• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The effect of Nb additive on Te-induced stress corrosion cracking in Ni alloy:a fi rst-principles calculation?

    2014-08-05 09:13:28LIUWenGuan劉文冠HANHan韓晗RENCuiLan任翠蘭YINHuiQin陰慧琴HUAIPing懷平ZOUYang鄒楊andXUHongJie徐洪杰
    Nuclear Science and Techniques 2014年5期

    LIU Wen-Guan(劉文冠),HAN Han(韓晗),REN Cui-Lan(任翠蘭),YIN Hui-Qin(陰慧琴),HUAI Ping(懷平),ZOU Yang(鄒楊),and XU Hong-Jie(徐洪杰),

    1Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China

    2Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences,Shanghai 201800,China

    3Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences,Shanghai 201800,China

    The effect of Nb additive on Te-induced stress corrosion cracking in Ni alloy:a fi rst-principles calculation?

    LIU Wen-Guan(劉文冠),1,2HAN Han(韓晗),1,2REN Cui-Lan(任翠蘭),1,3YIN Hui-Qin(陰慧琴),1,2HUAI Ping(懷平),1,2ZOU Yang(鄒楊),1,2and XU Hong-Jie(徐洪杰)1,2,?

    1Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China

    2Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences,Shanghai 201800,China

    3Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences,Shanghai 201800,China

    Nb can improve the resistance of Ni-based Hastelloy N alloy to Te-induced intergranular embrittlement. First-principles calculations are performed to research this mechanism by simulating the Ni(111)surface and the∑5(012)grain boundary.The calculated adsorption energy suggests that Te atoms prefer diffusing along the grain boundary to forming the surface-reaction layer with Nb on surface of the Ni alloy.First-principles tensile tests show that the Nb segregation can enhance the cohesion of grain boundary.The strong Nb-Ni bonding can prevent the Te migration into the inside of the alloy.According to the Rice-Wang model,the strengthening/embrittling energies of Nb and Te are calculated,along with their mechanical and chemical components. The chemical bonds and electronic structures are analyzed to uncover the physical origin of the different effects of Te and Nb.Our work sheds lights on the effect of Nb additive on the Te-induced intergranular embrittlement in Hastelloy N alloy on the atomic and electronic level.

    Nb,Hastelloy N,Te,First-principles calculations,Stress corrosion cracking,Molten salt reactor

    I.INTRODUCTION

    Molten Salt Reactor(MSR)is the only liquid-fueled reactor in the six most promising Generation IV reactor concepts[1].As the structural material developed specially for MSR,Hastelloy N,a Ni-based alloy,has excellent corrosion resistance against molten salt,and was used in Molten Salt Reactor Experiment(MSRE)of the Oak Ridge National Laboratory(ORNL,USA).However,MSRE revealed that the usefulness of Hastelloy N is limited by its susceptibility to stress corrosion cracking(SCC)induced by Te,which is a most dangerous problem of Hastelloy N[2,3].Te,a fission product in fuel salt,tends to diffuse along the surface grain boundaries(GBs)of Hastelloy N and causes intergranular cracking eventually,which is related closely with SCC.

    To tackle this problem,a straightforward approach is to modify Hastelloy N by added alloying materials.MSRE foundthataddingNb(1%~2%)toHastelloyNwasbeneficial in reducing intergranular Te cracking,but still,it embrittled[4,5].The mechanism of the Nb effect on the Teinduced SCC is unknown:Nb may form a stable and innocuous telluride compound,or Nb hypothetically forms surfacereaction layers with Te in preference to the Te diffusion intothe alloy along the GBs,and so on[4,5].So,studies on this mechanism shall be helpful for developing more advanced Ni alloys,with adequate resistance to Te,for MSR.

    First-principles calculation is suitable to mechanism investigations at atomic level.It was used successfully in studying effects of dopants or impurities in GB[6–9].In this paper,we perform a first-principles calculation to clarify this mechanism by simulating aP5(012)Ni GB[7,10]and the Ni(111)surface with the coexistence of Te and Nb.The results about the effects of Te on Ni GB are in accordance with our previous work[9].

    II.COMPUTATIONAL DETAILS

    Figure 1 is a schematic diagram of aP5(012)Ni GB unit cell.It contains two reversely oriented grains with 80 Ni atoms.The atom layer is distinguished by the distance between the layer and the GB plane.The GB0 layer represents the hollow sites.There are four equivalent atomic sites in each layer.The geometry optimization calculation of GB was performed including cell optimization.We adopted the GB model in Ref.[7],and performed further optimization(including cell optimization)to find a more accurate GB model.

