• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics

    2022-04-12 03:47:38YaNanLi李亞男PingWu吳平ShiPingZhang張師平YiLiPei裴藝麗JinGuangYang楊金光SenChen陳森andLiWang王立
    Chinese Physics B 2022年4期
    關(guān)鍵詞:吳平金光

    Ya-Nan Li(李亞男) Ping Wu(吳平) Shi-Ping Zhang(張師平) Yi-Li Pei(裴藝麗)Jin-Guang Yang(楊金光) Sen Chen(陳森) and Li Wang(王立)

    1Beijing Key Laboratory for MagnetoPhotoelectrical Composite and Interface Science,School of Mathematics and Physics,University of Science and Technology Beijing,Beijing 100083,China

    2School of Energy and Environmental Engineering,University of Science and Technology Beijing,Beijing 100083,China

    Keywords: Ca3Co4O9,carbon nanotubes,thermal conductivity,thermoelectric properties

    1. Introduction

    With the increasingly serious energy shortage and environmental pollution,people need to find green energy and energy conversion methods. Thermoelectric materials can realize the direct conversion of thermal energy and electric energy based on Seebeck effect and Peltier effect, and they have attracted much attention in recent years.[1]The conversion efficiency of thermoelectric materials depends on the figure of meritZT=σS2T/k, whereσis the electrical conductivity,Sis the Seebeck coefficient,Tis the absolute temperature,andκis the thermal conductivity.[2]It can be observed from the above formula that high-efficiency thermoelectric conversion requires high electrical conductivity and Seebeck coefficient,as well as low thermal conductivity,which is quite challenging. The optimization of one parameter of thermal conductivity or electrical conductivity usually causes the reduction of the other parameter. In recent years, compared with intermetallic thermoelectric compounds, such as Bi2Te3,[3]PbTe,[4]etc.,thermoelectric oxide material Ca3Co4O9(abbreviated as CCO) has attracted extensive attention because of its good stability, convenient preparation, green environmental protection and low cost.[5]At present, theZTvalue of polycrystalline Ca3Co4O9still cannot meet the requirements of practical application, which limits its commercial application.

    Ca3Co4O9has monoclinic structure, and the chemical formula is[Ca2CoO]b1[CoO2]b2.This represents a monoclinic mismatched sandwich like structure,and a calcium salt disordered layer is mixed between CdI2type CoO2layers,extending along thec-axis. The two layers share the same lattice parameters:a=4.8270(5),c=10.8300(2),β=98.1360(1).The unit cell mismatch changes along theb-axis. The lattice parameterbvalues of Ca2CoO3and CoO2layers areb1=4.5615(2) °A andb2=2.8173(1) °A,respectively,which are usually expressed as[CaCoO][CoO2]1.61.[6]The mismatch and weak connection between Ca2CoO and CoO2layers enhance phonon scattering, reduce thermal conductivity, and lead to significant anisotropy.[7]Due to its unique staggered structure,in order to improve the thermoelectric performance of Ca3Co4O9, the traditional method is to adjust the carrier concentration by doping ions at the Ca position[8-12]or Co position,[13-16]so as to affect the electric transport and phonon scattering. Another strategy is to add nano materials into Ca3Co4O9as the second phase. Theoretically,an appropriate number of composite nanoparticles can enhance the connectivity between grains and grain growth,improving the electrical conductivity. Due to the energy filtration effect, it may help to improve the Seebeck coefficient of the material. Simultaneously, the phonon scattering center is increased, thereby reducing the thermal conductivity. In recent years, the addition of nanoparticle materials to Ca3Co4O9, such as SiC,[17]Bi2O3,[18]NaF,[19]B4C,[20]Ag nanoparticles,[21]etc., has been used to improve the thermoelectric properties of materials. Carbon nanotube (CNT) is a low dimensional material with high conductivity and light weight. Adding carbon nanotubes to reduce the weight of materials for the application of weight sensitive thermoelectric materials is very competitive, for example, microelectronic devices, sensors,etc. Ceramic nano powders are widely used as nano dispersions of thermoelectric nanocomposites because of their low thermal conductivity, but the nanocomposites prepared from these nano dispersions show serious conductivity degradation.In contrast, carbon nanotubes are excellent nano dispersions of thermoelectric nanocomposites because CNTs have high conductivity, and their dispersion in the thermoelectric matrix will not deteriorate the conductivity to the extent caused by ceramic nano powder. Yeoet al.[22]added 0.12% CNTs to (Bi0.2Sb0.8)2Te3, the thermal conductivity of the composite was significantly lower than that of the matrix, which increased theZTvalue by 34%. Kimet al.[23]found that the thermal conductivity decreased significantly by compounding Bi0.5Sb1.5Te3with porous carbon nanomaterials. Theoretically, although carbon nanotubes have high thermal conductivity,the interface between carbon nanotubes and matrix can increase the phonon scattering at the interface and reduce the thermal conductivity, which is expected to improve theZTvalue of the material. Tanget al.previously studied the effect of carbon nanotubes addition on the thermoelectric properties of Ca3Co4O9at low temperature.[24]The thermoelectric properties of carbon nanotubes doped at room temperature and higher temperature have not been studied.

    In this work,Ca3Co4O9/xwt.%CNTs(x=0,3,5,7,10)composite thermoelectric materials were prepared by sol-gel method. The effects of adding carbon nanotubes on the electrical properties and thermal conductivity of Ca3Co4O9were systematically investigated.

