• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Biological characteristics of[18F]-THK523 for tau imaging?

    2014-08-05 09:13:18KONGYanYan孔艷艷SIZhan司展ZHANGZhengWei張政偉GUANYiHui管一暉CAOGuoXian曹國憲XUEFangPing薛方平HUAFengChun華逢春WUPing吳平ZHAOJun趙軍ZHUJianHua朱建華LICong李聰CHENJian陳鍵andQIANJun錢雋
    Nuclear Science and Techniques 2014年5期
    關(guān)鍵詞:吳平方平

    KONG Yan-Yan(孔艷艷),SI Zhan(司展),ZHANG Zheng-Wei(張政偉),GUAN Yi-Hui(管一暉),,CAO Guo-Xian(曹國憲),XUE Fang-Ping(薛方平),HUA Feng-Chun(華逢春),WU Ping(吳平),ZHAO Jun(趙軍),ZHU Jian-Hua(朱建華),LI Cong(李聰),CHEN Jian(陳鍵),and QIAN Jun(錢雋)

    1PET Center,Huashan Hospital,Fudan University,Shanghai 200235,China

    2Key Laboratory of Nuclear Medicine,Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine,Wuxi 214063,China

    3Key Laboratory of Smart Drug Delivery,Ministry of Education&PLA, School of Pharmacy,Fudan University,Shanghai 200032,China

    Biological characteristics of[18F]-THK523 for tau imaging?

    KONG Yan-Yan(孔艷艷),1SI Zhan(司展),1ZHANG Zheng-Wei(張政偉),1GUAN Yi-Hui(管一暉),1,?CAO Guo-Xian(曹國憲),2XUE Fang-Ping(薛方平),1HUA Feng-Chun(華逢春),1WU Ping(吳平),1ZHAO Jun(趙軍),1ZHU Jian-Hua(朱建華),3LI Cong(李聰),3CHEN Jian(陳鍵),3and QIAN Jun(錢雋)3

    1PET Center,Huashan Hospital,Fudan University,Shanghai 200235,China

    2Key Laboratory of Nuclear Medicine,Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine,Wuxi 214063,China

    3Key Laboratory of Smart Drug Delivery,Ministry of Education&PLA, School of Pharmacy,Fudan University,Shanghai 200032,China

    Reliable and non-invasive diagnostic tools are highly valuable for successful therapeutic strategies for the treatment of Alzheimer’s disease(AD).The existence of neurofibrillary tangles(NFTs)consisting of tau protein are one kind of the pathological features of AD,and its level of severity is correlated with the stage of AD. However,no clinically approved positron emission tomography(PET)probe is currently available for selective imaging of neurofibrillary tangles on patients.In this paper,we report our studies on biological characteristics of[18F]-THK523 as a novel tau imaging probe.With low molecular weight,[18F]-THK523 is stable,electrically neutral,lipophilic and non-mass concentration-dependent.Preliminary biological studies have shown the excellent properties of[18F]-THK523 as brain imaging tracer for further research.

    [18F]-THK523,Neurofibrillary tangles(NFTs),Alzheimer’s disease(AD),Tau-specific probe,Biological characteristics

    I.INTRODUCTION

    NationalInstituteonAging-Alzheimer’sAssociation (USA)has suggested that Alzheimer’s disease(AD)would be optimally treated before significant cognitive impairment, defined as a‘presymptomatic’or‘preclinical’stage[1].Diagnosis and treatment strategies for AD are based on sensitive and specific detection of the incipient neuropathological characteristics,combined with emerging treatments that counteract molecular processes in AD pathogenesis.The hyperphosphorylation of tau protein and formation of intraneuronal neurofibrillary tangles(NFTs)represent a characteristic neuropathological feature in AD brain.

    Tau,localizing in the axons of neurons,is a microtubuleassociated protein(MAP)and maintains microtubules(MTs) stability,neurite outgrowth and chromosome stability[2–5]. NFTs are constituent of aggregated paired helical filaments (PHF)comprising of aberrantly phosphorylated tau.NFTs are formed in entorhinal cortex at the early stage of AD,and spread to the dentate gyrus,hippocampus,and cingulate cortex as the memory loss develops[6].NFTs,especially soluble hyperphosphorylated tau aggregations,interact with Aβmediated toxicity,oxidative stress,inflammation and abnormal mitochondrial function[7,8].Also,anti-tau treatmentcan reduce Aβ formation and the excitotoxicity levels[9,10].

    The utility of positron emission tomography(PET),with a radio-ligand for translocator protein as a biomarker for tau-triggered toxicity tau imaging and diagnostic assessment of tauopathies,with and without Aβ pathologies,shall be of technical importance for both clinical and basic research aimed at prodromal pathologies of AD.

    There is no effective treatment target tau pathology used clinically.Nakamuraet al.[11]reported in 2012 that unlike trans p-tau,cis isomerization p-tau by proline-directed kinases appeared early in the brains of humans with mild cognitive impairment,accumulated exclusively in degenerated neurons,and localized to dystrophic neuritis during AD progression.Cs isomer cannot promote MTs assembly.It is more resistant to dephosphorylation and degradation,and more prone to aggregation.Conventional peptidyl-prolyl cistrans isomerases(PPIases)Pin1 can convertcistotransptau to prevent Alzheimer’s tau pathology.Tau-specific PET probe can effectively evaluate such new approach with accurate,reliable,and reproducible noninvasive monitoring of tau protein aggregates in the living brain.