    The Ni(111)surface is modeled by a slab with a(4×4) surface periodic cell,which contains six layers of Ni atoms. The calculated lattice constant of bulk Ni used to build the Ni(111)surface is 3.52?A,which is in good agreement with the experimental result.The bottom layer without Te or Nb is fixed to its optimal bulk position to mimic the bulk.The vacuum layer is about 12?A thick.The Nb-Ni(111)surface,with a Nb atom substituted for a Ni atom in the topmost layer ofthe Ni(111)surface(Fig.1(c)),are also calculated to compare with the Ni(111)surface.

    Fig.1.(Color online)Schematic diagram of(a)unit cell of∑5(012)Ni GB.The atomic sites are labeled by numbers counted from the GB plane.For clarity,the gray and black balls represent atoms in layers with x=0(in the paper plane)and x=0.25(beneath the paper plane)along the〈100〉direction,respectively.The other atoms with x=0.5 and x=0.75 are not shown.The right parts show the adsorption sites on the(111)surfaces of pure Ni(b) and Ni-Nb system(c):(1)(5)(1)top site;(2)bridge site;(3)hcp site;(4)fcc site.

    Spin-polarized electronic state calculations were performed within the DFT[11,12]using Vienna ab-initio simulation package(VASP)[13].Projector-augmented planewave(PAW)[14]methods were employed with the PBE generalized gradient approximation(GGA)[15].The wave functions were expanded in a plane-wave basis set with a cutoff energy of 350eV.The Brillouin zone was sampled using a 3×3×1 k-point mesh.

    First-principles tensile tests were carried out to study the GB strength with Te or Nb in GB region.To simplify the calculations,the lattice dimensions in the GB plane were fixed to neglect the Poisson’s ratio.A uniaxial tensile strain was exerted in the GB normal direction(i.e.the〈012〉direction). In each strain step,the starting atomic configuration is taken from the relaxed configuration of the preceding step by an increment of 2%to ensure the continuous strain path.

    III.RESULTS AND DISCUSSION

    A.Adsorption energy of Te

    The adsorption energies of Te,Ead,on the Ni(111)and Nb-Ni(111)surfaces are calculated by:

    where ETe-sub,Eatom,Teand Esubrefer to the calculated total energies of the optimized substrate with the adsorbate(i.e. a Te atom),one isolated Te atom,and the clean substrate, respectively.A strongly negative value of Eadmeans intense binding between the Te atom and the substrate.

    AsshowninFig.1,thetop,bridge,hexagonalclose-packed (hcp),and face-centered cubic(fcc)sites were considered for the adsorption.Table 1 shows the calculated adsorption energies(in eV)of Te at each site on surface of Ni(111)and Nb-Ni(111),and the two data groups in three site types are roughly the same.These kinds of substitution of Nb for Ni do not change too much of the adsorption energy of Te,whereas the hcp site of Nb-Ni(111)is unstable for Te adsorption due to the existence of the Nb atom,and the Te atom is repelled to move from the hcp site to a farther site(Site 5 in Fig.1(c)). As a result,Te atoms do not preferentially form the strong binding with Nb atoms on the surface of Ni-Nb alloy.So, the resistance of Nb to the Te-induced SCC in Hastelloy N cannot be attributed to the hypothetical formation of surfacereaction layers between Te and Nb.And Te would prefer to diffuse into the alloy along the GBs.The Nb effect in GB with the coexistence of Te will be discussed later.

    TABLE 1.Adsorption energies(eV)of Te at different sites on the Ni(111)and Nb-Ni(111)surfaces(See Fig.1 for the atomic sites)

    B.First-principles tensile tests

    To further understand how the Nb additive affects the Ni GBatpresenceofTe,first-principlestensiletestswerecarried out to investigate the maximum strength of the GB and its fracture process.Te and Nb atoms,which are greater in size than Ni,prefer to occupy substitution sites(Site 1 in Fig.1) rather than interstitial sites(Site 0 in Fig.1)on the GB plane. So only the substitution case is considered.There are four sites in Layer 1.For simplification,the comparison was made amongthecleanGB,theGB+Nblayer(4NbatomsinLayer 1),the GB+mixed layer of Nb and Te(2 Nb and 2 Te in Layer 1),and the GB+Te layer.