    2. Experimental details

    Ca3Co4O9powder samples were prepared by sol-gel method. Weigh the precursor raw materials Ca(NO3)2·4H2O and CO (NO3)2·6H2O at a certain stoichiometric ratio, dissolve the raw materials in deionized water and mix evenly,add a certain amount of citric acid, heat and stir continuously at 352 K until sol is formed. The sol was dried at 393 K for 12 h to obtain the precursor. The precursor was fully ground and sintered at constant temperature of 1073 K for 12 h after selfpropagating treatment.After sintering,the powder sample was evenly mixed with carbon nanotubes(CNTs;0 wt.%,3 wt.%,5 wt.%,7 wt.%,10 wt.%)with a certain mass ratio,and then pressed under the pressure of 30 MPa. Crystallographic structure analysis was performed by Rigaku D/max2500 X diffractometer with CuKαray (λ=1.54056 °A) (40 kV, 200 mA),step size 0.01°,conventional 2θof 10°-60°. The phase composition of the sample was analyzed by angle range diffraction spectrum. The microstructure of the samples was observed by field emission scanning electron microscopy (FESEM,Zeiss supra55). The Seebeck coefficient/electrical conductivity measurement system(Netzsch SBA458)was used to measure the electrical conductivity and Seebeck coefficient of the sample in argon atmosphere. The thermal conductivity of the sample was obtained according tok=DCpd, wheredis the geometric density of the sample. The diffusion coefficientD(Netzsch instruments/LAF457) perpendicular to the pressure direction of the sample was obtained by laser scattering method.

    3. Results and discussion

    3.1. Phase composition and microstructure

    The phase purity and crystallinity of Ca3Co4O9samples with carbon nanotubes addition of different mass ratios were characterized by XRD. Figure 1 shows the XRD spectra of all samples. All samples are single-phase, and the major crystal phase matches with the standard JCPDS card(No. 21-0139) of Ca3Co4O9. No other peaks are detected,indicating that the purity of all samples is very high, and the content of carbon nanotubes is relatively small. It can also be seen from the figure that the diffraction peak in the (00l)plane is relatively strong, while other peaks are relatively weak. The results show that the samples have obvious preferred orientation in thecdirection, which is mainly caused by the preferential growth of grains on the plane perpendicular to the pressure direction during sintering. Simultaneously, with the increase of the amount of carbon nanotubes,the orientation of the sample in the(00l)direction decreases.Figures 2(a)-2(e)show the morphology of the samples added with different proportions of carbon nanotubes. It can be observed from the figure that the sample presents a sheet shape.It is found that the grain size does not change significantly with the increase of carbon nanotubes. The average particle size of the sample is 700-800 nm. Figure 2(f)shows the morphology of the sample with carbon nanotubes doping of 10 wt.% at a higher multiple.The filamentous carbon nanotubes in the sample are circled with a blue circle. The density and atomic ratio of Ca3Co4O9/xwt.% CNTs (x=0, 3, 5, 7, 10) samples are provided in Table 1. The density of the sample decreases with the increase in the content of carbon nanotubes (the theoretical density of Ca3Co4O9is 4.68 g/cm3).[25]After normalizing the atomic ratio,the content of carbon atoms in the sample increases with the increase of the amount of carbon nanotubes.

    Fig.1. XRD pattern of Ca3Co4O9/x wt.%CNTs(x=0,3,5,7,10)sample.

    Table 1. Density and atomic ratio of Ca3Co4O9/x wt.%CNTs(x=0,3,5,7,10)series samples.

    Fig.2. SEM images of sintered sample surfaces: (a)Ca3Co4O9,(b)Ca3Co4O9/3 wt.%CNTs(c)Ca3Co4O9/5 wt.%CNTs,(d)Ca3Co4O9/7 wt.%CNTs,(e)Ca3Co4O9/10 wt.%CNTs and(f)filamentous carbon nanotubes in Ca3Co4O9/10 wt.%CNTs are circled with a blue circle.

    3.2. Electrical transport properties

    The relationship between electrical conductivity and temperature of Ca3Co4O9/xwt.%CNTs(x=0,3,5,7,10)samples are exhibited in Fig. 3. Due to the limitation of the stability of carbon nanotubes, the test mainly studies the thermoelectric properties of samples from room temperature to 625 K. It can be observed from the figure that the electrical conductivity of all samples increases with the increase of temperature in the temperature range of 275 K to 625 K,showing significant semiconductor behavior. However, the conductivity of the sample with carbon nanotubes addition is significantly lower than that of the original sample. Although carbon nanotubes have high conductivity, it is mainly reflected along its length. In this study,the orientation of carbon nanotubes added to Ca3Co4O9is random, then its excellent conductivity cannot be brought into full play. The relationship between conductivity and resistivity can be expressed asσ=1/ρ. Adding carbon nanotubes to Ca3Co4O9sample introduces pore structure and interface, which increases the electron scattering center of the composite sample, increases the resistivity of the sample, that is, the electrical conductivity decreases,and the electrical conductivity of the composite decreases with the increase of carbon nanotube content.

    Fig.3. Relationship between the electrical conductivity and temperature of Ca3Co4O9/x wt.%CNTs(x=0,3,5,7,10)series samples.