    There has been an increasing focus on developing PET imaging radiotracers for preclinical diagnosis of AD,especially[18F]-THK523,which may be a potential tau targeted probe.In vitrobinding studies demonstrated that[18F]-THK523 had higher af fi nity to a greater number of binding sites on recombinant tau(k18Δ280k)than β-amyloid1?42fi brils.[18F]-THK523 bound to tau pathology on autoradiographic and histo fl uorescence analysis of AD hippocampal serial sections.It had higher retention in tau transgenic mice brain than wild-type littermates mice,and that it bound to recombinant tau with much higher af fi nity than it did toβ-amyloid plaques[12].And it showed higher af fi nity totau fi brils than Aβfi brils by comparing the binding properties of[18F]-THK523 and other amyloid imaging agents,including PiB,BF-227 and FDDNP,to synthetic protein fi brils and human brain tissue[13].Zenget al.[14]demonstrated that[3H]-THK523 binds to NFTs and Aβ plaques in human AD brain sections.However,in transgenic mouse brain sections,[3H]-THK523 binds only to Aβ but fails to bind to NFTs.Okamuraet al.[15]reported that novel18F-labeled arylquinolinederivatives,18F-THK-5105and18F-THK-5117, had higher binding affinity for tau protein aggregates and tau-rich AD brain homogenates,and higher brain uptake and faster clearance in normal mice than[18F]-THK523.In this paper,wereportourcomplementarybiologicalcharacteristics studies to investigate whether[18F]-THK523 can meet ligand criteria for tau imaging tracer.

    II.MATERIALS AND METHODS

    A.Labeling procedure

    The 2-((2-(4-(tert-butoxycarbonyl)amino)phenyl)quinolin-6-yl)oxy)ethyl 4-methylbenzenesulfonate(THK-7),as protected precursor,was synthesized at our lab[16].[18F]-THK523 was radio-synthetized with high yield from THK-7 by a fully automated module(PET Science&Technology Co.Ltd.,Beijing,China)[16].Aqueous18F–trapped on a quadrupole mass analyzer(QMA)cartridge was washedby1.5mLofK2CO3(2.73mg/mL)/KryptofixTM2.2.2 (11.82mg/mL),and the solvents were evaporated.After 2mg of THK dissolved in 1mL of acetonitrile(2mg/mL)was added,the nucleophilic substitution reaction was carried out at 120?C.To hydrolyze the Boc protecting group,1N HCl (250μL)solution was added.The mixture was allowed to react at 105?C for 5 minutes.The excess HCl was neutralized by 2N NaOH(125μL).Saturated 1N NaHCO3(125μL)was added to adjust the pH value to 7.4.The product was loaded on a Sep-Pak tC18 SPE cartridge,and washed with water to remove free18F–,polar byproducts,KryptofixR○TM2.2.2,etc. The cartridge was then washed with 2mL of ethanol.Crude product was collected after passing through a sterile filter, followed by further purification using semipreparative highperformance liquid chromatography(Waters XBridgeTMprep Shield RP18 10μm,250mm×10mm,part No.186003990, serial No.101/123041GG01,70%EtOH:30%H2O;Waters Corporation,Milford,Massachusetts,USA)equipped with Bioscan radioactivity detector at a flow rate of 4mL/min and stabilized with ascorbic acid(2mg,0.011mmol)before sterile filtration.Quality control of[18F]-THK523 was achieved by thin layer chromatography(TLC)and radio highperformance liquid chromatography(RHPLC).

    Radiochemical yield of[18F]-THK523 was evaluated by TLC using silica gel G60 with fluorescence(F254)plates (cut into 10cm×0.4cm strips)as stationary phase while ethyl acetate:n-hexane:triethylamine=4:1:0.005(V/V/V) as mobile phase.The reaction product was spotted with a capillary and developed by mobile phase.After development,the strips were dried at room temperature,cut into 1cm×0.4cm pieces and counted by Wizard 1470 automatic gamma counter(Perkin Elmer Company,USA)equipped with a multi-channel analyzer.Retention factor(Rf)and labeling yield were determined from TLC chromatogram data. Two TLCs ran for each tested reaction condition and the data were averaged as the labeled rate.

    The radiochemical purity(RCP)of[18F]-THK523 was determined by analytical RHPLC.The sample was passed through a Millipore fi lter carefully and then injected into the HPLC column(PurospherR○STAR LPRP-18e endcapped (5μm),250×4.6mm,sorbent Lot No.TA1752311,column No.210072)at room temperature.The absorbance was measured at 350nm and the fl ow rate was adjusted to 0.6mL/min. An injection volume of 20μL tracer was used with a mobile phase at volume(acetonitrile)/volume(containing triethylamine 0.05%water)ratio of 80%/20%.Retention time (Rt)was measured and checked with the standard product.

    B.Electrophoresis

    The charge of[18F]-THK523 was determined by paper electrophoresis using kalium phosphate buffer solution:alcohol:distilled water,1:1:1(V/V/V)with pH 7.4 as electrolyte and Xinhua No.1 papers strips as a support.The sample was run at a constant voltage of 110V for 2.5h of standing time. The strip was scanned by gamma-counter.For comparison,a sample of18F–was run under the identical condition.

    C.Determination of lipid–water partition coef fi cient of [18F]-THK523

    Lipid–water partition coef fi cient of[18F]-THK523 was measured in two steps.Step 1:1mL of phosphate-buffered saline(PBS)(pH=7.4)saturated by n-octyl alcohol and 1mL of n-octyl alcohol saturated by PBS(pH=7.4)were added to centrifuge tube containing 100μL of sample.Step 2:The tube was capped and vortexed for 10min at room temperature,and then stood for 5 min.After reaching equilibrium,the tube was centrifuged at 2000r/min(r=6.0cm)for 10min.100μL of the organic phase and water phase were pipetted out respectively and each phase was counted by the gammacounter.Theorganicphaseof500μLwaspipettedout into another centrifuge tube and then followed by the addition of 500μL of n-octyl alcohol saturated by PBS(pH=7.4)and 1mL of PBS(pH=7.4)saturated byn-octyl alcohol.Step 2 was repeated for six times.The partition coef fi cient was calculated as(cpm in organic phase)/(cpm in water phase).

    D.Measurement of plasma protein binding rate

    Heparin anticoagulant fresh blood plasma of 10 volunteers was provided by Nuclear Medicine Department,Huashan Hospital af fi liated to Fudan University.Trichloroacetic acid with volume fraction of 10%and 25%was prepared,respectively.The experiment was divided into the high,middle,mid-low and low dose groups,each having four parallel samples.Each tube contained 0.2mL blood plasma and 0.1mL of[18F]-THK523 in activity of 22.20,2.22,0.22 or 0.02MBq for the high,middle,mid-low and low dose groups,respectively.Being incubated for 2 hours at 37?C,each tube was added with 1mL of 25%trichloroacetic acid.They were vortex blended,and centrifuged at 2000r/min(r=6.0cm)for 10min.Then,the supernatant was collected.Afterwards, 1mL of 10%trichloroacetic acid was added to the precipitate. This step was repeated twice.According to the radioactivity counts of precipitation and supernatant,plasma protein binding rate was calculated as following:plasma protein binding rate=[(precipitationradioactivecounts)/(precipitation+supernatant radioactive counts)]×100%.

