• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inverse kinematic deriving and actuator control of Delta robot using symbolic computation technology

    2014-09-17 06:00:40FengLihangZhangWeigongLinGuoyuGongZongyangChenGang

    Feng Lihang Zhang Weigong, Lin Guoyu Gong Zongyang Chen Gang

    (1School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China)

    (2Suzhou Research Institute, Southeast University, Suzhou 215000, China)

    (3School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

    T he robot Delta,which was initially developed by Clavel in 1985,is a famous spatial parallel mechanism allowing three translational degrees offreedom(DoF)[1].Due to the superior qualities of large workspace, high speed and weak kinematics coupling, Delta is drawing more and more attention of scholars and engineers.

    To model this mechanism,the proposed ways of kinematic solving are mainly covered by the analytical method and the numerical approach[2].Earlier studies focused on the analytical method and closed-form solutions.Kinematic singularity and optimal design are discussed a lot by Clavel et al[3-5].But these can be cumbersome with hand derivations.Followed by the numerical method, which invokes the iterative solver of nonlinear equations with mathematical engines,researchers need to better understand the mechanism in advance so that constraint equations can be programmed and solved.Thus so far, the widespread system-level solving procedure is always implemented on several steps such as the established physical model in Pro/E, Solidworks, etc., the kinematic analysis in ADAMS,and numerical iteration in Matlab with every time step, etc.However, complexity and low computational efficiency exist in the procedure,and the numerical expression does not give a distinct symbolic representation.Recently, the symbolic technology of the graph theory has been applied to a mechanical system.Formulating symbolic equations attracts much interest due to the advantages of integrative modeling,automatic removal of multiplications and trigonometric simplifications, etc[6].McPhee et al.[7]further developed an approach that the mechanism's topology was modeled with a linear graph.Also, several examples such as slide-crank mechanism,a planar 3-DoFs robot and a general openloop robot have been implemented[8].Though researchers claimed that symbolic computation can be applied to more complex robots with closed-loops,few cases have been reported to date, especially on Delta.Since a general symbolic computation engine such as Maple,MuPad and Mathematica is required;that is,they can be coded into routines and run while simulation codes are being processed without providing users to manipulate the underlying equations.We apply similar applications on Delta.

    In this paper,the multibody analysis of Delta on coordinate selection and how to manipulate the symbolic equations are given.Explicit symbolic expression of constraints and inverse kinematic solutions are obtained by using a computation engine—MapleTM.Finally, actuator control can be directly realized,and the correctness and precision are verified with trajectory tracking.

    1 Principle of Symbolic Computation on Delta Robot

    1.1 Linear graph theory applied to mechanical systems

    In the linear graph of a mechanical system,different spanning trees in conjunction with many algorithms have been developed to describe their topology,which is proved to be a convenient method[9]. Definitions of nodes, edge, circuit, tree and subgraph for a mechanical system have been described as well.Rigid body elementsm,which start at the ground node,end at the node representing a reference frame at the center of mass.Rigid arm elementsr,which are used to define new reference frames relative to the mass center,start at the mass center and end at the desired node.Joint elementsj, which define the allowable motions between two bodies comprising a kinematic pair,contains different edge types for different joints such as revolute jointsh, prismatic jointss,universal jointsu, ball jointsband translational jointst.After all elements are defined,physical modeling can be established.Since we focus on the kinematics, the system dynamics is beyond the current scope and the procedure is simply processed as follows:

    1)Linear graph representation.The fundamental circuit subsets,which provide closure conditions around any loops and are satisfied with the associated edge across(translation, rotation)variables, are primarily taken into account.

    2)Spanning tree selection for coordinates.When a tree is selected for the graph,the circuit equations can be used to express all the kinematic variables,and the branch coordinates q are defined.

    3)Constraint equations projection and simplification.The constraints are generated by projecting the circuit equations for cotree joints onto the reaction space.The closed chain with an incidence matrix representation of the linear graph agrees well with the dependent branch coordinates[10].Thus, one obtainsmnonlinear algebraic equations in terms of thenbranch coordinates q:

    The system's DoF can be given byf=n-m.