    As shown in Fig.2,the GB+Nb layer has the largest tensile strength(21.3GPa)at the strain of 28%,while that of the clean GB case is a little lower.On the other hand,the maximum strength of the GB+Te layer is about one-half of the case of GB+Nb layer.However,when the four sites in Layer 1 are occupied by 2 Nb and 2 Te atoms,the maximum GB strength increases to 16.4GPa at the strain of 20%, which is obviously improved compared with the GB+Te layer.Clearly,Nb segregation enhances the Ni GB cohesion, and Te in the GB region induces the Ni GB embrittlement, hence the inhibition of the Te-induced SCC in Ni GB by the segregated Nb atoms.

    Fig.2.(Color online)Calculated tensile stress as a function of strain for the clean GB,GB+Nb layer(4 Nb atoms in Layer 1),GB+ mixed layer of Nb and Te(2 Nb and 2 Te atoms in Layer 1),and GB +Te layer.

    In the region of strain<28%,the elastic deformation occurs for the GB+Nb layer.From strain=32%~36%,this GB undergoes the plastic deformation,and positions of the atoms in the GB cell are not layer by layer any longer.For the clean GB,GB+Te layer and GB+2(Nb+Te),the fracture surface of the GB is indeed the GB plane.However,the fracture surface of the GB+Nb layer is not the GB plane but the plane between the Layers 2 and 3(See Fig.1).As a result,the Nb(1)–Ni(2)bonds are stronger than the Ni(2)-Ni(3) bonds in the GB+Nb layer,and the corresponding Ni(1)-Ni(2)bonds in the clean GB.

    C.Strengthening/embrittling energy

    According to the Rice-Wang model[16],effects of the various elements on the GB cohesion can be determined by the strengthening/embrittling energy,ΔE,which is defined as

    where,EGB,doped,EGB,EFS,dopedandEFSrepresent the total energies of the doped-GB,clean GB,doped-free surface(FS) and clean FS,respectively.A positive value of ΔEmeans embrittlement of the GB,and a negative value indicates enhancement of the GB.

    Togainadeeperunderstanding,thestrengthening/embrittling energy can be decomposed into the mechanical and chemical components.The procedure of decomposition in Refs.[10,17–19]was used to perform the analysis.

    The calculated ΔEand its mechanical and chemical components for Te and Nb are listed in Table 2.According to the calculated strengthening/embrittling energy,Te,with a positive value,is an embrittler,and Nb,with a negative value,is a cohesionenhancer.ThemechanicalcomponentsofTeandNb are both positive.This is due to that the bigger atomic sizes of Te and Nb cause the GB expansion.On the other hand,the chemical component of Nb is strongly negative and plays a dominant role in the strengthening/embrittling energy.However,Te has a small value of the chemical component,whichhas little effect on the strengthening/embrittling energy.So, the contrary effects of Te and Nb are mainly attributed to the difference between their chemical components.The results of our work agree well with the previous calculations[10,20] (Table 2).

    TABLE 2.Adsorption energies(eV)of Te at different sites on the Ni(111)and Nb-Ni(111)surfaces.(See Fig.1 for the atomic sites.)

    Fig.3.(Color online)Calculated interatomic distances(?A)in the GB region for(a)clean GB,and(b)GB+4 Nb in Layer 1(a Nb layer)and the GB+4 Te in Layer 1(a Te layer).The data for the case of Te are given in parenthesis.The atoms are marked by their site numbers.

    D.Chemical bonds and electronic structures

    The atomic and electronic structures were studied for mechanisms of the different effects of Te and Nb on Ni GB. The calculated interatomic distances in the GB region are shown in Fig.3 for the comparison.Being bigger than Ni in atomic radius,Te and Nb induce the GB expansion,as shown in Fig.3.For example,comparing with in the clean GB,the Ni(3)-Ni(-3)distances in the GBs+Te layer andGBs+Nb layer are elongated by 0.58?A and 0.24?A,respectively.The expansion can impair the GB cohesion,which is in accordance with the positive values of the strengthening/embrittling energies for Te and Nb.Also,it can be seen in Fig.3 that the Te-induced GB expansion is more serious than the Nb-induced expansion,as the larger positive mechanical component of Te is bigger than Nb.

    Fig.4.(Color online)Calculated charge density distribution(electron/Bohr3)in the(100)plane for(a)clean GB,(b)GB+Te layer and(c) GB+Nb layer.The atoms of interest are marked by their site numbers.