    Figure 4 shows the relationship between Seebeck coefficients and temperature of Ca3Co4O9samples with different contents of carbon nanotubes. The Seebeck coefficients of all samples in the figure increase with the increase of temperature.The Seebeck coefficients of all samples are positive,indicating that the samples are p-type semiconductors,dominated by hole conduction. The Seebeck coefficient increases monotonically with the increase of temperature,which may be related to the phonon traction effect,that is,the phonons in the semiconductor flow from the high-temperature end to the low-temperature end. Through the collision with the carriers, the phonons transfer energy to the carriers, forming the flow of carriers in the same direction as the phonon flow,to improve the Seebeck coefficient. Simultaneously,it can be observed from the figure that the Seebeck coefficient of the sample decreases with the increase of carbon nanotubes content. At 625 K,the Seebeck coefficient of the Ca3Co4O9/10 wt.%CNTs sample decreases to 136.85 μV/K, compared with 82.02 μV/K of the undoped samples,reduced by about 40%. For the composite semiconductor material of two substances,the Seebeck coefficient can be expressed as[26]

    whereSTOTrepresents the total Seebeck of the sample,σirepresents the conductivity of different substances, andSirepresents the Seebeck coefficient of different substances. It can be seen from the formula that the conductivity has a great influence on the Seebeck coefficient. Carbon nanotubes have higher conductivity, that is, the denominator becomes larger,while the Seebeck coefficient of carbon nanotubes is smaller,and the molecular change is small.[27]Thus, the Seebeck coefficient of the composite sample is reduced.

    Fig.4. Relationship between the Seebeck coefficient and temperature of Ca3Co4O9/x wt.%CNTs(x=0,3,5,7,10)series samples.

    Based on the measurement results of electrical conductivity and Seebeck coefficient,to evaluate the electrical properties of thermoelectric materials,the electrical properties part ofZT=σS2T/kis used,σS2,which is called the power factorPF(PF=σS2)of the material.The calculated power factor of Ca3Co4O9/xwt.%CNTs series samples is provided in Fig.5.The power factor increases with the increase of temperature which can be attributed the joint influence of electrical conductivity and Seebeck coefficient. In the whole temperature range,the power factor of the samples with carbon nanotubes added is lower than that of the original samples. At 625 K,the power factor of the undoped samples is 0.98μW/cm·K2. The power factor of Ca3Co4O9/10 wt.%CNTs samples decreases to 0.22μW/cm·K2.The above results show that doping carbon nanotubes will reduce the electrical properties of the materials.

    Fig. 5. Relationship between the power factor and temperature of Ca3Co4O9/x wt.%CNTs(x=0,3,5,7,10)series samples.

    3.3. Thermal transport properties

    Figure 6(a) shows the variation of the total thermal conductivity of the sample with temperature. The thermal conductivity of the sample with carbon nanotubes addition is significantly lower than that of the original sample. And the thermal conductivity decreases with the increase of the content of carbon nanotubes. For Ca3Co4O9/xwt.% CNTs system, in general,the total thermal conductivitykof the sample consists of two parts: the carrier thermal conductivitykcand phonon thermal conductivitykp, i.e.,k=kc+kp. The carrier thermal conductivitykcis related to the electrical conductivity via the Wiedemann-Franz equation,kc=LTσ, whereLis the Lorenz constant (L=2.45×10-8V-2·K-2), and the calculated value ofkccan be ignored for its relatively small value(Fig.6(b)). Therefore,kmainly depends onkp(Fig.6(c)). In the low order approximation,kp=1/3cvlp,wherec,vandlprepresent the specific heat capacity, phonon propagation velocity and average free path, respectively. Generally, doping will increasecand decreasevandlp. Moreover, the phonon propagation velocity is positively correlated with the average free path of the phonon. At 625 K, the thermal conductivity of the sample decreases from 1.527 W·m-1·K-1of Ca3Co4O9to 0.408 W·m-1·K-1of Ca3Co4O9/10 wt.% CNTs, which is decreased by about 73%.

    Fig. 6. Relationship between (a) total thermal conductivity k, (b) carrier thermal conductivity kc and (c) phonon thermal conductivity kp of Ca3Co4O9/x wt.%CNTs(x=0,3,5,7,10)series samples with temperature.

    The main factors affecting the thermal conductivity of composites include their own thermal conductivity, particle distribution of added phase, interfacial thermal resistance,porosity and so on. The thermal conductivity of carbon nanotubes is relatively high. The thermal conductivity of multi walled carbon nanotubes reaches 600-4000 W·m-1·K-1at room temperature. When adding high thermal conductivity carbon nanotubes to Ca3Co4O9, it is generally believed that the thermal conductivity will increase, while the actual measurement results decrease with the addition of carbon nanotubes. In this study,the particle phase of the composites obtained by fully mixing carbon nanotubes and Ca3Co4O9can be regarded as uniformly distributed, so the effect of particle distribution on it can be ignored.

    According to Matthiessen’s law,the phonon thermal conductivity mainly depends on point defect scattering, grain boundary scattering,phonon-phonon scattering and resonance scattering.[28,29]The existence of composite interface will inevitably affect the thermal conductivity. Panget al.optimized the series parallel model based on the effective medium thermal conductivity theory, and gave the effective thermal conductivity of composite elements with interfacial thermal resistancekcomas[30]