    As an example,the slide-crank mechanism is depicted in Fig.1.Rigid arm elementsr1tor4are selected for the tree of the graph with kinematic transformations since no unknown coordinates or variables are introduced into q.By selecting theh1,h2,s1into the tree, the joint coordinate is set as

    where β is the revolute joint angle andsis the prismatic displacement.Then the reaction space forh2is spanned by unit vector i and j(the directions of the joint reaction forces),onto which the circuit equation forh2is projected:

    where p can be i or j,and Riis the translational vector of element.Substituting the elemental constitutive equations,for instance,=0,and evaluating,we obtain whereL12andL34are the length of the two arms,respectively.Thus,we obtainm=2 constraint equations in terms of then=3 branch coordinates for this 1-DoF system.This have been demonstrated by McPhee[9]and one can use symbolic computing to time-differentiate the position-level constraint Eq.(1).

    Fig.1 Linear representation example.(a)Slider-crank mechanism;(b)Linear graph of slider-crank

    1.2 Symbolic representation of Delta robot

    Similarly,we apply the above procedure to the Delta robot which consists of a moving platform connected to a fixed base through three parallel chains with 120°away from each other(see Fig.2 and Fig.3).Each chain contains a revolute joint activated by an actuator on the base.Movements are transmitted to the moving base through parallelograms formed by bars and spherical joints.Especially,a couple of spherical joints in each leg can be replaced by universal joints because the parallelogram structure makes an extra constraint for the 3-DoF translational motion[4].

    Since the Delta has a complete symmetrical topology,the symbolic representation is determined only by choosing one chain.Just like the virtual jointvh12depicted in Fig.1(b),we use a jointt0which allows only three translational DOFs for Delta,and then it can translate the full linear graph into a subgraph with a single chain(see Fig.3(b),dot line).In this subgraph,spherical jointsb11-b12are chosen while they are excluded from all single or separate trees because there are no variables appearing in equations.As a result,joint coordinates with a set of constraints are reduced,and the single spanning tree will include the following elements:rigid bodies(r10-r17,r'13-r'16),revolute jointh11,universal jointsu11-u12and virtual jointt0.Each revolute joint contributes 1 coordinate,the universal joint contributes 2 and the virtual joint contributes 3,so a total of 8 joint coordinates can be obtained as

    Fig.2 Delta mechanism with vector coordinates

    Fig.3 Delta representation.(a)One typical kinematic chain;(b)Linear graph representation

    Note that the universal joint can be dissociated into two orthogonal revolute joints,and the parallelogram structure makesu11a=u12aandu11b=u12b.The resulting set of coordinates is reduced to 6 with

    The constrains associated with legk(k=1,2,3)can be acquired by projecting the circuit equations onto the reaction space forb11andb12.By substituting variables,the constraints are of the general form as

    where θkis the driving angle of jointh11;αkand βkrefer to universal joint angles ofU11aandU11b;andr(t)refers

    to the prescribed motionxt0,yt0andzt0.Giving an insight into Eq.(7)with the joint dissociation of αkand βk,it is simplified as

    which indicates that inverse solutions of Delta can be obtained by only solving one single kinematic chain.The velocity and acceleration equations can be obtained by taking the derivative of Eq.(8)with respect to time.Apparently,the general form Eq.(8)is a little different from conventional vector loops solutions[11]which are in the form of three driving angles θkand three translation positionsr(t),but in fact,results will be the same when solving.

    2 Simulation and Symbolic Verification

    2.1 Physical model and multibody analysis

    To confirm the symbolic representation,the physical model of Delta is built in MapleSim[10]so that mechanical components can be defined based on the linear graph.Fig.4 depicts the model and the parameters are given as follows:the revolute joint is 0.25 m away from the fixed frame with an orientation angle of-π/6;the driving arm is 0.4 m in length;two sides of the parallelogram are 0.1 m and 1 m in length,respectively;the moving base has a radius of 0.05 m.Parameters are chosen generally for easy computation so that the Pythagorean theorem is satisfied in chains when all the driving angles equal 0.In this case,the calculated workspace is defined by the driving angle as θi∈(- arccos(1/3),π - arccos(1/7)]andz< 0.Thus,the geometrical singular is avoided when solving inverse kinematic.Fig.4(b)depicts the range of arm motion for better understanding.