    E.Stability studies

    Stability assessment of the complex was carried out by measuring its radio chemical purity at 25?C.The radiochemical purity of[18F]-THK523 was determined by TLC and the radioactivity of[18F]-THK523 was counted by gamma counter at 0.5,1,1.5,2,3,4,5,6 and 7h after preparation.

    F.Blood kinetic studies

    Blood clearance studies were performed in C57 mice (n=5,(21±1)g).For each animal,5.18MBq/140μCi of the[18F]-THK523(0.1mL)was administered intravenously through the tail vein.Blood samples(10μL)were collected from the tail vein and radioactivity was measured by the gamma counter at different time intervals(2,5,10,15,20, 30,45 and 60min)after intravenous injection.The data was expressed as percentage of the administered dose at each time point.The weight of each blood sample was determined by weighing the microcentrifuge tube before and after blood collection.The concentrations of radioactivity in the blood were calculated as%ID/g.The blood clearance patterns of [18F]-THK523 were simulated using Pharmacokinetics Local Model(PLM)software developed by Caoet al.[17].

    G.Micro PET Imaging

    Normal C57 mice((20±2)g)were acquired with a SiemensInveonPET/CTsystem(SiemensMedicalSolutions, Knoxville,USA).After induction of anesthesia and placement of the catheter systems,the animals were placed with their bodies in the center of the fi eld of view and were fi xed in the scanner in prone feet fi rst position(FFP).At the beginning of the PET scanning procedure,a CT scan(Inveon)was performed for all animals.[18F]-THK523 was given via the catheter system intravenously in a slow bolus.The total applied volume was(0.18±0.02)mL.The amount of injected activity was(0.15±0.03)mCi.Radioactivity in the syringe and catheter was measured immediately before and after injection.Dynamic data acquisition was performed by Inveon Acquisition Workplace(IAW,Siemens)for 60min starting immediately after injection(p.i.)of the tracer.A PET image was reconstructed from 600 million coincidental 511keV photon counts.A reconstruction of sinograms yielded a 3D mapping of positron signal using Fourier rebinning and a 2D fi ltered back-projection algorithm with a ramp fi lter.And the voxel size was set as 0.80mm×0.86mm×0.86mm.CT images were reconstructed using a modi fi ed Feldkamp cone beam reconstruction algorithm(COBRA)from 360 projections with isotropic pixel size of 110μm.The emission data were normalized and corrected for decay and dead time.The resulting sinograms were reconstructed with FBP( fi ltered back-projection)into 8 frames(1@120;1@180;3@300; 1@600;2@900)of equal length used for motion correction, ratio measurements and image production for time-activity curve(TAC)generation.

    For each micro PET scan,three-dimensional regions-ofinterest(ROIs)were drawn over the major organs by using vendor software(Inveon Research Workshop;IRW)on decay-corrected whole-body images.All PET and CT image datasets were scaled to calibrated kBq/cc and saved in fl oat format.Orientation of planes was con fi rmed to radiological human brain standard such that theZ-axis was perpendicular to horizontal sections.

    To retrieve reliable small-animal PET results,accurate and standardized co-registration of PET to CT is essential.A twostep matching process of PET data was used.The initial automatic rigid matching was performed fi rst,and manual adjustment was applied if necessary.High-resolution CT scan was used as the basis for VOI de fi nition.To quantify the dynamic data,TACs with high initial time resolution were used.

    H.Biodistribution studies in mice

    Ex vivobiodistribution studies were carried out to confi rm that the quantitative tracer uptake values based on non-invasive micro PET imaging truly represented the actual tracer distribution in normal mice.Fifty C57 mice ((20±2)g)from Shanghai Slac Laboratory Animal CO.Ltd. were used in animal experiments(25 female,25 male).They were divided into ten groups randomly according to sacri fi ce time points.[18F]-THK523(0.1mL)in activity of 5.18MBq/140μCi was injected into the tail vein of each mouse and the animals were sacri fi ced at 2,5,10,15,30, 45,60,120,180 and 240min after injection.Samples of the major organs/tissues of interest,including liver,spleen,pancreas,stomach,intestine,femur,muscle,gonad,lung,kidney, heart,brain and blood,were collected and wet-weighed.Speci fi c radioactivity of the tissue samples was measured using a gamma-counter.The percent dose per organ was calculated byacomparisonofthetissuecountstothecountsofasuitably diluted aliquot of the injected material.The concentrations of radioactivity in the blood were also calculated as%ID/g.

    The experiments were carried out in compliance with national laws for the conduct of animal experimentation and were approved by the local committee for animal research.

    III.RESULTS

    A.Electrophoresis

    Charge of the complex was con fi rmed by paper electrophoresis.Table 1 shows that 95.8%of[18F]-THK523 stay still under the condition of current,indicating that it was electrically neutral;while the18F-species moved to anode,indicating that the compound exhibited anionic behavior.

    TABLE 1.Electrophoresis of[18F]-THK523

    B.Determination of lipid–water partition coef fi cient of [18F]-THK523

    The lipophilicity of[18F]-THK523 is determined by lipid–water partition coef fi cient(lgP),and the results are listed in Table 2(lgP=0.99±0.06,n=7),indicating[18F]-THK523 is lipophilic,which is consistent with Ref.[12,13].

    TABLE 2.Lipid-water partition coef fi cient of[18F]-THK523

    C.Measurement of plasma protein binding rate

    Plasmaproteinbindingratewas(8.68±0.45)%, (7.86±0.32)%,(8.13±0.35)%and(8.11±0.53)%for the high,middle,mid-low and low concentration groups, respectively.They do not differ signi fi cantly,indicating that the protein binding rate of[18F]-THK523 is not of the mass concentration-dependent nature.

