• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Robust two-gap strong coupling superconductivity associated with low-lying phonon modes in pressurized Nb5Ir3O superconductors?

    2019-11-06 00:46:24BosenWang王鉑森YaoqingZhang張堯卿ShuxiangXu徐淑香KentoIshigakiKazuyukiMatsubayashiJinGuangCheng程金光HideoHosonoandYoshiyaUwatoko
    Chinese Physics B 2019年10期
    關(guān)鍵詞:金光

    Bosen Wang(王鉑森),Yaoqing Zhang(張堯卿),Shuxiang Xu(徐淑香),Kento Ishigaki,Kazuyuki Matsubayashi,Jin-Guang Cheng(程金光),4,Hideo Hosono,and Yoshiya Uwatoko

    1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2Institute for Solid State Physics,University of Tokyo,Kashiwanoha 5-1-5,Kashiwa,Chiba 277-8581,Japan

    3Materials Research Center for Element Strategy,Tokyo Institute of Technology,Yokohama 226-8503,Japan

    4Songshan Lake Materials Laboratory,Dongguan 523808,China

    Keywords:new superconductor,high-pressure effect,strongly coupled superconductor

    Low energy anharmonic lattice vibration significantly affects electron–phonon coupling(λe?p)and plays an important role in exploring superconductors(SC)and revealing superconducting mechanism.[1,2]Among them,phonon softening associated with structural instabilities usually results in Fermi surface nesting and the enhancement of the electron–phonon coupling,which is believed to be much important for superconducting pairings.[3–7]Various cage-like materials have been reported and attracted much more attention.[3,6,7]The commonalities are composed of hollow covalently bonded atomic clusters and various inserted elements,offering playgrounds to explore diverse structures,exotic physics,and multifunctionalities,e.g.,multi-band SCs,[3,8–10]metal–insulator transition,[10]thermoelectricity,[11]and electrides.[12,13]But some regularity is not universal concerning the superconducting pairing mechanisms,which is also challenging to study these scientific issues.

    Hexagonal structure Mn5Si3-type derivatives are such examples.[14,15]One of the top priorities is the explorations of new SCs and superconducting mechanisms.[15–19]At present, the difficulty in synthesizing single-phase hexagonal and tetragonal materials lies in their close formation energies.[16,17,19]One common way is elementary intercalation into interstitial positions of Mn5Si3Mx(M=carbon,nitrogen,oxide,and transition metal elements,etc).[14–19]Hexagonal phase can be stabilized and the relevant studies are performed to reveal the relationships between lattice instabilities and superconductivity. For example,hexagonal Nb5Ir3is stabilized upon the insertion of the interstitial oxygen and Tcis increased as a result.It is sure that the interstitial oxygen brings great changes in electronic structures.[16]It still remains unclear whether the enhanced Tcis dominantly associated to the volume change,band fillings,structural instability,and/or disorders.[16]Another issue to be addressed is the relationship of electride and superconductivity. Theoretical calculations predicated that the electride nature of Nb5Ir3vanishes in Nb5Ir3O.As we know,eletride materials have electronic bands of anionic electron near Fermi level(EF)in many cases including C12A7: e-1 electride,Ca2N,and Y5Si3,which is the important reason why electride materials exhibit interesting properties.For SCs,Tcis enhanced along with the suppression of the electride nature and the coexistence of superconductivity and electride is firstly reported with Tc~0.16–2.4 K.[12,13]For C12A7:e-1 electride SC,Tcis increased to 2.4 K by pressure and this enhancement is attributed to the changes in electronic nature of anionic electride band crossing Fermi levels switching from s-to sd-hybridized state.[13]However,the interstitial oxygen suppresses superconducting state in other cases,hexagonal Zr5Sb3is superconductive at ~2.3 K,but Zr5Sb3O is not superconducting above 1.8 K,it is thought that larger density of states(DOS)at EFassociated with the Zr-d electrons and the larger value of λe?pis critical.[15]Analogously,in Zr5Sb(3?x)Rux,its hexagonal structure transforms into W5Si3-type one for 0.4 ≤x ≤0.6.Tcincreases from 2.3 K to 5 K in Zr5Sb2.4Ru0.6,which originates from the EFclose to the DOS peak.[17]Except for these above scientific issues,the present studies on the intercalated Mn5Si3-type materials focus on macro-correlations of crystal structure and superconductivity,and some conclusions are inadequate. In this work,Nb5Ir3O is selected to study the issues further. Another concern is to reveal superconductivity by comparative analysis of doping and high pressure,and to judge whether unconventional or not with magnetism of localized and/or itinerant iridium.[20,21]

    Fig.1.Crystal structures for(a)Nb5Ir3 and(b)Nb5Ir3O.ρ(T)for(c)Nb5Ir3 and(d)Nb5Ir3O.The enlargement of low-T data is shown in the inset.The derivative dρ/dT for(e)Nb5Ir3 and(f)Nb5Ir3O.The broad peaks are marked by T p.M(T)curves at 10 Oe under the ZFC and FC processes for(g)Nb5Ir3 and(h)Nb5Ir3O.

