| 国产成人午夜福利电影在线观看| 免费看日本二区| 免费大片18禁| 亚洲自拍偷在线| 中国美白少妇内射xxxbb| 国产人妻一区二区三区在| 国产男人的电影天堂91| 日韩人妻高清精品专区| 精品一区二区三区视频在线| 综合色av麻豆| 精品久久久久久久久亚洲| 国产熟女欧美一区二区| 亚洲久久久久久中文字幕| 欧美zozozo另类| 99久久精品热视频| 夫妻性生交免费视频一级片| 亚洲美女搞黄在线观看| 国语对白做爰xxxⅹ性视频网站| 男女下面进入的视频免费午夜| 欧美日本视频| 狂野欧美白嫩少妇大欣赏| 综合色av麻豆| 最新中文字幕久久久久| 国产毛片a区久久久久| 男女无遮挡免费网站观看| 国产人妻一区二区三区在| 国产黄频视频在线观看| 国产精品99久久久久久久久| 久久久久精品性色| 亚洲欧美日韩无卡精品| 日韩在线高清观看一区二区三区| 五月天丁香电影| 又粗又硬又长又爽又黄的视频| 亚洲三级黄色毛片| 一级毛片我不卡| 又粗又硬又长又爽又黄的视频| 中文字幕av成人在线电影| 女人被狂操c到高潮| 国产男女内射视频| 你懂的网址亚洲精品在线观看| 欧美成人精品欧美一级黄| 听说在线观看完整版免费高清| 中文欧美无线码| 午夜免费观看性视频| 午夜爱爱视频在线播放| 国产精品人妻久久久影院| 国产成人一区二区在线| 国产69精品久久久久777片| 亚洲一级一片aⅴ在线观看| 肉色欧美久久久久久久蜜桃 | 热99国产精品久久久久久7| 国产一区有黄有色的免费视频| 日日摸夜夜添夜夜爱| 亚洲国产精品999| 国产精品国产三级国产专区5o| 校园人妻丝袜中文字幕| 欧美日韩视频精品一区| 国产精品国产av在线观看| 久久人人爽人人片av| 精品少妇久久久久久888优播| 亚洲成人精品中文字幕电影| 国产 一区 欧美 日韩| 免费看日本二区| 深爱激情五月婷婷| 日韩一本色道免费dvd| 人人妻人人爽人人添夜夜欢视频 | 尤物成人国产欧美一区二区三区| 亚洲欧美日韩卡通动漫| 久久精品久久久久久久性| 久久久亚洲精品成人影院| 日日啪夜夜爽| 欧美精品国产亚洲| 欧美最新免费一区二区三区| 欧美激情国产日韩精品一区| 大又大粗又爽又黄少妇毛片口| 蜜桃亚洲精品一区二区三区| 精品少妇久久久久久888优播| 亚洲精品日韩av片在线观看| 久久鲁丝午夜福利片| 水蜜桃什么品种好| 色哟哟·www| 久久久久精品久久久久真实原创| 成人午夜精彩视频在线观看| 久久久久久久午夜电影| 在线观看av片永久免费下载| 亚洲三级黄色毛片| 在线免费十八禁| 国产成人福利小说| 国产伦在线观看视频一区| 嘟嘟电影网在线观看| 国产一区二区在线观看日韩| 一个人看的www免费观看视频| 青春草视频在线免费观看| 日韩成人av中文字幕在线观看| 日本色播在线视频| 又爽又黄a免费视频| 国产一区亚洲一区在线观看| 欧美日韩综合久久久久久| 别揉我奶头 嗯啊视频| 亚洲精品乱码久久久久久按摩| 国产成人一区二区在线| 99久久九九国产精品国产免费| 久久午夜福利片| 国产精品久久久久久精品电影| 十八禁网站网址无遮挡 | 亚洲最大成人手机在线| 一本色道久久久久久精品综合| 国产精品一区二区在线观看99| av线在线观看网站| 最后的刺客免费高清国语| 黑人高潮一二区| 