    The chemical component of the strengthening/embrittling energy is thought to be induced by the charge redistribution due to the existence of the doped atoms[10].With only a small difference in mechanical components for Te and Nb (see Table 2),their chemical components are comparable. Fig.4 shows the calculated charge density distributions for the clean GB,GB+Te layer and GB+Nb layer.The Te(1)-Ni(2)/Ni(-2)bondinFig.4(b)andNb(1)-Ni(2)/Ni(-2)bondin Fig.4(c)are stronger than the corresponding Ni(1)-Ni(2)/Ni(-2)bond in Fig.4(a),as judged by the charge densities along these bonds.But these strong Te-Ni bonds cannot enhance the GB cohesion that much,since directions of the bonds are almost in parallel with the GB plane.On the other hand,the Ni(2)-Ni(-2)and Ni(1)-Ni(4)/Ni(-4)bonds are normal to the GB plane and exert the main cohesive force to hold the two grains together as displayed in Fig.4(a).Replacing Ni with Te in Fig.4(b)makes the Ni(2)-Ni(-2)bond much weaker than the corresponding Ni(2)-Ni(-2)bond in Fig.4(a).However,for the GB with a Nb layer in Fig.4(c),the Ni(2)-Ni(-2) bond is a little weaker than the corresponding Ni(2)-Ni(-2) bond in Fig.4(a),but the Nb(1)-Ni(4)/Ni(-4)bond is obviously stronger than the Ni(1)-Ni(4)/Ni(-4)bond in Fig.4(a). As a result,the remarkable differences between the chemical components of the strengthening/embrittling energies for Te and Nb are induced by these charge redistributions.The charge density for the GB+Te layer in Fig.4(b)is in accordance with the result in Ref.[10].

    As the conjugation interface between two misoriented grains,GB severs an ideal channel for migration of corrosive elements(e.g.Te in our case)to induce the SCC.As an additive to the alloy,Nb can segregate to the GB and enhance the GB cohesion,which can reduce the intergranular Te cracking.The strong Nb-Ni bonds in the GB region can also prevent the migration of Te along the GB to the inside of the alloy.In the meanwhile,MSRE found that Nb can also improve the resistance of Ni-based Hastelloy N to irradiation embrittlement,but this effect of Nb is likely not useful at operating temperatures much above 650?C[4,5].Our work sheds lights on the effect of Nb additive on the Te-induced SCC in Hastelloy N on the atomic and electronic level,and is very helpful to the design of modified Hastelloy N with new additive that can further improve the resistances to intergranular embrittlement by Te and irradiation embrittlement at elevated temperature simultaneously.

    IV.CONCLUSION

    First-principles calculations were performed to research the effect of Nb additive on the Te-induced GB embrittlement in Ni alloy.Energetic studies have shown that Te atoms don’t tend to form the surface-reaction layer with Nb on the surface of Ni alloy.And Nb atoms on the surface cannot prevent the preferred diffusion of Te atoms along the GBs.On the other hand,the first-principles tensile tests have shown that the Nb segregation in GB can inhibit the Te-induced GB embrittlement.The strong Nb-Ni bonds in the GB region can improve the GB cohesion and prevent the migration of Te along the GBs.The strengthening/embrittling energies of Nb and Te were calculated.The chemical bonds and electronic structures were analyzed to uncover the physical origin of the mechanical and chemical components of the strengthening/embrittling energies.

    [1]Generation IV International Forum.A Technology Roadmap for Generation IV Nuclear Energy Systems.U.S.DOE,GIF-002-00,Dec.2002.

    [2]Rosenthal M W,Briggs R B,Haubenreich P N.Molten-salt reactor program,semiannual progress report,ORNL-4782.Oak Ridge,Tennessee,USA,1972.

    [3]Rosenthal M W,Haubenreich P N,Briggs R B.The development status of molten-salt breeder reactors,ORNL-4812.Oak Ridge,Tennessee,USA,1972.

    [4]Keiser J R.Status of tellurium-Hastelloy N studies in molten fl uoride salts,ORNL/TM-6002.Oak Ridge,Tennessee,USA, 1977.

    [5]McCoy H E Jr.Status of materials development for molten salt reactors,ORNL/TM-5920.Oak Ridge,Tennessee,USA,1978.

    [6]Wu R Q,Freeman A J,Olson G B.Science,1994,265:376–380.