    D.Stability studies

    Stability of the radiolabeled compound over time was investigated.According to our test results,radiochemical purity of[18F]-THK523 was stable,remaining at the level of about 90%for up to 5h.It was decreased to 87.6%and 86% at 6h and 7h respectively(Fig.1).Considering the radioactive decomposition and decay of18F,it is better to applied [18F]-THK523 within 5h after preparation.

    Fig.1.Stability of[18F]-THK523 at room temperature.

    E.Blood kinetic studies

    The following dual-exponential equation was adopted to model the pharmacokinetic of[18F]-THK523 in mice in mice:Y=2.23e?0.014t+1.89?0.0007t,whereYis%ID g?1in blood;tis time in minute.The distribution and elimination were coincident with the results given by compartment modeling.Thepharmacokineticsparametersof[18F]-THK523are listed in Table 3.

    TABLE 3.Pharmacokinetic parameters of[18F]-THK523 in mice (131.35MBq/mL,n=5)

    F.Micro PET imaging and Biodistribution studies in mice

    The biodistribution of[18F]-THK523 was determinedex vivoin healthy mice at 2,5,10,15,30,45,60,120,180 and 240min after intravenous injection.The uptakes in liver((7.96±0.97)%ID/g),kidney((4.32±0.33)%ID/g) and heart((4.18±0.28)%ID/g)were the highest initially at 2min,followed by fast clearance(Fig.2(a)).Preclinical study showed that the highest[18F]-THK523 uptake occurred in gall bladder,followed by liver,kidney,heart and intestine,whereas femur and gonads showed the lowest uptake(Fig.2(b)).Within less than 15min,[18F]-THK523 essentially cleared from blood and plasma.[18F]-THK523was mainly metabolized by liver and excreted through biliary,thus leading to substantial rise in the uptake in intestine at 15min and then slow decline started approximately at 120min.Micro PET imaging demonstrated such changes vividlyin vivo,agreeing with the biodistribution analysisexvivo(Figs.2(a)and 2(c)).The bone uptake rose and then decreased slowly because of radioactive decomposition,which could be improved with the presence of ascorbic acid(2mg, 0.011mmol).

    Fig.2.(Color online)Biodistribution of[18F]-THK523 in main metabolic organs(a)and other organs(b)in normal mice,and smallanimal PET images of a mouse at 60min after[18F]-THK523 injection.The orange arrows indicate gall bladder,and the blue arrows indicate intestine.The data are expressed as means±SD(n=5).

    Fig.3.(Color online)Biodistribution of[18F]-THK523 in main regions(a)and cortex of in normal mice brain(expressed as means,n=5).

    The brain uptake was(2.62±0.39)%ID/g at 2min after injection.Mouse brains were dissected into following regions:cortex(front cortex,parietal cortex, temporal cortex,occipital cortex),striatum,hippocampus,thalamus,cerebellum,pons and medulla oblongata. The uptakes in occipital cortex((4.91±0.94)%ID/g), temporal cortex((3.33±0.72)%ID/g)and hippocampus ((3.07±0.35)%ID/g)were the highest initially at 2min,followed by fast clearance(Figs.3(a)and 3(b)).The tracer uptake for the occipital cortex and temporal cortex were higher than other cortex(Fig.3(b)).The brain uptake trend of[18F]-THK523 was similar betweenex vivoandin vivofrom injec-tion to 60min.The highest brain uptake was at 2min after injection,followed by quick clearance during 90min postinjection.The clearance was relatively slow from 90min to 240min after injection(Fig.4).

    Fig.4.(Color online)The brain uptake trend of[18F]-THK523 over time in normal miceex vivo(a)andin vivo(b).

    IV.DISCUSSION

    NFTs are one kind of the pathological hallmarks found in AD brains and are closely associated with the severity of dementia,indicating the contribution of NFTs to neuronal dysfunction.NFTs are therapeutic target of AD for disease modifying therapy.A PET tracer for imaging NFTs in the brain shall be valuable in developing new therapies for AD.

    Considering the factors related to brain uptake,a radioactive tracer can hardly cross the blood-brain barrier(BBB)if it is not electrically neutral or non-lipophilic.For brain tracer, lowplasmaproteinbindingrateisalsocriticaltobrainuptake. If plasma protein binding rate is too high,the tracer would be unable to get access to target region.The analytical data and favorable lgPsuggest that[18F]-THK523 should cross the BBB and enter the central nervous system(CNS).Also, with the presence of ascorbic acid,[18F]-THK523 is stable at room temperature up to 5 h.All these biological characteristics demonstrate that[18F]-THK523 satis fi es the basic requirements of brain tracer.Our blood kinetic studies show that[18F]-THK523 distributes quickly from blood to other organs(t1/2α=47.9min),with relatively favorable retention time in target organs(t1/2β=965.1min).

    Metabolism and biodistribution patterns should be evaluated for any radiopharmaceutical candidate being considered for clinical translation.Ourex vivostudies reveal a high brain uptake at 2min after injection,especially in the hippocampus,followed by rapid clearance in healthy mice.In vitroandin vivostudies have con fi rmed that[18F]-THK523 is of high af fi nity and selectivity for tau pathology[12,13],and our biological characteristics results shall help ful fi lling its brain ligand criteria for further imaging trials.

    V.CONCLUSION

    [18F]-THK523 was radiosynthesized on automated module anditsbiologicalcharacteristicswereevaluated.Invitrostudies demonstrated that[18F]-THK523 was electrically neutral, lipophilic(lgP=0.99±0.06,n=7)and quite stable with its radiochemical purity of more than 90%maintained for up to 7h at room temperature.Due to its low molecular weight,[18F]-THK523 can easily cross blood brain barrier(BBB).With relatively low plasma protein binding rate, [18F]-THK523 is not of mass concentration-dependent nature.From calculations of pharmacokinetics parameters of the blood,and the blood kinetic study,the dual-exponential equation wasY=2.23e?0.014t+1.89?0.0007twitht1/2α= 47.9min?1,t1/2β=965.1min?1,K12=0.0067min?1,K21=0.0070min?1,Ke=0.0015min?1,plasma clearance=0.036%ID/g/min,area under concentration-time curve=2785.1ID%/g/min.[18F]-THK523 is of high brain uptake,and our study on its biodistribution in healthy C57 mice shows that[18F]-THK523 is mainly metabolized by liver and excreted through biliary.[18F]-THK523 may well be a promising candidate for molecular imaging of tau pathology.