    High pressure is an effective and clean way to study structural chemistry and electronic phase transitions of materials by shortening bonds and reconstructing electronic bands.For SCs,high-pressure effect is valuable because the underlying mechanism can be identified by analogizing with the known SCs. In this work,Nb5Ir3O is found to be a strongly coupled SC with two s-wave gaps and phonon softening associated with interstitial oxygen is critical.

    At ambient pressure(AP),electrical transport and specific heat of Nb5Ir3and Nb5Ir3O were measured on commercial physical properties measurement system(PPMS,1.8 K≤T ≤300 K,?9 T ≤H ≤9 T).High-pressure susceptibility was measured in a piston-cylinder cell with glycerol as the pressure transmitting medium(PTM)and a small piece lead as the pressure monitor.The background contributions mainly originate from Meissner signal of Pb reference.High-pressure electrical transport was performed by the four-probe method in a cubic anvil pressure cell which generated the hydrostatic environment.[22]MgO cubes were used as the gasket and glycerol as PTM.All the measurements were carried out in4He refrigerated chambers(1.9 K ≤T ≤300 K).

    Structures of Nb5Ir3and Nb5Ir3O(1?δ)are shown in Figs.1(a)and 1(b).They have similar hexgonal symmetry except for the interstitial oxygen inserted.Nb5Ir3contains two groups of weakly connected octahedra along the c axis:one is hollow(Nb1)6octahedron connected by Nb1–Nb1 bonds,the other is side-sharing Ir(Nb2)6octahedron.Moreover,it is regarded as the network of twisted trigonal Nb1-prisms connected by the planes along the c axis,which allows the insertion of oxide ion in the“Nb1 cages”.It does not change the crystal structure,but forms covalent bonds Nb1–O.Upon changing from Nb5Ir3to Nb5Ir3O,lattice parameter c contracts by ~0.11%while a and b expand by ~0.087%. In Figs.1(c)and 1(d),ρ(T)of Nb5Ir3and Nb5Ir3O shows the metallic behavior. Two independent drops appear in the inset of Fig.1(c),which represent superconducting transitions of hexagonal and tetragonal Nb5Ir3,respectively.[20,21]andare marked where ρ(T)deviates linearly and is zero.At AP,is ~9.4 K for hexagonal Nb5Ir3and ~4.0 K for tetragonalis ~10.15 K and~is 10 K for Nb5Ir3O.In Fig.1(d),ρ(T)is shown and similar in temperature dependence for both as-grown Nb5Ir3O and annealed one(4 GPa,600?C).A clear difference is that high pressure broadens the transition anddecreases from ~10 K to ~9.6 K.A broad peak appears in dρ/dT at a critical temperature Tp,which decreases from ~62.5 K to ~53.8 K upon the increase of the interstitial oxygen. Usually,this peak reflects the information of the phonon spectrum and is closely related with Debye temperature θD.[23]

    Fig.2.The transverse resistivity ρxy vs.H at various temperatures:(a)S1#and(b)S2#.(c)Temperature dependence of Hall coefficient RH(T).

    Figure 2 displays the field-dependence of transverse resistivity ρxyat various temperatures up to 5 T.ρxyshows a linear H-dependence for each temperature. Hall coefficient RHis defined by dρxy/dH. RHis positive and almost temperature independent below 200 K,and negative above 250 K,which suggests the balance of electron-to hole-types carriers with different effective masses and velocities.Its strong temperature dependence elucidates that Nb5Ir3O has a complex multi-band electronic structure with both electron-and hole-Fermi pockets.[24,25]According to the successive changes in mangetism and electrical resistivity,we can exclude the possible structural and magnetic phase transitions.Besides,the longitudinal resistivity ρxxis measured,the magnetoresistance MR=?ρxx/ρxx(0)=(ρxx(5 T)?ρxx(0))/ρxx(0)<2%. As we know,for a multi-band structure material,it is difficult to calculate the carrier concentration by a single-band model.It is necessary to consider the mobility of two carriers and the specific Fermi surface structures and more theoretical calculations and in-depth experimental analysis are needed.Meanwhile,the carrier density by the simple estimate of the singleband model is only a lower limit of the total carrier number(electrons plus holes),such as n ~1.6×1028m?3for Nb5Ir3O at 300 K.Considering the change of sign of RH,the compensation effect at 300 K(where the one-band carrier density was calculated)is expected to still be significant.Further understandings need De-Haas–van Alphen and angle-resolved photoemission spectroscopy.

    Temperature dependence of specific heat Cp(T)is shown in Fig.3(a). On warming,Cp(T)increases and approximates 3NR above 300 K.Tc(~9.94 K)is marked by the jump in Cp/T.The inset shows Cp(T)/T and its polynomial fittingsin the temperature range of Tc≤T ≤14 K,where γnT andare electron and phonon contributions,respectively. It gives γn=34.255 mJ/mol·K2,β1=0.4489 mJ/mol·K4,β2=1.07×10?3mJ/mol·K6. Electronic contribution Ce(T)was investigated by the deduction offrom Cp(T)as in Fig.3(c). The ?C/γnTcat Tcis ~1.91,larger than 1.43 for a Bardeen–Cooper–Schrieffer(BCS)SC.[26]λe?pis 0.85 by using McMillan formula Tc=(θD/1.45)exp{?1.04(1+λe?p)/[λe?p?0.15(1+0.62λe?p)]}, which implies strong electron–phonon coupling.[26]