    [7]Yamaguchi M,Shiga M,Kaburaki H.Science.2005,307:393–397.

    [8]Yuasa M and Mabuchi M.Phys Rev B,2010,82:094108.

    [9]Liu W G,Han H,Ren C L,et al.Comp Mater Sci,2014,88: 22–27.

    [10]Vsianska M and Sob M.Prog Mater Sci,2011,56:817–840.

    [11]Hohenberg P,ohn W.Phys Rev B,1964,136:864–871.

    [12]Kohn W and Sham L J.Phys Rev,1965,140:A1133–A1138.

    [13]Kresse G and Furthmuller J.Phys Rev B,1996,54:11169–11186.

    [14]Blochl P E.Phys Rev B,1994,50:17953–17979.

    [15]Perdew J P,Chevary J A,Vosko S H,et al.Phys Rev B,1992,46:6671–6687.

    [16]Rice J R and Wang J S.Mat Sci Eng A-Struct,1989,107:23–40.

    [17]Geng W T,Freeman A J,Wu R,et al.Phys Rev B,1999,60: 7149–7155.

    [18]Lozovoi A Y,Paxton A T,Finnis M W.Phys Rev B,2006,74: 155416.

    [19]Wachowicz E,Ossowshi T,Kiejna A.Phys Rev B,2010,81: 094104.

    [20]Geng W T,Freeman A J,Olson G B.Phys Rev B,2001,63: 165415.

    10.13538/j.1001-8042/nst.25.050603

    (Received December 31,2013;accepted in revised form March 25,2014;published online September 25,2014)

    ?Supported by Science and Technology Commission of Shanghai Municipality(No.11JC1414900),Project supported by the National Basic Research Program of China(No.2010CB934501),Thorium Molten Salts Reactor Fund(No.XDA02000000),the National Natural Science Foundation of China(No.11005148),the Special Presidential Foundation of the Chinese Academy of Science,China(No.29),and the National Natural Science Foundation of China(No.51371188)