    ACKNOWLEDGEMENTS

    We are grateful to GAO Xi-Hui,HUANG Cui-Yun, ZHENG Shu-Yan and WANG Feng for helpful brain anatomy and counseling in all aspects of animal handling and experimenting.

    [1]Mori T,Maeda J,Shimada H,et al.Psychogeriatrics,2012,12: 106–114.

    [2]Wang J Z and Liu F.Prog Neurobiol,2008,85:148–175.

    [3]Rossi G,Dalpr`a L,Crosti F,et al.Cell Cycle,2008,7:1788–1894.

    [4]Witman G B,Cleveland D W,Weingarten M D,et al.Proc Natl Acad Sci USA,1976,73:4070–4074.

    [5]Guo J L,Covell D J,Daniels J P,et al.Cell,2013,154:103–117.

    [6]de Calignon A,Polydoro M,Suarez-Calvet M,et al.Neuron, 2012,73:685–697.

    [7]Revett T J,Baker G B,Jhamandas J,et al.J Psychiatr Neurosci, 2013,38:6–23.

    [8]Ittner L M,Ke Y D,Delerue F,et al.Cell,2010,142:387–397.

    [9]RobersonED,Scearce-LevieK,PalopJJ,etal.Science,2007,316:750–754.

    [10]Nussbaum J M,Schilling S,Cynis H,et al.Nature,2012,485: 651–655.

    [11]Nakamura K,Greenwood A,Binder L,et al.Cell,2012,149: 232–244.

    [12]Fodero-Tavoletti M T,Okamura N,Furumoto S,et al.Brain, 2011,134:1089–1100.

    [13]Harada R,Okamura N,Furumoto S,et al.Eur J Nucl Med Mol, 2013,40:125–132.

    [14]Zeng Z,Chen T B,Miller P,et al.Alzheimers Dement,2012,8:P66.

    [15]Okamura N,Furumoto S,Harada R,et al.J Nucl Med,2013,54:1420–1427.

    [16]Kong Y Y,Cao G X,Zhang Z W,et al.Nucl Sci Tech,2014,25:040302.

    [17]Cao G,Zhou X,Kong Y,et al.Nucl Tech,2013,36:60–65.(in Chinese)

    10.13538/j.1001-8042/nst.25.050302

    (Received January 7,2014;accepted in revised form February 21,2014;published online October 4,2014)

    ?Supported by National Natural Science Foundation of China(Nos. 81271516 and 81371625),Program of Shanghai Science and Technology Commission(Nos.13JC1401503 and 14DZ1930402),Shanghai MunicipalHealthandFamilyPlanningCommission(No.2013313)andExchange Programme Foundation of Doctoral Student under the Office for Graduate Medical Education,Fudan University