    Fig.3.(a)Temperature dependent Cp(T)for Nb5Ir3O,the inset shows low-T Cp(T)/T.(b)Theis the sum of Debye model CD and Einstein oscillators CE.(c)Electronic specific heat Ce(T)=Cp(T)?(β1T 3+β2T 5)is analyzed by using a single-gap model as Ce(T)/T=β1T 3+β2T 5+Bexp(??/kBT).(d)and(e)H-dependence of Cp(T).(f)The upper critical field Hc2 is given by Hc2(T)=Hc2(0)[1?(T/Tc)2]/[1+(T/Tc)2]and Hc2(0)=?0.693Tc dHc2/dT,respectively.Inset shows H-dependent γ(H)and its comparison to H1/2-behavior for d-wave SCs.

    To get more information on gap symmetry,Ce(T)was analyzed by a single-gap model C(T)=β1T3+β2T5+Bexp(??/kBT)at first,which gives 2?/kBTc=4.25. But clear deviations between experimental and mathematical fitting exist for T<5 K,which implies that isotropic s-wave is too simple. Meanwhile,an anisotropic s-wave gap is similar but not applicable to the present case. Then,two anisotropic s-waves with gaps ?1and ?2are required. The data are well duplicated with 2?L(0)/kBTc~6.56(90%)and 2?S(0)/kBTc~2.36(10%). Furthermore,H-dependence of Ce(T,H)is measured. At H=0,the linear extrapolation of Ce/T vs.gives a“residual”Sommerfeld coefficient γ0≈0 mJ·mol?1·K?2.For each H,γ(H)at T=0 K is determined by linear fitting to Ce/T vs.T2.The H-dependence of γ(H)is plotted in Fig.3(f). γ(H)increases linearly as a function of H,implying the appearance of nodeless gap.γ(H)is smaller than the H1/2dependence for d-wave SCs with line nodes.[27]Generally,in fully-gapped SCs,the excited state is seen as normal-state quasiparticles in vortex core states,which generates the γn(H)≈H at zero temperature. Thus,Nb5Ir3O is a fully-gapped s-waves SC.Moreover,using the Hdependence ofCp(T)data in Figs.3(d)and 3(e),the upper critical field Hc2(0)is 10.5(5)T and 9.5(8)T by Ginzburg–Landau equation Hc2(T)=Hc2(0)[1 ?(T/Tc)2]/[1+(T/Tc)2]and Werthamer–Helfand–Hohenberg(WHH)formula Hc2(0)=?0.693TcdHc2/dT,respectively.[28]

    To extract phonon contributions,thevs.T is plotted.It shows a broad peak at ~23 K,which manifests the existence of low-energy Einstein vibration associated with anomalies in the phonon spectrum.[29]Cp(T)is the sum of Debye mode and Einstein oscillators

    where CD(T)and CE(T)are the contributions of continuous phonon mode and localized oscillators,respectively,N,N1,and N2are the numbers of oscillators per formula,R is the gas constant,θDand θE1,θE2are Debye and Einstein temperatures,respectively.It gives θD=315.8(4)K,θE1=87.9(2)K,θE2=69.7(5)K,which are insensitive to the temperature ranges selected.As above,the Nb1O octahedron is connected with side-sharing Ir(Nb2)6one,which reminds us that Tcdepends on λe?pin materials with low-lying phonon modes.It suggests the existence of phonon softening associated with interstitial oxygen.

    Figure 4 shows ρ(T)of Nb5Ir3O under various pressures.With increasing pressure,room-temperature ρ decreases and its value at 13 GPa is nearly three times smaller than that at AP.ρ(T)has similar temperature dependence for each pressure:metallic behavior and entering into superconducting state.As shown in Fig.4(b),with increasing pressure,anddecrease and transition widthincreases,implying that the superconducting transition is broadened by pressure.As shown in Fig.4(c),susceptibility is measured in a piston pressure cell.is determined by the intersections of two straight lines. Large field shielding effect belowconfirms bulk superconductivity.The fraction is nearly 1 by subtracting the background contributions of Pb signal which is about 5%–10%of total magnetization.decreases from~9.91 K at 0.10 GPa to ~9.70 K at 1.21 GPa.The stress effect and the enhanced anisotropy by pressure are the main reasons.Besides,the broad peak at T p ~53.8 K atAP enhances to 69.4 K at 13 GPa,which is negatively correlated with Tc.

    Fig.4.(a)The ρ(T)under various pressures.(b)Low-T ρ(T)is enlarged and dρ/T in the inset.(c)M(T)under ZFC process at 10 Oe.(d)?ρ(T)under various pressures and the characteristic temperatures T ?,T ε,and T#are defined as the crossing points from T 2-to T 3-dependence,the deviation from T 3-dependence,the intersection of T 3-dependence and linear fitting,respectively.The parameters are summarized with pressures:(e),(h)ρ300 K,ρ0,(i)the A value.