    wherek2is the thermal conductivity of the matrix material,k1is the thermal conductivity of the additive,V1is the volume fraction of the added phase,Ris the diameter of the added phase particles,andRBis the interfacial thermal resistance of the added phase in the composite. In this study, the particle size of Ca3Co4O9is about 700 nm,while the diameter of carbon nanotubes is only about 5 nm,which is much smaller than that of Ca3Co4O9and can be regarded as spherical particles.The effect of carbon nanotube addition on the effective thermal conductivity of Ca3Co4O9material can be discussed by using the model of formula (2). Therefore, for carbon nanotubes and Ca3Co4O9matrix composites,k2is the thermal conductivity of the matrix Ca3Co4O9without carbon nanotubes,k1is the thermal conductivity of carbon nanotubes,the carbon nanotubes added in the experiment are double-walled carbon nanotubes, the thermal conductivity is about 3000 W·m-1·K-1,V1is the volume fraction of carbon nanotubes,Ris the diameter of carbon nanotubes (5 nm), andRBis the interfacial thermal resistance of carbon nanotubes in the composites,According to a report of Cahill and Keblinski research group,the interfacial thermal resistance of carbon nanotubes is about 8.33×10-8m2·K·W-1.[31]By substituting the corresponding value into formula (2), the effective thermal conductivitykcomof Ca3Co4O9composites with different amounts of carbon nanotubes can be calculated when considering the interfacial thermal resistance. The calculation results are shown in Fig.7.

    Fig.7. Relationship among kcom, keffect and k of Ca3Co4O9/x wt.%CNTs(x=0,3,5,7,10)series samples.

    For ceramic samples, the effect of pores on the thermal conductivity of materials cannot be ignored. To study the effect of pores on thermal conductivity,Panget al.transformed the ideal composite into a single-phase solid material with effective thermal conductivity ofkcomand regarded the pore phase as one phase to build a model based on the model of formula(2),and deduced that the effective thermal conductivity(keffect)of the composite with voids and interfacial thermal resistance is[30]

    wherekairis the thermal conductivity of the stomatal phase,ξis the proportion of pore phase in the unit, that is, porosityξ=(ρ0-ρi)/ρ0,ρ0is the theoretical density of the base material,ρiis the density of each sample. In this study, the carbon nanotube with interface and Ca3Co4O9composite discussed in formula (2) are regarded as a single phase, and the pores are regarded as the second phase,that is,kairis the thermal conductivity of the pore phase(0.023 W·m-1·K-1),ρ0is the theoretical density of Ca3Co4O9(4.68 g/cm3),ρiis given in Table 1. Bring the above values into formula (3) to calculate the effective thermal conductivity of the composite containing pores and interfaces. The calculation results are given in Fig.7.

    As shown in Fig. 7, when only the interfacial thermal resistance is considered, the effective thermal conductivitykcomvalue of carbon nanotubes and Ca3Co4O9composites decreases with the increase of the amount of carbon nanotubes,which is consistent with the experimentalk. The results show that the addition of carbon nanotubes into the interface hinders heat transfer and reduces the thermal conductivity of the composites. When the effects of interfacial thermal resistance and pores on the effective thermal conductivitykeffectof the composites are considered at the same time, the effect value also decreases with the increase of the amount of carbon nanotubes,and the decreasing trend is greater thankcomand closer to the experimental valuek,indicating that pores have a great influence on the effective thermal conductivity of the composites.In conclusion, adding carbon nanotubes to Ca3Co4O9introduces interfacial thermal resistance and pores,which plays an important role in reducing the thermal conductivity,indicating that adding carbon nanotubes is one of the effective ways to reduce the thermal conductivity of Ca3Co4O9.

    3.4. Dimensionless figure of merit

    Figure 8 shows the relationship between theZTvalue and temperature of Ca3Co4O9/xwt.% CNTs (x= 0, 3, 5,7, 10) samples . TheZTvalue is the result of the coupling of electrical conductivity, Seebeck coefficient and thermal conductivity. It can be seen from the calculation results that theZTvalues of the Ca3Co4O9/3 wt.% CNTs and Ca3Co4O9/5 wt.% CNTs samples increase significantly, and that of Ca3Co4O9/7 wt.% CNTs has little change. With the increase of the content of carbon nanotubes, theZTvalue of the Ca3Co4O9/10wt.% CNTs sample decreases. At 625 K,theZTvalue of the sample with the addition content of 3%is the highest, reaching 0.052. Compared with pure Ca3Co4O9samples at the same temperature,theZTvalue is increased by 29%. The sample with 3 wt.%CNTs has the best thermoelectric performance at 625 K.The above results show that an appropriate amount of carbon nanotubes is an effective method to improve the thermoelectric properties of Ca3Co4O9.

    Fig. 8. Relationship between the ZT value and temperature of Ca3Co4O9/x wt.%CNTs(x=0,3,5,7,10)series samples.

    4. Conclusions

    We systematically studied the thermoelectric properties of Ca3Co4O9/xwt.% CNTs (x= 0, 3, 5, 7, 10) composite samples prepared by sol-gel method. XRD and SEM showed that the samples were single phase and showed sheet like morphology. The electrical conductivity and Seebeck coefficient of all samples with carbon nanotubes addition were lower than those of the original sample. Proper addition of carbon nanotubes can effectively reduce its thermal conductivity. At 625 K, the thermal conductivity of the sample (Ca3Co4O9/10 wt.% CNTs) decreased from 1.527 W·m-1·K-1of undoped samples to 0.408 W·m-1·K-1,which decreased by about 73%. When the addition content was 3%, theZTvalue reached 0.052, which was 29%higher than that the original sample. These show that an appropriate amount addition of CNTs can reduce the thermal conductivity of Ca3Co4O9ceramic samples and improve the thermoelectric properties.

    Acknowledgement

    This work was supported by the National Natural Science Foundation of China(Grant No.51836009).