    ?Corresponding author,xuhongjie@sinap.ac.cn

    av播播在线观看一区| 免费看光身美女| 人人妻人人添人人爽欧美一区卜| av福利片在线| 十八禁高潮呻吟视频 | 精品视频人人做人人爽| 一个人免费看片子| av线在线观看网站| 三级国产精品片| 欧美 亚洲 国产 日韩一| 黄色毛片三级朝国网站 | 如何舔出高潮| 嘟嘟电影网在线观看| 免费观看无遮挡的男女| 久久97久久精品| 99久久中文字幕三级久久日本| 日本色播在线视频| 欧美三级亚洲精品| 少妇被粗大的猛进出69影院 | 亚洲av成人精品一区久久| 超碰97精品在线观看| 国产精品久久久久久av不卡| 久久精品久久精品一区二区三区| 国产精品人妻久久久影院| 国产精品秋霞免费鲁丝片| 亚洲av欧美aⅴ国产| 寂寞人妻少妇视频99o| 伦理电影大哥的女人| 五月开心婷婷网| 大香蕉久久网| 国产成人freesex在线| 国产精品麻豆人妻色哟哟久久| 亚洲成人一二三区av| 免费黄色在线免费观看| 一本久久精品| 日韩成人av中文字幕在线观看| 日韩强制内射视频| 亚洲精品国产色婷婷电影| 夫妻午夜视频| 精品一区二区免费观看| 少妇人妻一区二区三区视频| 国产黄色免费在线视频| 国产亚洲5aaaaa淫片| freevideosex欧美| 免费高清在线观看视频在线观看| 亚洲激情五月婷婷啪啪| 男女啪啪激烈高潮av片| 国产精品一区二区在线观看99| 午夜福利,免费看| 在线精品无人区一区二区三| 精品酒店卫生间| 两个人免费观看高清视频 | 亚洲欧美清纯卡通| 男男h啪啪无遮挡| 最后的刺客免费高清国语| 亚洲综合精品二区| 中文字幕av电影在线播放| 成人漫画全彩无遮挡| 日本爱情动作片www.在线观看| 少妇裸体淫交视频免费看高清| 国产视频首页在线观看| 成人特级av手机在线观看| 成人漫画全彩无遮挡| 午夜免费鲁丝| 久久综合国产亚洲精品| 精品少妇久久久久久888优播| 亚洲欧洲精品一区二区精品久久久 | 亚洲,欧美,日韩| 人人妻人人爽人人添夜夜欢视频 | 亚洲av日韩在线播放| 天天操日日干夜夜撸| 男女啪啪激烈高潮av片| av播播在线观看一区| 亚洲天堂av无毛| 亚洲欧美成人综合另类久久久| 国产一区二区在线观看av| 3wmmmm亚洲av在线观看| 日韩中字成人| 街头女战士在线观看网站| 国产精品国产三级专区第一集| 在线观看av片永久免费下载| 国产成人精品无人区| 永久免费av网站大全| 日韩强制内射视频| 色网站视频免费| 黄色怎么调成土黄色| 国产精品久久久久久精品古装| 色哟哟·www| av一本久久久久| 亚洲色图综合在线观看| 亚洲av免费高清在线观看| 国产精品国产三级国产专区5o| 如何舔出高潮| av在线app专区| 秋霞伦理黄片| 赤兔流量卡办理| 亚洲无线观看免费| 女性生殖器流出的白浆| 肉色欧美久久久久久久蜜桃| 国产精品一区二区性色av| 久久免费观看电影| 国产精品成人在线| 永久免费av网站大全| 成人毛片a级毛片在线播放| 日韩人妻高清精品专区| 日韩av在线免费看完整版不卡| 男女免费视频国产| 伊人亚洲综合成人网| 日本色播在线视频| 爱豆传媒免费全集在线观看| 一级毛片电影观看| 久久综合国产亚洲精品| 91久久精品国产一区二区成人| 大香蕉97超碰在线| 久久久久国产精品人妻一区二区| 极品教师在线视频| 国产日韩欧美在线精品| 日韩精品免费视频一区二区三区 | 亚洲一区二区三区欧美精品| 亚洲精品aⅴ在线观看| 久久久亚洲精品成人影院| 国产欧美日韩综合在线一区二区 | 一级二级三级毛片免费看| 嫩草影院入口| 国产精品一区www在线观看| 亚洲精品成人av观看孕妇| 国产精品久久久久久精品古装| 国产色爽女视频免费观看| 大又大粗又爽又黄少妇毛片口| 国产日韩欧美在线精品| 欧美+日韩+精品| 三级经典国产精品| 黄色日韩在线| 美女脱内裤让男人舔精品视频| 这个男人来自地球电影免费观看 | 国产亚洲精品久久久com| 一级毛片我不卡| 亚洲成人一二三区av| 久久ye,这里只有精品| 人人妻人人添人人爽欧美一区卜| 卡戴珊不雅视频在线播放| 2021少妇久久久久久久久久久| 99热全是精品| 少妇精品久久久久久久| 久久久欧美国产精品| 亚洲经典国产精华液单| 久久99一区二区三区| 观看av在线不卡| 