    Fig.4 Delta robot model(unit:m).(a)3D physical model;(b)Geometrical singularity

    2.2 Symbolic manipulation of inverse kinematic

    When formulating a mechanical system's equations,there are some coordinate selections in the optimization techniques.The optimization procedure always requires multiple evaluations of objective functions and might be very tedious.By using the indirect joint coordinate[8],we obtain a result that 18 variables are given in a set of 15 constraints equations(3 for moving base motion ofX,YandZ,1 for revolute joint in driving arm,4 for a couple of universal joints).A snapshot of the 5 constraint equations set is shown in Fig.5,wherex(t),y(t),z(t)correspond to the desired motion of moving base,parameterArepresents the orientation angle,and the variables α(t),β(t)and θ(t)are universal joint angles and revolute joint,respectively.Obviously,this inverse symbolic representation is in the form of Eq.(8).Note that the latter four constraints have duplications due to the universal jointu11andu12.By only solving the former three equations for θ(t),the explicit symbolic representation of the kinematic solution can be easily obtained(see Fig.5).

    3 Actuator Control and Trajectory Tracking

    To verify the symbolic solution,the simulation of block components are created by using the derived equations so that an controller is designed.Here,the controller can be made for each single chain with three input variables of desired motionX,YandZ,one output variable of driving angle θ(t)and one orientation angle.By using a virtual electrical driving subsystem(see Fig.6),the kinematic relations for any desired trajectory can be evaluated.

    Fig.6 Subsystem diagram with PID control for a single kinematic chain

    Two motion curves are chosen for trajectory tracking,respectively.One is the circular path in theX-Yplane used for the correctness test under ideal conditions(see Fig.7);the other is Adept motion[12]which is always used as a benchmark test in Pick-and-place operation(see Fig.8).

    Fig.7 Circular path for kinematic response.(a)Circular path in X-Y plane;(b)Driving angles of inverse kinematic

    The desired circular trajectory(see Fig.7),in which a straight line is inserted at the start of the path to test whether trajectory change will have an effect on the results or not,is compared against the actual point track.Note that both the straight line and circular segments agree with the kinematic motion well.For Adept motion(see Fig.8),the inverse kinematic solution is verified by a PID controller with position feedback.The trajectory,point track,driving angles and errors can be observed as well.As expected,the simulation satisfies the requirement of the motion and the trajectory error is within acceptable thresholds for kinematic response.

    4 Conclusion

    According to the linear graph representation of the Delta robot,the inverse kinematic can be derived with a symbolic form.The symbolic equations representation are successfully performed and confirmed using a computation engine.Based on the symbolic solutions,actuator control and trajectory tracking are designed so that the kinematic response is proved to be correct and effective.

    Fig.8 Adept motion for kinematic response.(a)Motion trajectory;(b)Driving angles of inverse kinematic

    [1]Pierrot F,Reynaud C,F(xiàn)ournier A.Delta:a simple and efficient parallel robot[J].Robotica,1990,8(1):105-109.

    [2]Ai Q L,Zu S J,Xu F.Review of kinematics and singularity of parallel manipulator[J].Journal of Zhejiang University:Engineering Science,2012,46(8):1345-1359.(in Chinese)

    [3]Vischer P,Clavel R.Kinematic calibration of the parallel Delta robot[J].Robotica,1998,16(2):207-218.

    [4]Tsai L W,Walsh G C,Stamper R E.Kinematics of a novel three DOF translational platform[C]//IEEE International Conference no Robotics and Automation.Minneapolis,MN,USA,1996:3446-3451.

    [5]Stock M,Miller K.Optimal kinematic design of spatial parallel manipulators:application to linear delta robot[J].Journal of Mechanical Design,2003,125(2):292-301.

    [6]Schmitke C,Goossens P.Symbolic computation techniques for multibody model development and code generation[C]//Multibody Dynamics,ECCOMAS Thematic Conference.Brussels,Belgium,2011:4-7.

    [7]McPhee J,Schmitke C,Redmond S.Dynamic modelling of mechatronic multibody systems with symbolic computing and linear graph theory[J].Mathematical and Computer Modelling,2004,10(1):1-23.

    [8]McPhee J,Redmond S.Modelling multibody systems with indirect coordinates[J].Computer Methods in AppliedMechanics and Engineering,2006,195(50):6942-6957.

    [9]Léger M,McPhee J.Selection of modeling coordinates for forward dynamic multibody simulations[J].Multibody System Dynamics,2007,18(2):277-297.