    Normal-state ρ(T)is analyzed bywith residual resistivity ρ0,temperature coefficient A,and exponent n.It is found that n is ~2.±0.1 for T ≤T?,then increases up to ~3.±0.1 for T?≤T ≤Tε,and then tends to saturation for T ≥T#,where T?,Tε,and T#are defined as the crossing points of T2-to T3-dependence,the deviation from T3-dependence,the intersection of T3-dependence and linear fitting above 250 K,respectively.All the parameters are shown in Figs.4(f)and 4(g).Considering the small pressure difference and distribution(<0.5 GPa)in the cubic anvil cell cooling from 300 K to 2 K,the present analyses of temperature dependence of resistivity are reliable.increases as the pressure increases while T?reaches the maximum at 8 GPa.T2-fittings for Tc≤T ≤T?give ρ,A and their pressure dependence in Figs.4(h)and 4(i).Both ρ and ρ300Kreduce with increasing pressure.The decrease of ρ is attributed to the weakened grain boundary scatterings under pressure.The A has a positive correlation with Tc:it decreases quickly below 4 GPa,and then trends to a constant.

    Fig.5.(a)Pressure phase diagram,the color represents the changing trends of resistivity. (b)The the unit-cell volume V,and the lattice parameter ratio c/(10a)are related with the increasing nominaloxide content(1?δ)of 0,0.20,0.40,0.60,0.80,1.0 for (c)We scaled the relationship of and for The thick lines indicate the tendency.

    In Fig.5(a),we outline the high-pressure phase diagram.The color represents the changing trend of resistivity. Generally,T2-dependence for Tc≤T ≤T?shows that electron–electron scattering is the main source and T3-dependence forindicates important electron–phonon scattering.Above Tε,ρ(T)is saturated,indicating that electron–phonon scattering is comparable to the atomic lattice spacing.Thus,the increases of characteristic temperatures reflect the change of phonon contributions.[23,26,30]For,theunit-cell volume,and lattice parameters c/(10a)ratio are summarized in Fig.5(b). With increasing(1 ?δ),increases from ~9.4 K to ~10.15 K in Nb5Ir3O,the volume expands from ~272.89 mm3to ~273.05 mm3,and c/(10a)decreases from ~0.649 to ~0.647.More interestingly,and the volume have similar linear dependence on c/(10a).In Fig.5(c),the relationship ofandis also scaled.Bothanddecrease linearly with Tp.It is argued thatis proportional to the parameters closely correlated with θD,which implies that phonon contributions are different with pressures,[23,26]e.g.,the weakness of phonon scattering and the reduced value of λe?p.[5,15,17]

    Finally,we discuss the evolution of superconditing transition temperature with the interstitial oxygen and pressures.As mentioned above,with increasing concentration of the interstitial oxygen,the volume expands and Tcenhances,which seems to contradict with pressure.[16]Under pressure,Tccorrelates with the A value directly. As we know,A is proportional to the square of Sommerfeld coefficient,as an important measure of DOS at EF.Therefore,the decrease of Tcmainly originates from the reduce of N(EF),which is consistent with the phonon-mediated behavior in Nb5Ir3O.Previous studies revealed that Tcwill be higher if with larger N(EF).[15,17–19]It suggests that band filling effect is the main result of superconductivity.Or to say,high pressure and interstitial oxygen change the electronic structure and phonon spectrum in different ways.Several possible scenarios are proposed:the first case is that pressure broadens energy bands and results in the decrease of N(EF).[26]It is consistent with the fact that Nb5Ir3O is phonon-medicated SC.For Nb5Ir3O(1?δ),the monotonic increase of N(EF)may account for higher Tcwith increasing concentration of the interstitial oxygen.The second scenario is the weakness of λe?punder pressure,which can reduce Tc.[1,2]This is basically consistent with strong correlation characteristics of these SCs.[3,7,8,10]For Nb5Ir3O(1?δ),considering the strong electronegativity of oxygen,the insertion of interstitial oxygen introduces Nb1–O ionic bonds,which may enhance the electron correlations and λe?p.The third scenario is that Nb5Ir3O has an inter-band coupling considering its multi-band electronic structure,which usually appears in other multi-band SCs.[31,32]For Nb5Ir3O(1?δ),the insertion of interstitial oxygen enhances this coupling and results in an enhancement of Tc,which is in good agreement with theoretical calculations.To understand the details,further studies on band structures and phonon spectrum are also required.

    In summary,we have investigated robust superconductivity and gap symmetry of Nb5Ir3O.Nb5Ir3O is found to be strongly coupled phonon-medicated SC with double s-waves.Phonon softening and low-lying phonon modes associated with the interstitial oxygen are critical to understand the evolution of Tc.

    Acknowledgment

    We thank S.Nagasaki and Dr.Gouchi for the technical assistance.