欧美精品国产亚洲| 黄色毛片三级朝国网站 | 中文字幕人妻丝袜制服| a级毛片在线看网站| 免费播放大片免费观看视频在线观看| 在线观看三级黄色| 青青草视频在线视频观看| 亚洲婷婷狠狠爱综合网| 成年人午夜在线观看视频| 丰满饥渴人妻一区二区三| 十八禁高潮呻吟视频 | 亚洲内射少妇av| 久久国产亚洲av麻豆专区| 国产日韩欧美视频二区| 97在线人人人人妻| 欧美97在线视频| 欧美高清成人免费视频www| 免费av不卡在线播放| 国产黄色免费在线视频| 女人精品久久久久毛片| 国产综合精华液| 老司机亚洲免费影院| 在线免费观看不下载黄p国产| av黄色大香蕉| 国产伦在线观看视频一区| 在线看a的网站| 亚洲国产av新网站| 一级毛片电影观看| 99九九在线精品视频 | 国产有黄有色有爽视频| 蜜臀久久99精品久久宅男| 日本vs欧美在线观看视频 | 黄色欧美视频在线观看| 久久鲁丝午夜福利片| 亚洲av欧美aⅴ国产| 欧美日韩视频精品一区| 色吧在线观看| 成人18禁高潮啪啪吃奶动态图 | 精品一区在线观看国产| 免费观看的影片在线观看| 啦啦啦啦在线视频资源| 精品亚洲成国产av| 国产在线免费精品| 亚洲精品乱码久久久久久按摩| 一级毛片 在线播放| 日韩成人av中文字幕在线观看| 男人爽女人下面视频在线观看| 亚洲图色成人| 麻豆成人av视频| 精品国产一区二区三区久久久樱花| av播播在线观看一区| 97在线视频观看| 一本一本综合久久| 久久精品久久久久久久性| 夜夜爽夜夜爽视频| 日日摸夜夜添夜夜添av毛片| 亚洲,欧美,日韩| 欧美xxⅹ黑人| 最新中文字幕久久久久| 99九九线精品视频在线观看视频| 黄色视频在线播放观看不卡| 国产亚洲av片在线观看秒播厂| 国产精品一区二区在线观看99| 国产一区二区在线观看日韩| 久久影院123| 日韩 亚洲 欧美在线| 日韩视频在线欧美| 99视频精品全部免费 在线| 男人添女人高潮全过程视频| 亚洲,欧美,日韩| 国产白丝娇喘喷水9色精品| 如日韩欧美国产精品一区二区三区 | 国产精品一区二区在线不卡| av女优亚洲男人天堂| 观看免费一级毛片| 国产白丝娇喘喷水9色精品| 中文欧美无线码| 国产视频首页在线观看| 最近的中文字幕免费完整| 国产乱人偷精品视频| 美女脱内裤让男人舔精品视频| 亚洲国产精品专区欧美| 91在线精品国自产拍蜜月| 久久精品国产亚洲网站| 日韩视频在线欧美| 亚洲欧美精品自产自拍| 99久久中文字幕三级久久日本| 六月丁香七月| 纯流量卡能插随身wifi吗| 人妻制服诱惑在线中文字幕| 亚洲熟女精品中文字幕| 久久久久人妻精品一区果冻| 曰老女人黄片| 久久久久久久亚洲中文字幕| 国产精品久久久久久久电影| 菩萨蛮人人尽说江南好唐韦庄| videossex国产| 男人和女人高潮做爰伦理| 欧美 日韩 精品 国产| 中文资源天堂在线| 亚洲精品视频女| 免费久久久久久久精品成人欧美视频 | 一区二区三区四区激情视频| 热re99久久精品国产66热6| 亚洲精品一二三| 亚洲精品,欧美精品| 国产亚洲午夜精品一区二区久久| 麻豆成人午夜福利视频| 国产色婷婷99| 日韩电影二区| 亚洲成人av在线免费| 亚洲经典国产精华液单| 国产精品偷伦视频观看了| 亚洲精品国产色婷婷电影| 青春草国产在线视频| 国产精品不卡视频一区二区| 日韩av在线免费看完整版不卡| 国产一区亚洲一区在线观看| 99九九在线精品视频 | 欧美亚洲 丝袜 人妻 在线| 夫妻午夜视频| 国产精品99久久99久久久不卡 | 大香蕉97超碰在线| 欧美精品高潮呻吟av久久| 在线天堂最新版资源| 一级毛片 在线播放| 2021少妇久久久久久久久久久| 亚洲av成人精品一区久久| 制服丝袜香蕉在线| xxx大片免费视频| 99久久精品国产国产毛片| 丁香六月天网| 亚洲成色77777| 日韩中字成人| 久久精品久久精品一区二区三区| 如何舔出高潮| h日本视频在线播放| 婷婷色综合大香蕉| 国产精品一区二区在线不卡| 少妇 在线观看| av黄色大香蕉| 亚洲三级黄色毛片| 插逼视频在线观看| 中文精品一卡2卡3卡4更新| 亚洲精品国产av成人精品| 在线观看一区二区三区激情| 高清黄色对白视频在线免费看 | 97在线人人人人妻| 国产av精品麻豆| 美女国产视频在线观看| 在线观看免费高清a一片| 香蕉精品网在线| 