    [10]Hebíek J.Mathematical modeling with maple and maplesim [J].Journal of Applied Mathematics,2008,1(2):227-240.

    [11]López M,Castillo E,García G,et al.Delta robot:inverse,direct,and intermediate Jacobians[J].Journal of Mechanical Engineering Science,2006,220(1):103-109.

    [12]Nabat V,Rodriguez M,Krut S,et al.Par4:very high speed parallel robot for pick-and-place[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Alberta,Canada,2005:553-558.

    国产精品成人在线| 亚洲欧美日韩东京热| 久久精品熟女亚洲av麻豆精品| 国产成人一区二区在线| 插逼视频在线观看| 亚洲av.av天堂| 亚洲av电影在线观看一区二区三区| 免费观看的影片在线观看| 国产无遮挡羞羞视频在线观看| 极品少妇高潮喷水抽搐| 黄色配什么色好看| 在线观看免费日韩欧美大片 | 制服丝袜香蕉在线| 国产一区亚洲一区在线观看| 久久97久久精品| 韩国av在线不卡| 精品亚洲乱码少妇综合久久| 成人免费观看视频高清| 欧美日韩视频精品一区| 人人妻人人添人人爽欧美一区卜 | 内射极品少妇av片p| 午夜福利网站1000一区二区三区| 国产一区亚洲一区在线观看| 国模一区二区三区四区视频| 极品少妇高潮喷水抽搐| 高清午夜精品一区二区三区| av免费在线看不卡| 日本一二三区视频观看| 精品亚洲乱码少妇综合久久| 国产成人精品久久久久久| 日本与韩国留学比较| 日韩av免费高清视频| 日韩欧美精品免费久久| 亚洲美女搞黄在线观看| 免费av不卡在线播放| 亚洲熟女精品中文字幕| 国产精品三级大全| 女性被躁到高潮视频| 伊人久久国产一区二区| 伦理电影大哥的女人| 久久99蜜桃精品久久| 国产精品三级大全| 人妻系列 视频| 精品视频人人做人人爽| 欧美精品人与动牲交sv欧美| 国产男人的电影天堂91| 亚洲精品日本国产第一区| 丝袜喷水一区| 99视频精品全部免费 在线| 26uuu在线亚洲综合色| 一级毛片久久久久久久久女| 最近2019中文字幕mv第一页| 男人添女人高潮全过程视频| 纵有疾风起免费观看全集完整版| 日韩大片免费观看网站| 五月天丁香电影| av在线app专区| 国产精品.久久久| 哪个播放器可以免费观看大片| 中国国产av一级| 国产精品一区www在线观看| 国产成人精品一,二区| 国产精品久久久久久久电影| 五月玫瑰六月丁香| 下体分泌物呈黄色| 男女无遮挡免费网站观看| 永久网站在线| av免费在线看不卡| av女优亚洲男人天堂| 国产精品麻豆人妻色哟哟久久| 久久国产精品大桥未久av | 色哟哟·www| 国内精品宾馆在线| 免费人成在线观看视频色| 99视频精品全部免费 在线| 亚洲国产精品专区欧美| 亚洲va在线va天堂va国产| 久久精品国产a三级三级三级| 成人免费观看视频高清| 97超视频在线观看视频| 一本一本综合久久| 人妻 亚洲 视频| 人妻夜夜爽99麻豆av| 亚洲av.av天堂| 国产成人a∨麻豆精品| 中文字幕亚洲精品专区| 伦理电影大哥的女人| 免费观看av网站的网址| 免费不卡的大黄色大毛片视频在线观看| 一区二区三区乱码不卡18| 高清在线视频一区二区三区| 久久人妻熟女aⅴ| 亚州av有码| 美女cb高潮喷水在线观看| 