    猜你喜歡
    金光
    午夜繁華
    Optimal driving field for multipartite quantum battery coupled with a common thermal bath
    王記寨
    Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
    金光現(xiàn)代學徒班感恩教育的實踐
    The acceleration mechanism of shock wave induced by millisecond-nanosecond combined-pulse laser on silicon
    Comparative study of pulsed laser diode end-pumped thulium-doped 2-μm Q-switched lasers?
    呂金光
    龍的傳人
    頤和園十七孔橋再現(xiàn)“金光穿孔”景象
    澳門月刊(2018年1期)2018-01-17 08:48:45
    热re99久久国产66热| 九色亚洲精品在线播放| 国产日韩欧美在线精品| 精品酒店卫生间| 在线看a的网站| 日韩大片免费观看网站| 在线观看美女被高潮喷水网站| 一级a爱视频在线免费观看| 久久精品国产a三级三级三级| 中文字幕人妻丝袜一区二区 | 亚洲一级一片aⅴ在线观看| 黄色毛片三级朝国网站| 欧美成人精品欧美一级黄| 日韩在线高清观看一区二区三区| 免费人妻精品一区二区三区视频| 午夜免费鲁丝| 中文字幕亚洲精品专区| 欧美激情极品国产一区二区三区| 观看av在线不卡| 久久热在线av| 黄色 视频免费看| 欧美黄色片欧美黄色片| 91aial.com中文字幕在线观看| 男女高潮啪啪啪动态图| 建设人人有责人人尽责人人享有的| 久久精品aⅴ一区二区三区四区 | 2021少妇久久久久久久久久久| 亚洲美女搞黄在线观看| 熟女电影av网| 熟女少妇亚洲综合色aaa.| 不卡av一区二区三区| 97在线人人人人妻| 久久人妻熟女aⅴ| 亚洲伊人久久精品综合| 超碰成人久久| 成人午夜精彩视频在线观看| 久久精品亚洲av国产电影网| 亚洲色图综合在线观看| 亚洲精品一区蜜桃| 午夜福利在线观看免费完整高清在| 国产成人91sexporn| 久久青草综合色| 亚洲精品中文字幕在线视频| 久久久国产精品麻豆| 最新中文字幕久久久久| 男男h啪啪无遮挡| 久久久久久人人人人人| 色网站视频免费| 亚洲国产av影院在线观看| 亚洲精品av麻豆狂野| 晚上一个人看的免费电影| 99国产精品免费福利视频| 一区二区三区精品91| 久久午夜综合久久蜜桃| 在线免费观看不下载黄p国产| 精品人妻在线不人妻| 伊人亚洲综合成人网| 亚洲精品国产一区二区精华液| 在线 av 中文字幕| 久久婷婷青草| 青草久久国产| 嫩草影院入口| 欧美在线黄色| 婷婷色麻豆天堂久久| 丰满乱子伦码专区| 国产精品一二三区在线看| 欧美激情 高清一区二区三区| 这个男人来自地球电影免费观看 | 少妇熟女欧美另类| 国产探花极品一区二区| 性少妇av在线| a 毛片基地| 日韩一区二区视频免费看| 亚洲av欧美aⅴ国产| 高清av免费在线| 欧美日韩av久久| 日韩欧美一区视频在线观看| 国产精品成人在线| 精品卡一卡二卡四卡免费| 成人二区视频| 极品少妇高潮喷水抽搐| 日本av手机在线免费观看| 免费不卡的大黄色大毛片视频在线观看| 国产人伦9x9x在线观看 | 国产精品嫩草影院av在线观看| 日韩免费高清中文字幕av| 制服人妻中文乱码| 少妇猛男粗大的猛烈进出视频| 亚洲情色 制服丝袜| 亚洲,一卡二卡三卡| 精品少妇内射三级| 国产免费视频播放在线视频| av卡一久久| 久久久久精品性色| 亚洲国产欧美日韩在线播放| 老熟女久久久| 欧美精品高潮呻吟av久久| 高清视频免费观看一区二区| 男女免费视频国产| 欧美中文综合在线视频| 如何舔出高潮| 免费观看在线日韩| 久久影院123| 美女视频免费永久观看网站| 日本免费在线观看一区| av天堂久久9| 久久久久久免费高清国产稀缺| 日本黄色日本黄色录像| 一本色道久久久久久精品综合| 欧美国产精品va在线观看不卡| 精品一品国产午夜福利视频| 美女主播在线视频| 久久精品国产综合久久久| 久久久国产欧美日韩av| 这个男人来自地球电影免费观看 | 亚洲精品第二区| 国产精品二区激情视频| 又大又黄又爽视频免费| 国产精品久久久久成人av| 精品视频人人做人人爽| av在线观看视频网站免费| av在线播放精品| 国产乱人偷精品视频| av.