精品久久久久久电影网| 99精国产麻豆久久婷婷| 水蜜桃什么品种好| 国产亚洲午夜精品一区二区久久 | 麻豆久久精品国产亚洲av| 亚洲成色77777| 国产亚洲一区二区精品| a级毛片免费高清观看在线播放| 少妇人妻 视频| 网址你懂的国产日韩在线| 免费人成在线观看视频色| 免费看av在线观看网站| 超碰av人人做人人爽久久| 亚洲精品久久久久久婷婷小说| 人人妻人人澡人人爽人人夜夜| 国产免费又黄又爽又色| 午夜福利视频1000在线观看| 男女边吃奶边做爰视频| 久久国产乱子免费精品| 国产白丝娇喘喷水9色精品| 久久久久久久亚洲中文字幕| 亚洲av免费高清在线观看| 少妇人妻 视频| 亚洲无线观看免费| 亚洲欧美日韩另类电影网站 | av又黄又爽大尺度在线免费看| 寂寞人妻少妇视频99o| 伊人久久精品亚洲午夜| 六月丁香七月| 男女边吃奶边做爰视频| av免费在线看不卡| 亚洲成人精品中文字幕电影| 国产极品天堂在线| 日日啪夜夜撸| 日本熟妇午夜| 国产成人一区二区在线| 中文字幕人妻熟人妻熟丝袜美| 久久久久国产精品人妻一区二区| 国产免费视频播放在线视频| 亚洲国产欧美人成| 亚洲熟女精品中文字幕| 亚洲第一区二区三区不卡| 人妻夜夜爽99麻豆av| 全区人妻精品视频| 可以在线观看毛片的网站| 亚洲av在线观看美女高潮| a级毛色黄片| 男人和女人高潮做爰伦理| 在线观看美女被高潮喷水网站| 五月玫瑰六月丁香| 在线看a的网站| 亚洲国产日韩一区二区| 免费黄网站久久成人精品| 午夜老司机福利剧场| 欧美亚洲 丝袜 人妻 在线| 看黄色毛片网站| 免费看日本二区| 国产精品99久久99久久久不卡 | 少妇被粗大猛烈的视频| 自拍偷自拍亚洲精品老妇| 亚洲av中文字字幕乱码综合| 久久精品国产亚洲av涩爱| 纵有疾风起免费观看全集完整版| 亚洲av国产av综合av卡| 全区人妻精品视频| av在线蜜桃| 日本-黄色视频高清免费观看| 亚洲性久久影院| 国产午夜精品一二区理论片| 亚洲在线观看片| 欧美日韩国产mv在线观看视频 | 性色avwww在线观看| 色播亚洲综合网| 听说在线观看完整版免费高清| 欧美国产精品一级二级三级 | 91久久精品电影网| 一级毛片黄色毛片免费观看视频| 寂寞人妻少妇视频99o| 欧美97在线视频| 伊人久久国产一区二区| 99热6这里只有精品| 一本久久精品| 91久久精品国产一区二区三区| 亚洲国产欧美在线一区| 26uuu在线亚洲综合色| 亚洲av中文av极速乱| 久久久久国产网址| 久久亚洲国产成人精品v| 高清在线视频一区二区三区| 亚洲天堂国产精品一区在线| 熟女人妻精品中文字幕| 欧美zozozo另类| 少妇被粗大猛烈的视频| 草草在线视频免费看| 国产永久视频网站| 男人舔奶头视频| 国产熟女欧美一区二区| 国产精品一区二区在线观看99| 黄色配什么色好看| 午夜免费男女啪啪视频观看| 久久精品国产鲁丝片午夜精品| 91在线精品国自产拍蜜月| 国国产精品蜜臀av免费| 亚洲美女视频黄频| 成人毛片a级毛片在线播放| 国产老妇女一区| 伊人久久精品亚洲午夜| av在线app专区| 97在线人人人人妻| 最近最新中文字幕大全电影3| 久久精品国产亚洲av天美| 国产欧美日韩一区二区三区在线 | 国产又色又爽无遮挡免| 