    猜你喜歡
    吳平金光
    午夜繁華
    Effects of anode material on the evolution of anode plasma and characteristics of intense electron beam diode
    Water adsorption performance of UiO-66 modified by MgCl2 for heat transformation applications
    吳平:戶外語(yǔ)文課,用觀察擺脫寫作空洞
    金光現(xiàn)代學(xué)徒班感恩教育的實(shí)踐
    The acceleration mechanism of shock wave induced by millisecond-nanosecond combined-pulse laser on silicon
    醫(yī)院感染管理在醫(yī)院內(nèi)傳染病防控工作中的作用探討
    Robust two-gap strong coupling superconductivity associated with low-lying phonon modes in pressurized Nb5Ir3O superconductors?
    頤和園十七孔橋再現(xiàn)“金光穿孔”景象
    澳門月刊(2018年1期)2018-01-17 08:48:45
    血染“不出軌保證書”,“武隆好人”婚姻無性
    久久久久网色| 日韩人妻精品一区2区三区| 七月丁香在线播放| 亚洲自偷自拍图片 自拍| 久久久久久久国产电影| 日韩电影二区| 午夜福利免费观看在线| 日韩大码丰满熟妇| 搡老乐熟女国产| 9热在线视频观看99| 亚洲国产精品国产精品| 人体艺术视频欧美日本| 国产一区二区在线观看av| av国产精品久久久久影院| 各种免费的搞黄视频| 国产成人av激情在线播放| 精品少妇一区二区三区视频日本电影 | 国产淫语在线视频| 国产女主播在线喷水免费视频网站| av片东京热男人的天堂| 一本久久精品| 一个人免费看片子| 人成视频在线观看免费观看| 国产精品免费大片| 少妇 在线观看| avwww免费| 中文字幕人妻丝袜制服| 亚洲综合色网址| 久久 成人 亚洲| 黄色 视频免费看| 成年动漫av网址| 一本一本久久a久久精品综合妖精| 日韩人妻精品一区2区三区| 欧美日韩亚洲国产一区二区在线观看 | 90打野战视频偷拍视频| 熟妇人妻不卡中文字幕| 亚洲美女搞黄在线观看| 伊人久久国产一区二区| 中文字幕亚洲精品专区| 久久国产精品男人的天堂亚洲| 午夜福利视频在线观看免费| 亚洲精品久久成人aⅴ小说| 久久鲁丝午夜福利片| 一级毛片黄色毛片免费观看视频| 纵有疾风起免费观看全集完整版| 一区二区三区精品91| 日日撸夜夜添| 亚洲精品国产一区二区精华液| 综合色丁香网| 亚洲四区av| 女的被弄到高潮叫床怎么办| 男人舔女人的私密视频| 国产黄色视频一区二区在线观看| 国产淫语在线视频| 999久久久国产精品视频| 女的被弄到高潮叫床怎么办| 久久国产精品大桥未久av| 精品国产一区二区久久| 人妻人人澡人人爽人人| 涩涩av久久男人的天堂| 制服丝袜香蕉在线| 国产亚洲午夜精品一区二区久久| 亚洲精品第二区| 国产精品久久久人人做人人爽| 男的添女的下面高潮视频| 亚洲精品国产一区二区精华液| 色婷婷久久久亚洲欧美| 精品人妻在线不人妻| 亚洲精品aⅴ在线观看| 一级片'在线观看视频| 欧美国产精品va在线观看不卡| 久久精品国产a三级三级三级| 久久久久久久久久久免费av| 99热网站在线观看| 五月天丁香电影| 国产精品久久久av美女十八| 永久免费av网站大全| 一级片'在线观看视频| 九色亚洲精品在线播放| 欧美变态另类bdsm刘玥| 日本色播在线视频| 亚洲综合精品二区| 日韩一区二区视频免费看| av网站免费在线观看视频| 国产精品 欧美亚洲| 九色亚洲精品在线播放| 久久精品国产亚洲av涩爱| 中文欧美无线码| 精品第一国产精品| 日韩制服丝袜自拍偷拍| 免费观看av网站的网址| 2018国产大陆天天弄谢| 麻豆精品久久久久久蜜桃| 人人妻人人爽人人添夜夜欢视频| 日韩伦理黄色片| 久久国产亚洲av麻豆专区| 天天躁夜夜躁狠狠躁躁| 亚洲欧美一区二区三区黑人| 亚洲精品国产一区二区精华液| 97人妻天天添夜夜摸| 久久精品aⅴ一区二区三区四区| 一级,二级,三级黄色视频| 亚洲欧洲精品一区二区精品久久久 | 激情视频va一区二区三区| 欧美激情 高清一区二区三区| 亚洲美女黄色视频免费看| 精品少妇久久久久久888优播| 黄色 视频免费看| 亚洲中文av在线| 人人妻人人澡人人看| 日韩欧美精品免费久久| 日本欧美视频一区| 免费人妻精品一区二区三区视频| 