在线天堂| 国产激情久久老熟女| 久久国产精品大桥未久av| 日本vs欧美在线观看视频| 久久国内精品自在自线图片| 亚洲久久久国产精品| 日韩伦理黄色片| 国产在视频线精品| 91成人精品电影| 黄频高清免费视频| 极品人妻少妇av视频| 综合色丁香网| 久久久久久久久免费视频了| 国产精品三级大全| 日日爽夜夜爽网站| 精品卡一卡二卡四卡免费| 亚洲欧美一区二区三区国产| 国产一区有黄有色的免费视频| 精品视频人人做人人爽| 亚洲,欧美精品.| 岛国毛片在线播放| 日产精品乱码卡一卡2卡三| 爱豆传媒免费全集在线观看| 一二三四中文在线观看免费高清| 一区二区三区激情视频| 少妇的逼水好多| 国产福利在线免费观看视频| 99香蕉大伊视频| 99香蕉大伊视频| 极品人妻少妇av视频| 亚洲成国产人片在线观看| 精品一区在线观看国产| 国产av国产精品国产| 九色亚洲精品在线播放| 免费黄频网站在线观看国产| 性高湖久久久久久久久免费观看| 视频在线观看一区二区三区| 久久久久国产一级毛片高清牌| av卡一久久| 中文字幕制服av| 考比视频在线观看| 日韩在线高清观看一区二区三区| 久久久国产精品麻豆| 欧美日韩综合久久久久久| 一区二区三区精品91| 日韩精品有码人妻一区| 大片电影免费在线观看免费| 一二三四中文在线观看免费高清| 精品少妇一区二区三区视频日本电影 | 久久人人97超碰香蕉20202| 日韩,欧美,国产一区二区三区| 汤姆久久久久久久影院中文字幕| 精品一区二区三区四区五区乱码 | 精品第一国产精品| 丰满乱子伦码专区| 中文字幕av电影在线播放| 日韩 亚洲 欧美在线| 国产一区有黄有色的免费视频| 国产免费现黄频在线看| 两性夫妻黄色片| 国产成人av激情在线播放| 欧美成人午夜精品| 一区福利在线观看| www.av在线官网国产| 国产在线免费精品| 天堂中文最新版在线下载| 制服诱惑二区| 亚洲成国产人片在线观看| 国产成人a∨麻豆精品| 国产 精品1| 老汉色∧v一级毛片| 尾随美女入室| 伊人亚洲综合成人网| 国产男人的电影天堂91| 丰满少妇做爰视频| 男人舔女人的私密视频| 国产一区二区激情短视频 | 蜜桃国产av成人99| 伊人久久国产一区二区| 欧美激情极品国产一区二区三区| 国产av码专区亚洲av| 香蕉精品网在线| 国产野战对白在线观看| 日韩精品免费视频一区二区三区| 亚洲精品美女久久av网站| 交换朋友夫妻互换小说| 中文字幕人妻熟女乱码| 在线观看国产h片| 夜夜骑夜夜射夜夜干| 飞空精品影院首页| h视频一区二区三区| 亚洲精品aⅴ在线观看| 美女国产视频在线观看| 高清不卡的av网站| 夜夜骑夜夜射夜夜干| 精品一区二区三卡| 天天操日日干夜夜撸| 午夜久久久在线观看| 亚洲国产精品成人久久小说| 伊人久久大香线蕉亚洲五| 亚洲精品一二三| 老司机影院毛片| av网站免费在线观看视频| 国产精品亚洲av一区麻豆 | 日本av免费视频播放| 亚洲欧洲日产国产| 免费在线观看视频国产中文字幕亚洲 | 免费黄色在线免费观看| 18禁国产床啪视频网站| 26uuu在线亚洲综合色| 王馨瑶露胸无遮挡在线观看| 国产又爽黄色视频| 欧美日韩一区二区视频在线观看视频在线| 捣出白浆h1v1| 国产高清不卡午夜福利| 老鸭窝网址在线观看| 中文字幕人妻熟女乱码| 亚洲av电影在线观看一区二区三区| 9热在线视频观看99| 狠狠精品人妻久久久久久综合| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 天天躁夜夜躁狠狠久久av| 国产精品免费大片| 下体分泌物呈黄色| h视频一区二区三区| 欧美日韩精品成人综合77777| 亚洲色图综合在线观看| 中文字幕制服av| 欧美人与善性xxx| 国产有黄有色有爽视频| 亚洲精品久久久久久婷婷小说| 99久久中文字幕三级久久日本| 久久人人爽av亚洲精品天堂| 人妻少妇偷人精品九色| 日本欧美视频一区| 国产av精品麻豆| av片东京热男人的天堂| 少妇猛男粗大的猛烈进出视频| 久久久久久久国产电影| videosex国产| 日韩一卡2卡3卡4卡2021年| 9191精品国产免费久久| 秋霞在线观看毛片| 久久久久久久国产电影| 久久毛片免费看一区二区三区| 国产高清不卡午夜福利| 日本色播在线视频| 久久人人爽av亚洲精品天堂| 激情视频va一区二区三区| 黄片小视频在线播放| 汤姆久久久久久久影院中文字幕| 国产男女内射视频| 校园人妻丝袜中文字幕| 久久久久国产精品人妻一区二区| 国产成人精品一,二区| 国产欧美亚洲国产| 国产麻豆69| 欧美日韩国产mv在线观看视频| 丝袜喷水一区| 这个男人来自地球电影免费观看 | 国产精品秋霞免费鲁丝片| 久久久久人妻精品一区果冻| 建设人人有责人人尽责人人享有的| 国产av一区二区精品久久| 中文字幕人妻丝袜制服| 亚洲av福利一区| 少妇 在线观看| 国产精品av久久久久免费| 亚洲av电影在线观看一区二区三区| 熟妇人妻不卡中文字幕| 国产成人精品在线电影| 亚洲欧洲国产日韩| 黄片播放在线免费| 婷婷成人精品国产| 18+在线观看网站| 国产成人精品久久久久久| 熟女少妇亚洲综合色aaa.