    ?Corresponding author,guanyihui@hotmail.com

    猜你喜歡
    吳平方平
    Effects of anode material on the evolution of anode plasma and characteristics of intense electron beam diode
    Water adsorption performance of UiO-66 modified by MgCl2 for heat transformation applications
    Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
    春雪
    吳平:戶外語文課,用觀察擺脫寫作空洞
    醫(yī)院感染管理在醫(yī)院內(nèi)傳染病防控工作中的作用探討
    改姓
    春雪
    血染“不出軌保證書”,“武隆好人”婚姻無性
    女友有求于我
    小小說月刊(2014年8期)2014-08-29 03:36:08
    97人妻天天添夜夜摸| 一二三四在线观看免费中文在 | 国产福利在线免费观看视频| 国产1区2区3区精品| 一级片'在线观看视频| 免费观看a级毛片全部| 日韩人妻精品一区2区三区| 久久99一区二区三区| 日韩人妻精品一区2区三区| 国产精品无大码| 人人妻人人澡人人看| 国产成人免费观看mmmm| 亚洲国产欧美在线一区| 日韩制服骚丝袜av| 男人操女人黄网站| 日本wwww免费看| 日韩大片免费观看网站| 我的女老师完整版在线观看| 国产黄频视频在线观看| 91aial.com中文字幕在线观看| 免费观看a级毛片全部| 少妇被粗大猛烈的视频| 亚洲欧洲国产日韩| 日韩不卡一区二区三区视频在线| 日本午夜av视频| 少妇人妻 视频| 国产一区亚洲一区在线观看| 亚洲av福利一区| 好男人视频免费观看在线| 精品一品国产午夜福利视频| 国产又爽黄色视频| 久久精品aⅴ一区二区三区四区 | 久久久久国产精品人妻一区二区| 亚洲成人一二三区av| 内地一区二区视频在线| 日韩精品免费视频一区二区三区 | 22中文网久久字幕| 国产精品偷伦视频观看了| 欧美bdsm另类| 精品一区二区三区四区五区乱码 | 国产永久视频网站| 国产永久视频网站| 成人手机av| 日本vs欧美在线观看视频| 中文字幕最新亚洲高清| 日本爱情动作片www.在线观看| 高清欧美精品videossex| 九色亚洲精品在线播放| 久热久热在线精品观看| 精品视频人人做人人爽| 成人综合一区亚洲| 色5月婷婷丁香| 国产男女超爽视频在线观看| 亚洲欧美精品自产自拍| 寂寞人妻少妇视频99o| 交换朋友夫妻互换小说| 亚洲精品自拍成人| 91aial.com中文字幕在线观看| 又大又黄又爽视频免费| 色吧在线观看| 日韩av免费高清视频| 高清不卡的av网站| 欧美国产精品va在线观看不卡| 国产乱来视频区| 久久人人97超碰香蕉20202| 巨乳人妻的诱惑在线观看| 国产午夜精品一二区理论片| 黄色配什么色好看| 全区人妻精品视频| 蜜臀久久99精品久久宅男| 成人黄色视频免费在线看| 亚洲av男天堂| 多毛熟女@视频| 国产av国产精品国产| 精品国产国语对白av| 狂野欧美激情性bbbbbb| 一二三四中文在线观看免费高清| 汤姆久久久久久久影院中文字幕| 国产精品成人在线| 视频在线观看一区二区三区| 久久99蜜桃精品久久| 在线观看免费日韩欧美大片| 汤姆久久久久久久影院中文字幕| 免费看不卡的av| 黄色一级大片看看| 精品人妻偷拍中文字幕| 国产麻豆69| 高清av免费在线| 精品国产国语对白av| 人妻少妇偷人精品九色| 纯流量卡能插随身wifi吗| 精品视频人人做人人爽| 国产成人精品福利久久| 美女大奶头黄色视频| 99香蕉大伊视频| 97在线视频观看| 王馨瑶露胸无遮挡在线观看| 99热全是精品| 内地一区二区视频在线| 午夜视频国产福利| 插逼视频在线观看| 只有这里有精品99| av片东京热男人的天堂| 亚洲国产精品一区三区| 国产免费视频播放在线视频| 亚洲欧美日韩另类电影网站| 久久精品国产亚洲av天美| 热99久久久久精品小说推荐| 国产成人精品福利久久| 亚洲精品自拍成人| 美女国产视频在线观看| 精品第一国产精品| 国产精品久久久久成人av| 侵犯人妻中文字幕一二三四区| 丝袜在线中文字幕| 免费人成在线观看视频色| 捣出白浆h1v1| 亚洲欧美精品自产自拍| 香蕉国产在线看| 又粗又硬又长又爽又黄的视频| 美女xxoo啪啪120秒动态图| 人妻人人澡人人爽人人| 久久久精品区二区三区| 国产亚洲av片在线观看秒播厂| 亚洲,欧美,日韩| 九九在线视频观看精品| 宅男免费午夜| 中文字幕最新亚洲高清| 国产精品女同一区二区软件| 大香蕉97超碰在线| 亚洲欧美一区二区三区国产| 免费黄网站久久成人精品| 午夜免费观看性视频| 久久久久久久久久久免费av| 亚洲精品视频女| 一本—道久久a久久精品蜜桃钙片| 丰满乱子伦码专区| 99九九在线精品视频| a级毛色黄片| 日本欧美视频一区| 90打野战视频偷拍视频| 国产成人精品无人区| 国产极品粉嫩免费观看在线| 一级毛片电影观看| 国产老妇伦熟女老妇高清| 久久久久久久大尺度免费视频| 80岁老熟妇乱子伦牲交| 插逼视频在线观看| 亚洲欧洲国产日韩| 国产男人的电影天堂91| 精品久久久精品久久久| 狠狠精品人妻久久久久久综合| a级片在线免费高清观看视频| 日本黄大片高清| 美女国产视频在线观看| 免费观看性生交大片5| 欧美日韩av久久| 免费少妇av软件| 亚洲人成77777在线视频| 这个男人来自地球电影免费观看 | 中文字幕av电影在线播放| 国产 精品1| 午夜福利视频在线观看免费| 国产欧美亚洲国产| 五月伊人婷婷丁香| 久久久久人妻精品一区果冻| 精品一区二区三区视频在线| 亚洲欧美日韩另类电影网站| 在线观看国产h片| 欧美日韩av久久| 一区二区日韩欧美中文字幕 | 国产福利在线免费观看视频| 久久久国产精品麻豆| 亚洲美女视频黄频| 国产成人av激情在线播放| 亚洲av综合色区一区| 黄色配什么色好看| 一级,二级,三级黄色视频| 