精品亚洲成a人片在线观看 | a级毛色黄片| a级一级毛片免费在线观看| 日韩欧美 国产精品| 国产成人精品婷婷| 亚洲国产色片| 18+在线观看网站| 婷婷色麻豆天堂久久| 激情 狠狠 欧美| 亚洲精品第二区| 精品一品国产午夜福利视频| 日韩人妻高清精品专区| 日韩一本色道免费dvd| 免费观看a级毛片全部| 观看av在线不卡| 免费播放大片免费观看视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 九色成人免费人妻av| 多毛熟女@视频| 亚洲国产精品一区三区| 日韩成人av中文字幕在线观看| 天美传媒精品一区二区| 91久久精品国产一区二区成人| 18禁裸乳无遮挡免费网站照片| 啦啦啦视频在线资源免费观看| 久久国产亚洲av麻豆专区| 一二三四中文在线观看免费高清| 日韩免费高清中文字幕av| 97精品久久久久久久久久精品| 免费人成在线观看视频色| 国产伦理片在线播放av一区| 99九九线精品视频在线观看视频| 日本vs欧美在线观看视频 | 女性生殖器流出的白浆| 久久国产精品大桥未久av | 欧美亚洲 丝袜 人妻 在线| 亚洲欧美日韩无卡精品| 我的女老师完整版在线观看| 九色成人免费人妻av| 国产免费视频播放在线视频| av卡一久久| 国内精品宾馆在线| 水蜜桃什么品种好| 一级av片app| 国产91av在线免费观看| av在线app专区| 亚洲丝袜综合中文字幕| 国产女主播在线喷水免费视频网站| 高清黄色对白视频在线免费看 | 午夜免费鲁丝| 蜜桃久久精品国产亚洲av| 九九在线视频观看精品| 中文精品一卡2卡3卡4更新| 插阴视频在线观看视频| 国产精品人妻久久久久久| 91aial.com中文字幕在线观看| 久久精品久久精品一区二区三区| 夜夜爽夜夜爽视频| 一区在线观看完整版| 国产精品久久久久久av不卡| 精品一品国产午夜福利视频| 日韩中字成人| 大香蕉97超碰在线| 久久婷婷青草| 少妇人妻一区二区三区视频| 春色校园在线视频观看| av专区在线播放| 国产亚洲5aaaaa淫片| 嫩草影院新地址| av线在线观看网站| 这个男人来自地球电影免费观看 | 五月玫瑰六月丁香| 嘟嘟电影网在线观看| 国产男女超爽视频在线观看| 精品一区在线观看国产| 日日啪夜夜爽| 亚洲精品乱码久久久久久按摩| 视频中文字幕在线观看| 亚洲第一av免费看| 亚洲成人中文字幕在线播放| 精品久久久精品久久久| 亚洲无线观看免费| 各种免费的搞黄视频| 国产 精品1| 人人妻人人爽人人添夜夜欢视频 | 国产欧美另类精品又又久久亚洲欧美| 人妻少妇偷人精品九色| 麻豆成人av视频| 精品一区二区免费观看| 一级黄片播放器| 亚洲国产日韩一区二区| 日韩av免费高清视频| 美女高潮的动态| .国产精品久久| 免费久久久久久久精品成人欧美视频 | videossex国产| 男女无遮挡免费网站观看| 亚洲美女黄色视频免费看| 国产成人a∨麻豆精品| 大又大粗又爽又黄少妇毛片口| 只有这里有精品99| 插阴视频在线观看视频| 国产成人freesex在线| 久久久成人免费电影| 水蜜桃什么品种好| 五月开心婷婷网| 又粗又硬又长又爽又黄的视频| 国产精品国产三级国产专区5o| 亚洲中文av在线| 啦啦啦在线观看免费高清www| 少妇熟女欧美另类| 国产精品久久久久久久电影| 免费观看性生交大片5| 日日啪夜夜爽| 汤姆久久久久久久影院中文字幕| 99久久精品国产国产毛片| 亚洲无线观看免费| 国产亚洲欧美精品永久| 中文字幕免费在线视频6| 亚洲第一区二区三区不卡| 舔av片在线| 97在线人人人人妻| 国产精品福利在线免费观看| 夜夜骑夜夜射夜夜干| 国产精品人妻久久久久久| 菩萨蛮人人尽说江南好唐韦庄| a 毛片基地| 大香蕉久久网| av一本久久久久| 