| 少妇 在线观看| 亚洲久久久国产精品| 夫妻午夜视频| 三上悠亚av全集在线观看| 美女脱内裤让男人舔精品视频| 欧美人与性动交α欧美精品济南到 | 国产成人精品无人区| av福利片在线| 美女福利国产在线| 晚上一个人看的免费电影| av有码第一页| 一级毛片 在线播放| 亚洲国产欧美网| 男女无遮挡免费网站观看| 久久精品亚洲av国产电影网| 欧美日韩视频高清一区二区三区二| 99热全是精品| 亚洲国产精品999| 1024视频免费在线观看| 中国国产av一级| 美女视频免费永久观看网站| 999精品在线视频| 另类精品久久| 老汉色av国产亚洲站长工具| 日韩伦理黄色片| 精品少妇内射三级| 国产成人精品一,二区| 满18在线观看网站| 欧美国产精品一级二级三级| 国产精品99久久99久久久不卡 | 美女午夜性视频免费| 精品久久久久久电影网| 999精品在线视频| 人成视频在线观看免费观看| 久久午夜综合久久蜜桃| www.自偷自拍.com| 成人亚洲欧美一区二区av| 久久久久久伊人网av| 最近手机中文字幕大全| 国产在线一区二区三区精| 国产精品.久久久| 美女国产视频在线观看| 亚洲欧美清纯卡通| 精品人妻在线不人妻| 欧美精品一区二区免费开放| 午夜福利影视在线免费观看| 春色校园在线视频观看| 黄色配什么色好看| 免费观看性生交大片5| 在线精品无人区一区二区三| 亚洲精品乱久久久久久| 18禁动态无遮挡网站| 国产女主播在线喷水免费视频网站| 如日韩欧美国产精品一区二区三区| 欧美精品av麻豆av| 少妇人妻精品综合一区二区| 久久久国产欧美日韩av| 在线天堂最新版资源| 各种免费的搞黄视频| 99久国产av精品国产电影| 日本欧美视频一区| 人体艺术视频欧美日本| 多毛熟女@视频| 亚洲五月色婷婷综合| 久久精品人人爽人人爽视色| 日日爽夜夜爽网站| 久久毛片免费看一区二区三区| 国产精品亚洲av一区麻豆 | 亚洲国产欧美网| 色播在线永久视频| 午夜福利视频在线观看免费| 欧美精品人与动牲交sv欧美| 亚洲av电影在线观看一区二区三区| 黄色 视频免费看| 中文字幕人妻丝袜制服| 久久国产亚洲av麻豆专区| 久久毛片免费看一区二区三区| 99久久中文字幕三级久久日本| 亚洲成人一二三区av| 国产精品无大码| 蜜桃国产av成人99| 人人妻人人澡人人看| 久久人人97超碰香蕉20202| 日韩不卡一区二区三区视频在线| 亚洲图色成人| 爱豆传媒免费全集在线观看| 一区福利在线观看| 中国国产av一级| 欧美黄色片欧美黄色片| 高清不卡的av网站| 最近中文字幕2019免费版| 精品少妇内射三级| 狠狠婷婷综合久久久久久88av| 最近手机中文字幕大全| 国产女主播在线喷水免费视频网站| 久久久久精品性色| 亚洲精品久久久久久婷婷小说| 日韩一区二区三区影片| 观看av在线不卡| 免费黄网站久久成人精品| 国产一区二区在线观看av| 新久久久久国产一级毛片| 亚洲精品乱久久久久久| 美女午夜性视频免费| 欧美中文综合在线视频| 亚洲精品久久成人aⅴ小说| 亚洲成国产人片在线观看| 久久人人97超碰香蕉20202| 欧美日韩一级在线毛片| 老熟女久久久| 18禁裸乳无遮挡动漫免费视频| tube8黄色片| 在线观看三级黄色| 两个人免费观看高清视频| 欧美精品av麻豆av| 欧美日本中文国产一区发布| 精品卡一卡二卡四卡免费| 你懂的网址亚洲精品在线观看| 欧美日韩国产mv在线观看视频| 国产一区二区三区综合在线观看| 免费av中文字幕在线| av在线老鸭窝| 街头女战士在线观看网站| videossex国产| 考比视频在线观看| 精品国产乱码久久久久久小说| 精品国产国语对白av| 精品一品国产午夜福利视频| 日本午夜av视频| 亚洲国产精品成人久久小说| 精品国产一区二区三区久久久樱花| 99久久精品国产国产毛片| 寂寞人妻少妇视频99o| 狂野欧美激情性bbbbbb| 日本av免费视频播放| 久久人人97超碰香蕉20202| 两性夫妻黄色片| 久久精品夜色国产| 亚洲成色77777| 久久久久久久久免费视频了| 免费少妇av软件| 亚洲天堂av无毛| 久久久久网色| 99re6热这里在线精品视频| 亚洲欧洲国产日韩| 热re99久久精品国产66热6| 日本黄色日本黄色录像| av免费在线看不卡| 欧美 日韩 精品 国产| 91国产中文字幕| 国产精品蜜桃在线观看| 亚洲一级一片aⅴ在线观看| 午夜福利乱码中文字幕| 人人妻人人添人人爽欧美一区卜| 亚洲精品一二三| 国产片内射在线| 