国产精品人妻久久久影院| 黄色怎么调成土黄色| 亚洲国产色片| 成年动漫av网址| 国产成人精品久久久久久| 视频区图区小说| 天堂8中文在线网| 亚洲五月色婷婷综合| 国产又爽黄色视频| 国产成人午夜福利电影在线观看| 精品国产一区二区三区久久久樱花| 精品酒店卫生间| 久久久久久人人人人人| 国产精品人妻久久久久久| 免费av不卡在线播放| 街头女战士在线观看网站| 国产亚洲欧美精品永久| 日韩免费高清中文字幕av| 18禁观看日本| 岛国毛片在线播放| 69精品国产乱码久久久| 国产激情久久老熟女| a级毛片黄视频| 亚洲国产毛片av蜜桃av| 国产免费现黄频在线看| 日韩伦理黄色片| 欧美日韩视频高清一区二区三区二| 97精品久久久久久久久久精品| 亚洲国产毛片av蜜桃av| 亚洲精品美女久久av网站| 免费高清在线观看视频在线观看| 九色成人免费人妻av| 欧美人与性动交α欧美软件 | 国产熟女欧美一区二区| www.色视频.com| 午夜福利视频精品| 妹子高潮喷水视频| 久久久精品免费免费高清| 欧美日韩一区二区视频在线观看视频在线| 日韩制服骚丝袜av| 亚洲成人手机| 十八禁高潮呻吟视频| 五月开心婷婷网| 国产欧美日韩综合在线一区二区| 久久久久久久精品精品| 99热6这里只有精品| 成人亚洲欧美一区二区av| 成人手机av| 黑人猛操日本美女一级片| 97人妻天天添夜夜摸| 18禁观看日本| 综合色丁香网| 青春草国产在线视频| 少妇的逼水好多| 日韩av不卡免费在线播放| 久久人人爽av亚洲精品天堂| 人妻系列 视频| 80岁老熟妇乱子伦牲交| 国产成人精品无人区| 爱豆传媒免费全集在线观看| av电影中文网址| 免费黄网站久久成人精品| 十八禁网站网址无遮挡| 美女脱内裤让男人舔精品视频| 国产精品麻豆人妻色哟哟久久| 免费女性裸体啪啪无遮挡网站| 少妇的丰满在线观看| 日韩免费高清中文字幕av| 国产色婷婷99| 欧美日韩成人在线一区二区| 国产精品久久久久久av不卡| 免费少妇av软件| 丝袜人妻中文字幕| 免费大片18禁| 国产精品国产三级国产专区5o| 成人综合一区亚洲| a 毛片基地| 中国美白少妇内射xxxbb| 亚洲欧洲国产日韩| 国产日韩一区二区三区精品不卡| 18禁动态无遮挡网站| 99热6这里只有精品| 天天影视国产精品| 免费女性裸体啪啪无遮挡网站| 大片电影免费在线观看免费| 欧美性感艳星| 高清不卡的av网站| 亚洲欧美一区二区三区国产| 国产成人欧美| 久久久久久久久久久免费av| 少妇的逼好多水| 黄网站色视频无遮挡免费观看| 考比视频在线观看| 国产一区二区三区av在线| 日日爽夜夜爽网站| tube8黄色片| 国产黄色免费在线视频| 欧美日韩视频高清一区二区三区二| 亚洲精品日本国产第一区| tube8黄色片| 一级片免费观看大全| 女人精品久久久久毛片| 国产精品女同一区二区软件| 涩涩av久久男人的天堂| 男女免费视频国产| 日韩av免费高清视频| 少妇 在线观看| 国产一区二区三区综合在线观看 | 亚洲成人手机| 久久久久久久亚洲中文字幕| 精品福利永久在线观看| 亚洲精品国产色婷婷电影| 免费黄色在线免费观看| 男人添女人高潮全过程视频| 视频在线观看一区二区三区| 亚洲av福利一区| 黄网站色视频无遮挡免费观看| 国产在线视频一区二区| 草草在线视频免费看| 亚洲四区av| 日韩精品免费视频一区二区三区 | 蜜桃国产av成人99| 久久久久久久久久成人| 草草在线视频免费看| 欧美 亚洲 国产 日韩一| 蜜桃在线观看..| 国产麻豆69| 亚洲四区av| 考比视频在线观看| 亚洲色图 男人天堂 中文字幕 | av线在线观看网站| 亚洲欧美一区二区三区黑人 | 十分钟在线观看高清视频www| 欧美人与性动交α欧美精品济南到 | 免费不卡的大黄色大毛片视频在线观看| av卡一久久| 亚洲色图综合在线观看| 好男人视频免费观看在线| 91成人精品电影| 成人毛片60女人毛片免费| 久久热在线av| 久久精品国产亚洲av天美| 亚洲欧美一区二区三区黑人 | 欧美精品国产亚洲| 久久人人爽人人片av| 波野结衣二区三区在线| 大片电影免费在线观看免费| 久久99热6这里只有精品| 国产一区二区激情短视频 | 少妇高潮的动态图| 亚洲成国产人片在线观看| 黄色视频在线播放观看不卡| 亚洲精品美女久久久久99蜜臀 | 国产成人a∨麻豆精品| 97精品久久久久久久久久精品| av黄色大香蕉| 欧美激情极品国产一区二区三区 | 亚洲精品第二区| 国产精品一区二区在线观看99| 国产精品三级大全| 国产精品蜜桃在线观看| 美女脱内裤让男人舔精品视频| 丰满乱子伦码专区| 久久人人97超碰香蕉20202| 日本-黄色视频高清免费观看| 国产成人免费观看mmmm| 久久精品久久久久久久性| 久久久国产精品麻豆| av一本久久久久| 九九爱精品视频在线观看| 中文天堂在线官网| 91在线精品国自产拍蜜月| 国产日韩欧美亚洲二区| 亚洲av国产av综合av卡| 日日爽夜夜爽网站| 免费少妇av软件| 观看av在线不卡| 国产片特级美女逼逼视频| 欧美人与善性xxx| 日韩大片免费观看网站| 一边摸一边做爽爽视频免费| 亚洲经典国产精华液单| 男女边吃奶边做爰视频| 亚洲美女搞黄在线观看| 久久久亚洲精品成人影院| 国产1区2区3区精品| 人妻 亚洲 视频| 色婷婷av一区二区三区视频| av女优亚洲男人天堂| 精品少妇黑人巨大在线播放| 久久久久视频综合| 另类精品久久| 午夜福利在线观看免费完整高清在| 精品第一国产精品| 一个人免费看片子| 两性夫妻黄色片 | 久久婷婷青草| 亚洲av成人精品一二三区| 国产黄色视频一区二区在线观看| 亚洲经典国产精华液单| 高清av免费在线| 亚洲精品一区蜜桃| 国产极品天堂在线| 欧美另类一区| 蜜桃国产av成人99| 亚洲精品aⅴ在线观看| 久久韩国三级中文字幕| 97超碰精品成人国产| 国产一区二区在线观看av| 国产乱来视频区| 99精国产麻豆久久婷婷| 亚洲精品国产色婷婷电影| 又黄又爽又刺激的免费视频.