久久韩国三级中文字幕| 美女中出高潮动态图| 一级片免费观看大全| 欧美精品av麻豆av| 韩国精品一区二区三区| 最近最新中文字幕大全免费视频 | 亚洲一区中文字幕在线| 欧美黑人欧美精品刺激| 少妇人妻 视频| 精品久久久精品久久久| 一区福利在线观看| 18在线观看网站| 国产高清国产精品国产三级| 亚洲专区中文字幕在线 | 日韩 亚洲 欧美在线| 亚洲人成网站在线观看播放| 91aial.com中文字幕在线观看| 久久97久久精品| 99久久人妻综合| 精品免费久久久久久久清纯 | 老鸭窝网址在线观看| 久久ye,这里只有精品| 亚洲精品中文字幕在线视频| 99国产综合亚洲精品| 自拍欧美九色日韩亚洲蝌蚪91| 一级a爱视频在线免费观看| 国产伦理片在线播放av一区| 日本午夜av视频| 久久精品国产综合久久久| 午夜福利视频在线观看免费| 天天躁夜夜躁狠狠久久av| 中国国产av一级| 女人被躁到高潮嗷嗷叫费观| 永久免费av网站大全| 中文字幕最新亚洲高清| 乱人伦中国视频| 国产伦人伦偷精品视频| 欧美久久黑人一区二区| av在线app专区| 成人毛片60女人毛片免费| 亚洲国产精品一区三区| 中文字幕人妻丝袜制服| 国产精品久久久久久久久免| 国产av一区二区精品久久| 国产伦人伦偷精品视频| 亚洲欧洲国产日韩| 国产av国产精品国产| 免费看av在线观看网站| 1024香蕉在线观看| 永久免费av网站大全| 一本—道久久a久久精品蜜桃钙片| 少妇的丰满在线观看| 1024视频免费在线观看| 超碰成人久久| 国产xxxxx性猛交| 亚洲成色77777| 大香蕉久久成人网| 国产日韩一区二区三区精品不卡| 在线免费观看不下载黄p国产| 美女中出高潮动态图| 久久久久久久国产电影| 国产1区2区3区精品| 精品亚洲乱码少妇综合久久| xxxhd国产人妻xxx| 亚洲免费av在线视频| 日韩伦理黄色片| 精品视频人人做人人爽| 亚洲激情五月婷婷啪啪| 日韩大片免费观看网站| 国产熟女欧美一区二区| 国产片内射在线| 国产成人91sexporn| av国产久精品久网站免费入址| 一个人免费看片子| 一级爰片在线观看| 嫩草影视91久久| 高清黄色对白视频在线免费看| 美女午夜性视频免费| 免费看av在线观看网站| 熟妇人妻不卡中文字幕| 日本欧美视频一区| 国产淫语在线视频| avwww免费| 亚洲,欧美精品.| 亚洲国产日韩一区二区| 一本—道久久a久久精品蜜桃钙片| 美女国产高潮福利片在线看| 国产精品二区激情视频| 爱豆传媒免费全集在线观看| 亚洲精品中文字幕在线视频| 欧美在线一区亚洲| 国产成人免费无遮挡视频| 日本91视频免费播放| 欧美精品人与动牲交sv欧美| 国产成人a∨麻豆精品| 欧美在线黄色| 欧美日韩福利视频一区二区| 欧美日韩av久久| 国产一区二区三区综合在线观看| 色综合欧美亚洲国产小说| 建设人人有责人人尽责人人享有的| 岛国毛片在线播放| 男女高潮啪啪啪动态图| 亚洲精品一区蜜桃| 国语对白做爰xxxⅹ性视频网站| 免费黄频网站在线观看国产| 亚洲色图 男人天堂 中文字幕| 国语对白做爰xxxⅹ性视频网站| 国产av一区二区精品久久| 中文字幕人妻熟女乱码| 亚洲欧美精品综合一区二区三区| 最近中文字幕2019免费版| 欧美中文综合在线视频| 国产深夜福利视频在线观看| 最新的欧美精品一区二区| 国产1区2区3区精品| 欧美在线黄色| 日韩制服骚丝袜av| 国产黄色视频一区二区在线观看| 国产精品.久久久| av网站在线播放免费| 免费看av在线观看网站| 美女大奶头黄色视频| 久久精品久久精品一区二区三区| 久久婷婷青草| 亚洲免费av在线视频| 丰满饥渴人妻一区二区三| 大陆偷拍与自拍| 欧美国产精品一级二级三级| 国产野战对白在线观看| 69精品国产乱码久久久| 777久久人妻少妇嫩草av网站| 久久鲁丝午夜福利片| 美女主播在线视频| 国产亚洲最大av| 这个男人来自地球电影免费观看 | 久久免费观看电影| 操出白浆在线播放| 久久99热这里只频精品6学生| 精品国产国语对白av| 999久久久国产精品视频| 老汉色av国产亚洲站长工具| 一级,二级,三级黄色视频| 丝袜人妻中文字幕| 成人黄色视频免费在线看| 99久久精品国产亚洲精品| 人人妻人人添人人爽欧美一区卜| 老司机影院成人| 亚洲国产精品国产精品| 亚洲人成77777在线视频| 欧美国产精品一级二级三级| 日本91视频免费播放| 亚洲色图 男人天堂 中文字幕| www日本在线高清视频| 亚洲,欧美,日韩| 精品久久蜜臀av无| 老司机靠b影院| 午夜福利网站1000一区二区三区| 咕卡用的链子| 国产在线免费精品| 国产精品一区二区在线不卡| 青春草视频在线免费观看| 中文字幕人妻熟女乱码| 精品国产超薄肉色丝袜足j| av.