禁无遮挡网站| 亚洲综合精品二区| 男人爽女人下面视频在线观看| 亚洲国产精品成人综合色| 插逼视频在线观看| 久久久a久久爽久久v久久| 午夜精品国产一区二区电影 | 亚洲综合色惰| 五月伊人婷婷丁香| 国产一区二区三区综合在线观看 | 熟女电影av网| 美女被艹到高潮喷水动态| 国产 一区 欧美 日韩| 欧美一级a爱片免费观看看| 建设人人有责人人尽责人人享有的 | 别揉我奶头 嗯啊视频| 又爽又黄无遮挡网站| 亚洲成人久久爱视频| 国产精品熟女久久久久浪| 国产一区二区三区av在线| 欧美亚洲 丝袜 人妻 在线| 久久久久久久久久人人人人人人| 国产精品一区二区在线观看99| 新久久久久国产一级毛片| 狠狠精品人妻久久久久久综合| 在现免费观看毛片| 精品久久久久久久末码| 亚洲精品国产成人久久av| 国产精品一及| 亚洲熟女精品中文字幕| 国内少妇人妻偷人精品xxx网站| 成人免费观看视频高清| 人妻 亚洲 视频| 亚洲人成网站高清观看| av专区在线播放| 99热这里只有精品一区| 热re99久久精品国产66热6| 99热全是精品| 国产精品久久久久久精品古装| av女优亚洲男人天堂| 18禁裸乳无遮挡免费网站照片| 午夜福利视频1000在线观看| 亚洲色图综合在线观看| 国产成人免费无遮挡视频| 欧美一区二区亚洲| 国产黄a三级三级三级人| 啦啦啦在线观看免费高清www| 国产真实伦视频高清在线观看| 国产免费一级a男人的天堂| 在线a可以看的网站| 波野结衣二区三区在线| 午夜福利在线观看免费完整高清在| 亚洲电影在线观看av| 亚洲av日韩在线播放| 菩萨蛮人人尽说江南好唐韦庄| 国产精品女同一区二区软件| 在现免费观看毛片| 乱码一卡2卡4卡精品| 久久久久久久久久久免费av| 欧美激情久久久久久爽电影| 日本与韩国留学比较| 大码成人一级视频| 性色avwww在线观看| 女的被弄到高潮叫床怎么办| 国产乱人偷精品视频| 国产 一区 欧美 日韩| 特级一级黄色大片| 午夜福利网站1000一区二区三区| 亚洲成人中文字幕在线播放| 有码 亚洲区| 国产成人aa在线观看| 男人添女人高潮全过程视频| 久久久久久九九精品二区国产| 丰满乱子伦码专区| 久久6这里有精品| 在线免费十八禁| 午夜激情福利司机影院| 亚洲精品成人av观看孕妇| a级毛色黄片| 日韩视频在线欧美| 日本熟妇午夜| 国产探花极品一区二区| 五月开心婷婷网| 大香蕉久久网| 男女边摸边吃奶| 国内揄拍国产精品人妻在线| 国产精品av视频在线免费观看| 欧美日韩精品成人综合77777| 97超视频在线观看视频| 大片电影免费在线观看免费| 亚洲四区av| 国产在线一区二区三区精| 成人美女网站在线观看视频| 在线a可以看的网站| 少妇人妻一区二区三区视频| 精品久久久久久电影网| 我要看日韩黄色一级片| 天天躁日日操中文字幕| 成人二区视频| 精品99又大又爽又粗少妇毛片| 热re99久久精品国产66热6| 久久久久精品性色| 国产 精品1| 女人被狂操c到高潮| 久久99热6这里只有精品| 99热这里只有是精品在线观看| 欧美成人精品欧美一级黄| 成人亚洲精品av一区二区| 亚洲精品乱码久久久v下载方式| 亚洲精华国产精华液的使用体验| 欧美97在线视频| 日韩国内少妇激情av| 亚洲无线观看免费| 黄色一级大片看看| 99视频精品全部免费 在线| av福利片在线观看| 日韩人妻高清精品专区| www.