国产在线一区二区三区精| 日韩av不卡免费在线播放| 高清不卡的av网站| 国产av一区二区精品久久 | 国产精品久久久久成人av| 中文在线观看免费www的网站| av一本久久久久| 美女内射精品一级片tv| 99热全是精品| 久久国产精品男人的天堂亚洲 | 伦理电影大哥的女人| 日本av免费视频播放| 国产国拍精品亚洲av在线观看| 久久 成人 亚洲| 麻豆精品久久久久久蜜桃| 国产伦精品一区二区三区四那| 天堂中文最新版在线下载| 一区在线观看完整版| 超碰av人人做人人爽久久| 免费黄色在线免费观看| 成人午夜精彩视频在线观看| 伦理电影大哥的女人| 国产精品秋霞免费鲁丝片| 精品一区在线观看国产| 日本与韩国留学比较| 亚洲综合色惰| 天堂8中文在线网| 99久久精品国产国产毛片| 成年av动漫网址| 欧美激情国产日韩精品一区| 日日啪夜夜撸| 久久6这里有精品| 成人二区视频| 亚洲最大成人中文| av在线观看视频网站免费| 九色成人免费人妻av| 国产淫片久久久久久久久| 亚洲人成网站高清观看| 欧美区成人在线视频| 少妇被粗大猛烈的视频| 欧美zozozo另类| 麻豆精品久久久久久蜜桃| 亚洲av中文字字幕乱码综合| 99热网站在线观看| 亚洲av不卡在线观看| 成人毛片a级毛片在线播放| 卡戴珊不雅视频在线播放| 一级毛片aaaaaa免费看小| 国内揄拍国产精品人妻在线| 亚洲精品日本国产第一区| 在线精品无人区一区二区三 | 亚洲精品一区蜜桃| 免费人妻精品一区二区三区视频| 日韩亚洲欧美综合| 久久国产精品大桥未久av | 人妻系列 视频| 亚洲国产高清在线一区二区三| 嫩草影院新地址| 午夜免费观看性视频| 久久久久久久久大av| 国产一级毛片在线| 久久久午夜欧美精品| 最近手机中文字幕大全| 亚洲av二区三区四区| 舔av片在线| 欧美一级a爱片免费观看看| 26uuu在线亚洲综合色| 麻豆乱淫一区二区| 91久久精品电影网| 夜夜骑夜夜射夜夜干| 人妻制服诱惑在线中文字幕| 观看美女的网站| 久久婷婷青草| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品一区二区在线观看99| 搡老乐熟女国产| 亚洲av中文av极速乱| 午夜福利影视在线免费观看| 久久国产精品大桥未久av | 国产精品久久久久久久久免| 免费高清在线观看视频在线观看| 国产精品99久久99久久久不卡 | 国产成人一区二区在线| 国国产精品蜜臀av免费| 免费人成在线观看视频色| 日日撸夜夜添| 老熟女久久久| 又大又黄又爽视频免费| 嘟嘟电影网在线观看| 亚洲av国产av综合av卡| 日韩 亚洲 欧美在线| 高清午夜精品一区二区三区| 一级毛片我不卡| 岛国毛片在线播放| 日本爱情动作片www.在线观看| 极品少妇高潮喷水抽搐| 看免费成人av毛片| 亚洲精品国产av成人精品| 亚洲精品456在线播放app| 麻豆成人av视频| 精品国产乱码久久久久久小说| 校园人妻丝袜中文字幕| 18禁动态无遮挡网站| 五月开心婷婷网| 99久久精品热视频| 18禁在线无遮挡免费观看视频| 老女人水多毛片| 久久久久久久久久人人人人人人| 搡女人真爽免费视频火全软件| 男男h啪啪无遮挡| 亚洲精品乱码久久久v下载方式| 精品国产一区二区三区久久久樱花 | 人体艺术视频欧美日本| 国内少妇人妻偷人精品xxx网站| 国产男人的电影天堂91| 亚洲精品国产av成人精品| 一级毛片aaaaaa免费看小| 99久久中文字幕三级久久日本| 国产91av在线免费观看| 国内揄拍国产精品人妻在线| 99热这里只有精品一区| 国产精品无大码| 日韩一区二区三区影片| 亚洲av国产av综合av卡| 久久精品国产亚洲网站| 中文字幕av成人在线电影| 99久国产av精品国产电影| 