在线天堂| 看免费av毛片| 亚洲精华国产精华液的使用体验| 久久久国产一区二区| 免费黄网站久久成人精品| 亚洲av国产av综合av卡| 在线 av 中文字幕| 免费观看人在逋| 看免费av毛片| 一本一本久久a久久精品综合妖精| 国产精品亚洲av一区麻豆 | 99热网站在线观看| 伊人久久大香线蕉亚洲五| 婷婷色麻豆天堂久久| 高清欧美精品videossex| 国产精品香港三级国产av潘金莲 | 看非洲黑人一级黄片| 操出白浆在线播放| 日韩av免费高清视频| 啦啦啦在线免费观看视频4| 97人妻天天添夜夜摸| 久久久久久久国产电影| 亚洲成人国产一区在线观看 | 久久精品人人爽人人爽视色| 欧美精品一区二区免费开放| 久久久久国产一级毛片高清牌| 国产亚洲欧美精品永久| 午夜免费鲁丝| 亚洲五月色婷婷综合| 精品人妻一区二区三区麻豆| 日韩欧美一区视频在线观看| 欧美97在线视频| 欧美黑人欧美精品刺激| 久久久亚洲精品成人影院| 各种免费的搞黄视频| 校园人妻丝袜中文字幕| 9热在线视频观看99| 久久天堂一区二区三区四区| 午夜激情久久久久久久| 欧美av亚洲av综合av国产av | 伊人久久国产一区二区| 欧美日韩福利视频一区二区| 欧美亚洲日本最大视频资源| 国产极品天堂在线| 亚洲五月色婷婷综合| 纵有疾风起免费观看全集完整版| 亚洲欧美清纯卡通| 国产精品av久久久久免费| 一区二区三区四区激情视频| 精品人妻熟女毛片av久久网站| 欧美另类一区| 美女中出高潮动态图| 国产97色在线日韩免费| 亚洲欧美中文字幕日韩二区| 国产又爽黄色视频| 在线精品无人区一区二区三| av免费观看日本| 成人18禁高潮啪啪吃奶动态图| 97人妻天天添夜夜摸| 国产日韩欧美亚洲二区| 午夜福利,免费看| 亚洲成人av在线免费| 人人妻人人澡人人看| 一二三四中文在线观看免费高清| 亚洲成人一二三区av| 少妇被粗大的猛进出69影院| 自拍欧美九色日韩亚洲蝌蚪91| av线在线观看网站| 日韩伦理黄色片| 国产无遮挡羞羞视频在线观看| 捣出白浆h1v1| 中文欧美无线码| 爱豆传媒免费全集在线观看| 亚洲婷婷狠狠爱综合网| 如何舔出高潮| 一区在线观看完整版| 欧美另类一区| 国产日韩欧美视频二区| 日韩欧美一区视频在线观看| 国产成人精品久久二区二区91 | 日日撸夜夜添| 黄色怎么调成土黄色| 国产 精品1| 91成人精品电影| 人妻一区二区av| 街头女战士在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91| 91精品国产国语对白视频| 建设人人有责人人尽责人人享有的| 精品酒店卫生间| 在线观看国产h片| 精品一品国产午夜福利视频| 男女边吃奶边做爰视频| 少妇被粗大的猛进出69影院| 国产极品粉嫩免费观看在线| 一区二区三区四区激情视频| 亚洲精品一区蜜桃| 90打野战视频偷拍视频| 亚洲免费av在线视频| 我要看黄色一级片免费的| 国产亚洲精品第一综合不卡| 亚洲七黄色美女视频| 色吧在线观看| 在线观看www视频免费| 亚洲精品久久久久久婷婷小说| 一本久久精品| 国产精品久久久人人做人人爽| 亚洲美女黄色视频免费看| 综合色丁香网| 亚洲国产欧美日韩在线播放| 熟女av电影| 久久天躁狠狠躁夜夜2o2o | 精品一区在线观看国产| 曰老女人黄片| avwww免费| 这个男人来自地球电影免费观看 | 亚洲欧美色中文字幕在线| 久久久国产精品麻豆| 亚洲伊人久久精品综合| 天天躁日日躁夜夜躁夜夜| 女性生殖器流出的白浆| 精品卡一卡二卡四卡免费| 亚洲中文av在线| 国产1区2区3区精品| 亚洲中文av在线| 国产免费视频播放在线视频| 国产在线免费精品| 亚洲婷婷狠狠爱综合网| 你懂的网址亚洲精品在线观看| 王馨瑶露胸无遮挡在线观看| 99国产综合亚洲精品| 9191精品国产免费久久| 在线天堂最新版资源| 99久久99久久久精品蜜桃| 90打野战视频偷拍视频| 一本大道久久a久久精品| 亚洲欧美一区二区三区黑人| 一边摸一边抽搐一进一出视频| 精品福利永久在线观看| 日韩中文字幕欧美一区二区 | 国产片内射在线| 久久天堂一区二区三区四区| 欧美日韩视频高清一区二区三区二| 91精品三级在线观看| av国产精品久久久久影院| 黄色视频不卡| 亚洲欧美一区二区三区久久| 欧美激情高清一区二区三区 | 亚洲一码二码三码区别大吗| 最近的中文字幕免费完整| 又大又爽又粗| 亚洲成人一二三区av| 69精品国产乱码久久久| 日日啪夜夜爽| 成人三级做爰电影| 宅男免费午夜| 在线观看免费高清a一片| 欧美最新免费一区二区三区| 天天躁日日躁夜夜躁夜夜| 亚洲第一区二区三区不卡| 久久久久精品性色| 最新的欧美精品一区二区| 国产精品久久久久久久久免| 少妇人妻久久综合中文| 国产又爽黄色视频| 国产视频首页在线观看| 欧美激情 高清一区二区三区| xxxhd国产人妻xxx| 