久久这里有精品视频免费| 色婷婷av一区二区三区视频| 久久久久国产精品人妻一区二区| 黄色一级大片看看| 国产片内射在线| av在线老鸭窝| 日本色播在线视频| 精品少妇一区二区三区视频日本电影 | 精品国产一区二区久久| 97精品久久久久久久久久精品| 国产福利在线免费观看视频| 免费日韩欧美在线观看| 国产熟女欧美一区二区| 大话2 男鬼变身卡| 97人妻天天添夜夜摸| 欧美精品一区二区免费开放| 高清在线视频一区二区三区| 国产激情久久老熟女| 欧美人与善性xxx| 国产免费一区二区三区四区乱码| 伊人亚洲综合成人网| 国产精品久久久久久精品古装| 少妇人妻久久综合中文| 日韩欧美一区视频在线观看| 91在线精品国自产拍蜜月| 色网站视频免费| 国产成人aa在线观看| 亚洲色图 男人天堂 中文字幕| 伊人久久国产一区二区| 欧美少妇被猛烈插入视频| 日韩,欧美,国产一区二区三区| 国产在视频线精品| 汤姆久久久久久久影院中文字幕| 黑人巨大精品欧美一区二区蜜桃| 免费久久久久久久精品成人欧美视频| 不卡视频在线观看欧美| 超碰成人久久| 亚洲美女黄色视频免费看| 97在线人人人人妻| www.熟女人妻精品国产| 五月开心婷婷网| 老司机影院成人| 久久99蜜桃精品久久| 黑人巨大精品欧美一区二区蜜桃| 色哟哟·www| 免费观看在线日韩| 久久精品久久久久久久性| 色婷婷av一区二区三区视频| 国产精品国产av在线观看| 啦啦啦视频在线资源免费观看| 成人亚洲精品一区在线观看| 王馨瑶露胸无遮挡在线观看| 国产精品av久久久久免费| 又黄又粗又硬又大视频| 肉色欧美久久久久久久蜜桃| 中文字幕精品免费在线观看视频| 久久久亚洲精品成人影院| 亚洲国产成人一精品久久久| 欧美日韩亚洲国产一区二区在线观看 | 久久热在线av| 丝袜美腿诱惑在线| 人妻系列 视频| 日韩制服骚丝袜av| 国产又色又爽无遮挡免| 国产免费一区二区三区四区乱码| 亚洲精品日韩在线中文字幕| 亚洲国产精品国产精品| 成人影院久久| 大陆偷拍与自拍| 少妇熟女欧美另类| 国产爽快片一区二区三区| 亚洲国产av影院在线观看| 国产淫语在线视频| 久久99热这里只频精品6学生| 国产有黄有色有爽视频| 久久久久久免费高清国产稀缺| 十分钟在线观看高清视频www| 另类亚洲欧美激情| videossex国产| 亚洲精品aⅴ在线观看| 女的被弄到高潮叫床怎么办| 熟女少妇亚洲综合色aaa.| 久久鲁丝午夜福利片| 久久久久网色| 精品国产乱码久久久久久小说| 国产精品香港三级国产av潘金莲 | 国产成人91sexporn| 日韩在线高清观看一区二区三区| 一级毛片我不卡| 久久99精品国语久久久| 亚洲国产毛片av蜜桃av| 日本爱情动作片www.在线观看| 黄频高清免费视频| 如何舔出高潮| 国产精品三级大全| 免费高清在线观看日韩| 国产精品一二三区在线看| 免费不卡的大黄色大毛片视频在线观看| 国产精品二区激情视频| 中文乱码字字幕精品一区二区三区| 久久精品国产自在天天线| 在线观看免费视频网站a站| 国产免费视频播放在线视频| 麻豆av在线久日| 涩涩av久久男人的天堂| 观看美女的网站| 在线看a的网站| 国产精品一二三区在线看| 国产欧美日韩综合在线一区二区| av线在线观看网站| av网站在线播放免费| 一区福利在线观看| 青春草亚洲视频在线观看| 十八禁网站网址无遮挡| 国产成人免费无遮挡视频| 大陆偷拍与自拍| 亚洲精品日本国产第一区| 国产精品无大码| 美女中出高潮动态图| 国产精品久久久久久av不卡| 日产精品乱码卡一卡2卡三| 欧美av亚洲av综合av国产av | 晚上一个人看的免费电影| 亚洲欧洲日产国产| 亚洲成人av在线免费| 热re99久久精品国产66热6| 一级片'在线观看视频| 亚洲经典国产精华液单| 日韩中文字幕欧美一区二区 | 色婷婷av一区二区三区视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲,欧美,日韩| 女性被躁到高潮视频| 一区二区av电影网| 黄片小视频在线播放| www日本在线高清视频| 久久精品久久久久久噜噜老黄| 国产成人午夜福利电影在线观看| 国产在视频线精品| 中文字幕人妻熟女乱码| 国产又色又爽无遮挡免| 日日摸夜夜添夜夜爱| 成年美女黄网站色视频大全免费| 秋霞在线观看毛片| 久久精品久久久久久噜噜老黄| 日本91视频免费播放| 国产精品 欧美亚洲| 精品少妇黑人巨大在线播放| 国产成人aa在线观看| 日韩大片免费观看网站| 国产欧美亚洲国产| 亚洲精品成人av观看孕妇| 精品久久蜜臀av无| av有码第一页| 一区二区三区激情视频| 高清av免费在线| 精品国产一区二区三区久久久樱花| 国产成人欧美| 亚洲欧洲精品一区二区精品久久久 |