| 99香蕉大伊视频| 久久精品夜色国产| 黑丝袜美女国产一区| 人人澡人人妻人| 午夜影院在线不卡| 波多野结衣一区麻豆| 大片免费播放器 马上看| 成人午夜精彩视频在线观看| av免费在线看不卡| 婷婷成人精品国产| 在线看a的网站| 久久国产亚洲av麻豆专区| 国产av一区二区精品久久| 国产麻豆69| 在线观看www视频免费| 香蕉丝袜av| 欧美性感艳星| 日韩精品免费视频一区二区三区 | 久久人人爽av亚洲精品天堂| 精品久久久久久电影网| 亚洲精品日本国产第一区| 国产成人一区二区在线| av片东京热男人的天堂| 韩国高清视频一区二区三区| 一级毛片黄色毛片免费观看视频| 国产日韩一区二区三区精品不卡| 青春草视频在线免费观看| 日本wwww免费看| 婷婷成人精品国产| 亚洲av国产av综合av卡| 免费日韩欧美在线观看| 黑丝袜美女国产一区| 一本色道久久久久久精品综合| 欧美 日韩 精品 国产| 国产黄色免费在线视频| 精品久久久精品久久久| 中国美白少妇内射xxxbb| 亚洲国产av影院在线观看| 性色av一级| 精品福利永久在线观看| 狂野欧美激情性xxxx在线观看| 亚洲欧洲日产国产| 如何舔出高潮| 欧美日韩一区二区视频在线观看视频在线| 精品久久国产蜜桃| 极品少妇高潮喷水抽搐| 91aial.com中文字幕在线观看| 久久久久网色| 亚洲av电影在线进入| 9色porny在线观看| 男女无遮挡免费网站观看| 精品一区二区免费观看| 在线观看www视频免费| 男的添女的下面高潮视频| 亚洲精品国产av成人精品| 伦理电影大哥的女人| 制服人妻中文乱码| 国产精品久久久av美女十八| 久久这里只有精品19| 国产精品久久久久久久久免| 亚洲精品久久久久久婷婷小说| 99久国产av精品国产电影| 女性生殖器流出的白浆| 人人澡人人妻人| 国产又色又爽无遮挡免| 一级a做视频免费观看| 国产一区有黄有色的免费视频| 亚洲欧美成人综合另类久久久| 亚洲国产成人一精品久久久| 亚洲美女黄色视频免费看| 亚洲欧美日韩另类电影网站| 国产精品 国内视频| 亚洲国产精品成人久久小说| 免费女性裸体啪啪无遮挡网站| 亚洲高清免费不卡视频| 国产白丝娇喘喷水9色精品| 久久99热这里只频精品6学生| 深夜精品福利| 美女xxoo啪啪120秒动态图| 午夜免费男女啪啪视频观看| 国产男女内射视频| 国产日韩欧美在线精品| 99久久中文字幕三级久久日本| 国产免费现黄频在线看| 国产精品国产三级专区第一集| www日本在线高清视频| 国产男女超爽视频在线观看| 日本av手机在线免费观看| kizo精华| 国产精品三级大全| 巨乳人妻的诱惑在线观看| 亚洲国产精品专区欧美| 亚洲美女搞黄在线观看| av福利片在线| 婷婷色av中文字幕| 超色免费av| 黄色视频在线播放观看不卡| 国产福利在线免费观看视频| 我要看黄色一级片免费的| 亚洲av电影在线进入| 亚洲精品av麻豆狂野| 尾随美女入室| www.熟女人妻精品国产 | 一级,二级,三级黄色视频| 2021少妇久久久久久久久久久| 免费av不卡在线播放| 久久97久久精品| 国产伦理片在线播放av一区| 免费av中文字幕在线| 一区二区日韩欧美中文字幕 | 欧美国产精品va在线观看不卡| 久久鲁丝午夜福利片| 国产高清国产精品国产三级| 少妇被粗大的猛进出69影院 | 99热全是精品| 天堂中文最新版在线下载| 国语对白做爰xxxⅹ性视频网站| 九草在线视频观看| 久久人人爽av亚洲精品天堂| a级片在线免费高清观看视频| 一级毛片电影观看| 精品一品国产午夜福利视频| 精品久久国产蜜桃| 两个人免费观看高清视频| 国产亚洲欧美精品永久| 成人综合一区亚洲| 久久这里只有精品19| 国产亚洲最大av| 欧美97在线视频| xxx大片免费视频| 老女人水多毛片| 搡女人真爽免费视频火全软件| 国产成人欧美| 欧美人与性动交α欧美精品济南到 | 国产成人一区二区在线| 黄片播放在线免费| 不卡视频在线观看欧美| 人人妻人人添人人爽欧美一区卜| 人人妻人人爽人人添夜夜欢视频| 两个人看的免费小视频| 午夜福利视频在线观看免费| 亚洲中文av在线| 日韩人妻精品一区2区三区| 一区二区三区乱码不卡18| 国产有黄有色有爽视频| 99久久精品国产国产毛片| 午夜福利乱码中文字幕| 2018国产大陆天天弄谢| 青春草视频在线免费观看| 一边亲一边摸免费视频| 久久久欧美国产精品| av天堂久久9| 久久久久久久久久成人| 精品少妇久久久久久888优播| 国产免费现黄频在线看| 美国免费a级毛片| 大话2 男鬼变身卡| 国内精品宾馆在线| 制服丝袜香蕉在线| 久久精品国产自在天天线| 欧美国产精品va在线观看不卡| 国产精品久久久久久久电影| 亚洲国产最新在线播放| 国产av码专区亚洲av| 国产片内射在线| 青春草国产在线视频| 18在线观看网站| 麻豆乱淫一区二区| 午夜日本视频在线| 97精品久久久久久久久久精品| 亚洲国产精品一区二区三区在线| 最近的中文字幕免费完整| 亚洲国产精品国产精品| 18禁裸乳无遮挡动漫免费视频| 久久99热这里只频精品6学生| 久热久热在线精品观看| 搡女人真爽免费视频火全软件| 国产一区有黄有色的免费视频| 午夜久久久在线观看| 亚洲国产精品999| 久久国产亚洲av麻豆专区| 免费观看av网站的网址| 亚洲欧美中文字幕日韩二区| 久久婷婷青草| 国产成人av激情在线播放| 久久女婷五月综合色啪小说| 中文字幕精品免费在线观看视频 | 90打野战视频偷拍视频| 2022亚洲国产成人精品| 超碰97精品在线观看| 看非洲黑人一级黄片| 国产成人欧美| 亚洲综合色惰| 日韩精品免费视频一区二区三区 | 久久久久久久精品精品| 岛国毛片在线播放| 夫妻午夜视频| 秋霞伦理黄片| 精品第一国产精品| 大香蕉久久网| 99久国产av精品国产电影| 国产在线一区二区三区精| 日韩不卡一区二区三区视频在线| 日韩欧美精品免费久久| 亚洲精品自拍成人| 飞空精品影院首页| 一本—道久久a久久精品蜜桃钙片| 精品一品国产午夜福利视频| www.熟女人妻精品国产 | 亚洲综合色网址| 人妻一区二区av| 一级毛片我不卡| 亚洲精品日韩在线中文字幕| 狠狠精品人妻久久久久久综合| av又黄又爽大尺度在线免费看| 国产午夜精品一二区理论片| 啦啦啦中文免费视频观看日本| 天堂中文最新版在线下载| 亚洲人与动物交配视频| av免费观看日本| 午夜影院在线不卡| 男女国产视频网站| 国产探花极品一区二区| 9191精品国产免费久久|