亚洲人成77777在线视频| 老司机深夜福利视频在线观看 | 成年人免费黄色播放视频| 午夜福利视频精品| 黄频高清免费视频| 水蜜桃什么品种好| 久久性视频一级片| 嫩草影视91久久| 各种免费的搞黄视频| 五月开心婷婷网| av国产精品久久久久影院| 午夜福利免费观看在线| 老司机亚洲免费影院| 一级,二级,三级黄色视频| 精品国产超薄肉色丝袜足j| 在线观看免费午夜福利视频| 91成人精品电影| 日韩av免费高清视频| 亚洲精华国产精华液的使用体验| 免费观看性生交大片5| 亚洲人成77777在线视频| 欧美 亚洲 国产 日韩一| 午夜福利网站1000一区二区三区| 一区二区三区激情视频| 精品国产一区二区久久| 青春草视频在线免费观看| 久久久久人妻精品一区果冻| 精品酒店卫生间| 欧美人与性动交α欧美软件| 日韩av不卡免费在线播放| 亚洲精品国产区一区二| 国产精品秋霞免费鲁丝片| 国产精品久久久av美女十八| 久久午夜综合久久蜜桃| 五月开心婷婷网| 超碰成人久久| 国产黄频视频在线观看| 人人妻,人人澡人人爽秒播 | 欧美日韩视频高清一区二区三区二| 成人免费观看视频高清| 女性被躁到高潮视频| 亚洲人成电影观看| 亚洲国产精品国产精品| 亚洲欧洲日产国产| 成年人免费黄色播放视频| 美国免费a级毛片| 国产精品 国内视频| 999精品在线视频| 精品国产一区二区久久| 日韩精品免费视频一区二区三区| 青春草亚洲视频在线观看| 国产成人精品福利久久| 高清欧美精品videossex| 久久久亚洲精品成人影院| 国产一级毛片在线| 日韩一卡2卡3卡4卡2021年| 美女中出高潮动态图| 欧美久久黑人一区二区| 99精国产麻豆久久婷婷| 少妇 在线观看| 又大又黄又爽视频免费| 午夜影院在线不卡| 在线观看国产h片| 伦理电影大哥的女人| 久久精品亚洲熟妇少妇任你| 亚洲精品久久久久久婷婷小说| 国产欧美日韩一区二区三区在线| 在线观看三级黄色| 深夜精品福利| 欧美日韩国产mv在线观看视频| 精品福利永久在线观看| 丝袜在线中文字幕| 狂野欧美激情性xxxx| 宅男免费午夜| 9191精品国产免费久久| 亚洲av电影在线进入| 午夜福利视频精品| 伦理电影大哥的女人| 久久青草综合色| 久久久久精品人妻al黑| 国精品久久久久久国模美| 日本黄色日本黄色录像| 黑人欧美特级aaaaaa片| 久久精品国产a三级三级三级| 亚洲熟女精品中文字幕| 晚上一个人看的免费电影| 观看av在线不卡| 亚洲av综合色区一区| 一区在线观看完整版| 超碰97精品在线观看| 国产精品成人在线| 如何舔出高潮| 婷婷色综合大香蕉| 国产成人欧美| 69精品国产乱码久久久| 三上悠亚av全集在线观看| 波多野结衣一区麻豆| 女人被躁到高潮嗷嗷叫费观| 国产熟女午夜一区二区三区| 一级黄片播放器| 青草久久国产| 久久久精品区二区三区| 91aial.com中文字幕在线观看| 欧美成人精品欧美一级黄| 男人操女人黄网站| 亚洲精品中文字幕在线视频| 操出白浆在线播放| 精品亚洲乱码少妇综合久久| 最近最新中文字幕免费大全7| 亚洲成人免费av在线播放| 亚洲成国产人片在线观看| 无遮挡黄片免费观看| 最新在线观看一区二区三区 | 男男h啪啪无遮挡| 久久久久久久久久久免费av| 人妻人人澡人人爽人人| 在线观看免费日韩欧美大片| 新久久久久国产一级毛片| 制服人妻中文乱码| 一级毛片黄色毛片免费观看视频| 啦啦啦啦在线视频资源| 国产精品人妻久久久影院| 中文字幕人妻丝袜一区二区 | 欧美日韩成人在线一区二区| 国产野战对白在线观看| 黄片播放在线免费| 亚洲国产精品一区二区三区在线| 久久久久久人人人人人| 99久久精品国产亚洲精品| 欧美av亚洲av综合av国产av | 这个男人来自地球电影免费观看 | 亚洲七黄色美女视频| 亚洲欧美清纯卡通| 99精国产麻豆久久婷婷| 老司机影院成人| 中文天堂在线官网| 国产老妇伦熟女老妇高清| 黄频高清免费视频| a级毛片黄视频| 男的添女的下面高潮视频| 国产在视频线精品| 欧美激情高清一区二区三区 | 久久99一区二区三区| 老汉色∧v一级毛片| 国产97色在线日韩免费| 欧美人与善性xxx| 国产精品嫩草影院av在线观看| 欧美日韩福利视频一区二区| 国产又色又爽无遮挡免| 一级毛片我不卡| 91国产中文字幕| 日韩电影二区| 亚洲国产欧美网| 久久99精品国语久久久| 免费少妇av软件| 黄色毛片三级朝国网站| 视频在线观看一区二区三区| 欧美精品高潮呻吟av久久| 日日爽夜夜爽网站| 亚洲激情五月婷婷啪啪| 国产一区有黄有色的免费视频| 亚洲,一卡二卡三卡| 一级,二级,三级黄色视频| 一个人免费看片子| 国产av国产精品国产| 亚洲av国产av综合av卡| 亚洲第一av免费看| 91精品国产国语对白视频| 丝袜人妻中文字幕| 亚洲欧美色中文字幕在线|