色视频.com| 偷拍熟女少妇极品色| 王馨瑶露胸无遮挡在线观看| 亚洲高清免费不卡视频| 亚洲精品影视一区二区三区av| 尾随美女入室| 80岁老熟妇乱子伦牲交| 国内精品美女久久久久久| 亚洲精品日韩av片在线观看| 国产精品成人在线| 久久国产乱子免费精品| 免费不卡的大黄色大毛片视频在线观看| 精华霜和精华液先用哪个| 婷婷色综合大香蕉| 国产成人91sexporn| 日日啪夜夜撸| 成人欧美大片| 日韩成人伦理影院| 人人妻人人爽人人添夜夜欢视频 | 少妇人妻精品综合一区二区| 男男h啪啪无遮挡| 亚洲精品456在线播放app| 亚洲精华国产精华液的使用体验| 欧美三级亚洲精品| www.色视频.com| 日本爱情动作片www.在线观看| 女人被狂操c到高潮| 人妻一区二区av| 国产精品国产三级专区第一集| 免费不卡的大黄色大毛片视频在线观看| 亚洲av一区综合| 男人狂女人下面高潮的视频| 黄色配什么色好看| 一区二区av电影网| 偷拍熟女少妇极品色| 建设人人有责人人尽责人人享有的 | 51国产日韩欧美| 波多野结衣巨乳人妻| 少妇人妻一区二区三区视频| 国产av国产精品国产| 久久精品国产鲁丝片午夜精品| 亚洲欧美精品自产自拍| 精品一区在线观看国产| 午夜免费鲁丝| 99热这里只有精品一区| www.av在线官网国产| 亚洲欧美成人综合另类久久久| 久久久久九九精品影院| 亚洲在线观看片| 午夜福利在线在线| 青春草亚洲视频在线观看| 一级黄片播放器| 国产精品一区二区三区四区免费观看| 久久精品久久久久久噜噜老黄| 久久6这里有精品| 久久精品国产鲁丝片午夜精品| 国产黄色免费在线视频| 在线观看免费高清a一片| 欧美av亚洲av综合av国产av | 国产一区二区 视频在线| 高清视频免费观看一区二区| 中文欧美无线码| 黄片播放在线免费| 久久久国产欧美日韩av| 男女之事视频高清在线观看 | 90打野战视频偷拍视频| 国产一区二区在线观看av| 国产成人免费无遮挡视频| 精品亚洲成国产av| 久久99一区二区三区| 黄色怎么调成土黄色| 国产精品蜜桃在线观看| 成人亚洲欧美一区二区av| 色综合欧美亚洲国产小说| 在线 av 中文字幕| 亚洲精品美女久久av网站| 国产97色在线日韩免费| 黄色视频在线播放观看不卡| 青春草视频在线免费观看| av.在线天堂| 色综合欧美亚洲国产小说| 麻豆乱淫一区二区| 国产av码专区亚洲av| 两个人看的免费小视频| 极品少妇高潮喷水抽搐| 亚洲精品自拍成人| 欧美 亚洲 国产 日韩一| 亚洲中文av在线| 2018国产大陆天天弄谢| 国产无遮挡羞羞视频在线观看| 国产av码专区亚洲av| 国产日韩一区二区三区精品不卡| 搡老岳熟女国产| 国产欧美日韩综合在线一区二区| 亚洲四区av| 蜜桃在线观看..| 极品人妻少妇av视频| 亚洲精品中文字幕在线视频| 免费观看av网站的网址| 国产人伦9x9x在线观看| 国产亚洲av高清不卡| 亚洲男人天堂网一区| 亚洲精品,欧美精品| 日本爱情动作片www.