国产精品一区二区在线观看99| 国产av国产精品国产| 97超碰精品成人国产| 欧美国产精品一级二级三级 | 亚洲欧美精品自产自拍| 国内精品宾馆在线| 成人毛片60女人毛片免费| 日本欧美国产在线视频| 免费观看在线日韩| 国产精品熟女久久久久浪| 国产精品久久久久久久电影| 久久97久久精品| 大又大粗又爽又黄少妇毛片口| 国产伦精品一区二区三区四那| 99久久精品一区二区三区| 午夜日本视频在线| 久久影院123| 亚洲国产成人一精品久久久| 亚洲电影在线观看av| 国产精品国产三级国产av玫瑰| videossex国产| 成人午夜精彩视频在线观看| 欧美亚洲 丝袜 人妻 在线| 男男h啪啪无遮挡| 中文字幕人妻熟人妻熟丝袜美| 国产永久视频网站| 校园人妻丝袜中文字幕| 又爽又黄a免费视频| 日韩人妻高清精品专区| 一级毛片久久久久久久久女| 直男gayav资源| 久久久久久久久久人人人人人人| 男女边吃奶边做爰视频| 九九爱精品视频在线观看| 久久精品人妻少妇| 午夜老司机福利剧场| 欧美人与善性xxx| 国产亚洲91精品色在线| 干丝袜人妻中文字幕| 亚洲精品aⅴ在线观看| 久久午夜福利片| 国产伦精品一区二区三区四那| 亚洲精品自拍成人| 久久青草综合色| 新久久久久国产一级毛片| 国产乱人视频| 啦啦啦中文免费视频观看日本| 精品久久久噜噜| 精品国产乱码久久久久久小说| 水蜜桃什么品种好| 99视频精品全部免费 在线| 午夜免费鲁丝| 精品一品国产午夜福利视频| 日韩中字成人| 99热6这里只有精品| 国产精品久久久久久久电影| 啦啦啦中文免费视频观看日本| 国产精品麻豆人妻色哟哟久久| 91aial.com中文字幕在线观看| 久久久色成人| 91狼人影院| 国产男人的电影天堂91| 黄色视频在线播放观看不卡| 十八禁网站网址无遮挡 | 久久99蜜桃精品久久| 18禁裸乳无遮挡免费网站照片| 蜜桃在线观看..| 亚洲av男天堂| 免费av不卡在线播放| 国产精品欧美亚洲77777| 极品少妇高潮喷水抽搐| 亚洲精品,欧美精品| 国产精品熟女久久久久浪| 久久国产精品大桥未久av | 久久ye,这里只有精品| 久久久a久久爽久久v久久| 一级毛片 在线播放| 国产日韩欧美在线精品| 激情五月婷婷亚洲| 欧美人与善性xxx| 啦啦啦视频在线资源免费观看| 人人妻人人澡人人爽人人夜夜| 插阴视频在线观看视频| 男的添女的下面高潮视频| 少妇熟女欧美另类| 国产一区二区三区av在线| 纯流量卡能插随身wifi吗| 亚洲欧美成人综合另类久久久| 亚洲图色成人| 亚洲国产欧美在线一区| 18+在线观看网站| 综合色丁香网| 国产高清不卡午夜福利| 99久国产av精品国产电影| 亚洲,欧美,日韩| 嫩草影院新地址| 成人亚洲精品一区在线观看 | 亚洲最大成人中文| 午夜老司机福利剧场| 人妻夜夜爽99麻豆av| 免费黄色在线免费观看| 美女主播在线视频| 涩涩av久久男人的天堂| 亚洲国产欧美人成| 欧美激情国产日韩精品一区| 欧美xxxx黑人xx丫x性爽| 国产免费福利视频在线观看| 韩国av在线不卡| 精华霜和精华液先用哪个| 国产乱人偷精品视频| 亚洲av福利一区| 免费看不卡的av| 人人妻人人添人人爽欧美一区卜 | 美女xxoo啪啪120秒动态图| 免费看光身美女| 91久久精品国产一区二区成人| 插逼视频在线观看| 欧美xxxx性猛交bbbb| 亚洲欧美日韩无卡精品| 日日啪夜夜爽| 亚洲国产欧美人成| 国产一区二区三区综合在线观看 | av.