在线观看| 亚洲av综合色区一区| 99re6热这里在线精品视频| 久久性视频一级片| av国产精品久久久久影院| 女的被弄到高潮叫床怎么办| 波野结衣二区三区在线| 国产欧美日韩综合在线一区二区| 好男人视频免费观看在线| 涩涩av久久男人的天堂| 色网站视频免费| 亚洲精品国产一区二区精华液| 国产 精品1| 国产av一区二区精品久久| 亚洲精品视频女| 国产av国产精品国产| 国产日韩欧美亚洲二区| 国产免费福利视频在线观看| 夫妻午夜视频| 国产精品国产三级国产专区5o| 久久女婷五月综合色啪小说| av一本久久久久| 国产精品香港三级国产av潘金莲 | 香蕉国产在线看| 午夜激情av网站| 亚洲av日韩在线播放| 最近手机中文字幕大全| 日本黄色日本黄色录像| 国产片内射在线| 搡老岳熟女国产| 日本vs欧美在线观看视频| 啦啦啦啦在线视频资源| 伊人亚洲综合成人网| 咕卡用的链子| 久久精品熟女亚洲av麻豆精品| 视频在线观看一区二区三区| 欧美中文综合在线视频| 在线免费观看不下载黄p国产| 80岁老熟妇乱子伦牲交| 日本av免费视频播放| 男男h啪啪无遮挡| 精品亚洲乱码少妇综合久久| 香蕉丝袜av| 亚洲成国产人片在线观看| 午夜福利影视在线免费观看| 亚洲第一av免费看| e午夜精品久久久久久久| 亚洲国产欧美日韩在线播放| 国产一区二区三区av在线| 免费看av在线观看网站| 男女免费视频国产| 天天躁日日躁夜夜躁夜夜| 国产在线视频一区二区| 两个人看的免费小视频| 日韩精品免费视频一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 熟女av电影| 性少妇av在线| 如何舔出高潮| 这个男人来自地球电影免费观看 | 亚洲国产看品久久| 国产精品 国内视频| 国产成人a∨麻豆精品| 涩涩av久久男人的天堂| 免费观看av网站的网址| 精品卡一卡二卡四卡免费| 尾随美女入室| 多毛熟女@视频| 美女午夜性视频免费| 菩萨蛮人人尽说江南好唐韦庄| 三上悠亚av全集在线观看| 欧美日韩福利视频一区二区| 国产精品久久久久久久久免| 制服诱惑二区| 亚洲欧美精品综合一区二区三区| 精品国产露脸久久av麻豆| 亚洲欧美一区二区三区久久| a级片在线免费高清观看视频| 成年女人毛片免费观看观看9 | videos熟女内射| 别揉我奶头~嗯~啊~动态视频 | 色94色欧美一区二区| 我的亚洲天堂| 亚洲成人国产一区在线观看 | bbb黄色大片| 侵犯人妻中文字幕一二三四区| 大陆偷拍与自拍| 日日摸夜夜添夜夜爱| 国产成人一区二区在线| 中国国产av一级| 久久精品aⅴ一区二区三区四区| 亚洲av男天堂| 国产乱人偷精品视频| 香蕉国产在线看| 久久久国产一区二区| 久久久国产欧美日韩av| av片东京热男人的天堂| 如何舔出高潮| 日本av免费视频播放| 女的被弄到高潮叫床怎么办| 在线观看免费日韩欧美大片| 少妇人妻精品综合一区二区| 国产精品国产三级专区第一集| 秋霞在线观看毛片| 一级片免费观看大全| 免费日韩欧美在线观看| 日韩av在线免费看完整版不卡| 久久精品亚洲熟妇少妇任你| 欧美激情高清一区二区三区 | kizo精华| 国产亚洲最大av| 国产精品国产av在线观看| 中国国产av一级| 十八禁网站网址无遮挡| 人妻人人澡人人爽人人| 国产成人精品久久二区二区91 |