在线天堂| 简卡轻食公司| 亚洲精品日韩av片在线观看| 精品亚洲乱码少妇综合久久| 免费久久久久久久精品成人欧美视频 | 插逼视频在线观看| 国产黄色视频一区二区在线观看| 国产精品无大码| 99久久人妻综合| 国产男人的电影天堂91| 国产成人一区二区在线| 成人无遮挡网站| 纵有疾风起免费观看全集完整版| 亚洲成人一二三区av| 精品久久久久久电影网| 日韩电影二区| 欧美一区二区亚洲| av福利片在线观看| 亚洲欧美中文字幕日韩二区| 少妇人妻一区二区三区视频| 在线观看人妻少妇| 国产精品一区二区在线不卡| 久久女婷五月综合色啪小说| 国产精品一区www在线观看| 国产午夜精品久久久久久一区二区三区| 亚洲精品乱码久久久v下载方式| 亚洲av福利一区| 91狼人影院| 国模一区二区三区四区视频| 日韩av不卡免费在线播放| 欧美日韩亚洲高清精品| 五月玫瑰六月丁香| 国产成人一区二区在线| 一本久久精品| 欧美亚洲 丝袜 人妻 在线| 欧美成人午夜免费资源| 亚洲欧洲日产国产| 久久亚洲国产成人精品v| 舔av片在线| 熟女av电影| 我要看日韩黄色一级片| 成人午夜精彩视频在线观看| 一边亲一边摸免费视频| 久久国产精品男人的天堂亚洲 | 91精品国产国语对白视频| www.av在线官网国产| av国产精品久久久久影院| 国产一区二区三区综合在线观看 | 国产视频内射| 在线观看免费日韩欧美大片 | 777米奇影视久久| 精品久久久噜噜| 中文精品一卡2卡3卡4更新| 欧美97在线视频| 精品久久久久久久久av| 久久这里有精品视频免费| 麻豆国产97在线/欧美| 亚洲av中文字字幕乱码综合| 在线观看国产h片| 蜜桃在线观看..| 深爱激情五月婷婷| 色5月婷婷丁香| av国产精品久久久久影院| 女人久久www免费人成看片| 精品久久久久久久末码| 大陆偷拍与自拍| 午夜福利视频精品| 久久女婷五月综合色啪小说| 一区二区三区乱码不卡18| 亚洲最大成人中文| 欧美精品一区二区免费开放| 少妇熟女欧美另类| 深夜a级毛片| 欧美高清性xxxxhd video| 精品熟女少妇av免费看| av不卡在线播放| 国产爱豆传媒在线观看| 国产视频内射| 亚洲成人中文字幕在线播放| av线在线观看网站| 亚洲一级一片aⅴ在线观看| 国产色爽女视频免费观看| 久久av网站| 一级二级三级毛片免费看| 一个人看视频在线观看www免费| 亚洲精品久久午夜乱码| 精品酒店卫生间| 国产成人免费无遮挡视频| 久久久久久久久久久丰满| 七月丁香在线播放| 黄色欧美视频在线观看| 国产亚洲91精品色在线| 中文字幕久久专区| 欧美国产精品一级二级三级 | 女的被弄到高潮叫床怎么办| av播播在线观看一区| 丝袜脚勾引网站| 国产亚洲5aaaaa淫片| 亚洲国产成人一精品久久久| 久久久久久伊人网av| 中文字幕制服av| 26uuu在线亚洲综合色| av在线老鸭窝| 久久久久视频综合| a级一级毛片免费在线观看| 少妇裸体淫交视频免费看高清| h日本视频在线播放| 成年人午夜在线观看视频| 成人亚洲欧美一区二区av| 国产精品久久久久久av不卡| 国产精品99久久久久久久久| 国产精品精品国产色婷婷| 久久久欧美国产精品| 国产av国产精品国产| 99热这里只有精品一区| 99热国产这里只有精品6| av在线app专区| 高清日韩中文字幕在线| 久久久精品免费免费高清| 日韩强制内射视频| 五月开心婷婷网| 久久久成人免费电影| 中文字幕人妻熟人妻熟丝袜美| 哪个播放器可以免费观看大片| 免费看日本二区| 国产 一区精品| 亚洲精品456在线播放app| 十分钟在线观看高清视频www | 男人狂女人下面高潮的视频| 亚洲伊人久久精品综合| 国产欧美日韩精品一区二区| 日韩强制内射视频| 国产在线视频一区二区| 国产成人a∨麻豆精品| 国产成人精品久久久久久| 国产黄色视频一区二区在线观看| 欧美精品一区二区免费开放| 久久久久久人妻| 精品午夜福利在线看| 国产精品国产av在线观看| 国产高清有码在线观看视频| 美女脱内裤让男人舔精品视频| 在线免费十八禁|