亚洲欧美日韩东京热| 亚洲欧洲国产日韩| 美女福利国产在线| 乱码一卡2卡4卡精品| 亚洲av日韩在线播放| 免费久久久久久久精品成人欧美视频 | 午夜激情福利司机影院| 中文资源天堂在线| 欧美日韩在线观看h| 啦啦啦中文免费视频观看日本| 日韩一区二区三区影片| 欧美老熟妇乱子伦牲交| 免费人妻精品一区二区三区视频| 久久午夜综合久久蜜桃| 麻豆乱淫一区二区| 夜夜爽夜夜爽视频| 22中文网久久字幕| 少妇裸体淫交视频免费看高清| 美女视频免费永久观看网站| 成人免费观看视频高清| 桃花免费在线播放| 女性被躁到高潮视频| 国产精品人妻久久久久久| 日本av免费视频播放| 亚洲精品久久午夜乱码| 丝袜在线中文字幕| 亚洲成人av在线免费| 在线观看三级黄色| 在线免费观看不下载黄p国产| 日韩成人伦理影院| 蜜臀久久99精品久久宅男| 久久97久久精品| 久久精品国产a三级三级三级| 国产av码专区亚洲av| 亚洲av福利一区| 熟女人妻精品中文字幕| 麻豆成人av视频| 欧美bdsm另类| 免费观看性生交大片5| av黄色大香蕉| 男的添女的下面高潮视频| 久久ye,这里只有精品| 精品亚洲乱码少妇综合久久| 在线天堂最新版资源| 国产国拍精品亚洲av在线观看| 久久精品夜色国产| 伦精品一区二区三区| 亚洲美女视频黄频| 亚洲av免费高清在线观看| 人人妻人人看人人澡| 26uuu在线亚洲综合色| 亚洲va在线va天堂va国产| 国产伦精品一区二区三区四那| 如日韩欧美国产精品一区二区三区 | 五月开心婷婷网| 精品国产一区二区久久| 国产精品久久久久成人av| 91精品一卡2卡3卡4卡| 亚洲av成人精品一二三区| 亚洲四区av| 国产又色又爽无遮挡免| 又大又黄又爽视频免费| 欧美日韩国产mv在线观看视频| 国产免费又黄又爽又色| 久久99精品国语久久久| 一区二区三区四区激情视频| 精品久久久噜噜| 久久国产乱子免费精品| 一级毛片久久久久久久久女| 特大巨黑吊av在线直播| 成人亚洲欧美一区二区av| 午夜久久久在线观看| 免费黄色在线免费观看| 人妻制服诱惑在线中文字幕| 成人国产av品久久久| 新久久久久国产一级毛片| 国产黄色免费在线视频| 国产成人免费无遮挡视频| 80岁老熟妇乱子伦牲交| 又大又黄又爽视频免费| 精品一区二区三区视频在线| 大香蕉久久网| 大码成人一级视频| 嘟嘟电影网在线观看| 熟女电影av网| 精品一区在线观看国产| 亚洲不卡免费看| 永久免费av网站大全| 卡戴珊不雅视频在线播放| 成人午夜精彩视频在线观看| 一区二区三区精品91| 一区二区三区免费毛片| 国产又色又爽无遮挡免| 菩萨蛮人人尽说江南好唐韦庄| 99热6这里只有精品| 国产欧美亚洲国产| 啦啦啦在线观看免费高清www| 美女视频免费永久观看网站| 在线天堂最新版资源| 视频中文字幕在线观看| 亚洲第一av免费看| 2022亚洲国产成人精品| 国模一区二区三区四区视频| 尾随美女入室| 啦啦啦在线观看免费高清www| 妹子高潮喷水视频| 你懂的网址亚洲精品在线观看| 久久ye,这里只有精品| 新久久久久国产一级毛片| 久久99蜜桃精品久久| 色婷婷久久久亚洲欧美| 日韩,欧美,国产一区二区三区| xxx大片免费视频| 自线自在国产av| 三级国产精品欧美在线观看| 国产综合精华液| 男人添女人高潮全过程视频| 亚洲天堂av无毛| 亚洲四区av| 日本黄色日本黄色录像| 精品午夜福利在线看| 嘟嘟电影网在线观看| 中文字幕人妻丝袜制服| 欧美bdsm另类| 国产精品一区www在线观看| 欧美日韩综合久久久久久| av天堂久久9| tube8黄色片| 日本色播在线视频| 久久久久网色| 亚洲经典国产精华液单| 99九九线精品视频在线观看视频| 国产精品麻豆人妻色哟哟久久| 久久久午夜欧美精品| 插阴视频在线观看视频| 99国产精品免费福利视频| 高清av免费在线| 精品亚洲成国产av| 午夜av观看不卡| av女优亚洲男人天堂| 伦理电影大哥的女人| 日韩强制内射视频| 国产亚洲av片在线观看秒播厂| 国产一区二区三区av在线| 老司机影院成人| 国产男女超爽视频在线观看| 我要看日韩黄色一级片| 一个人免费看片子| 少妇丰满av| 青春草国产在线视频| 亚洲精品aⅴ在线观看| 性色avwww在线观看| 欧美激情极品国产一区二区三区 | 日日摸夜夜添夜夜添av毛片| 五月玫瑰六月丁香| 久久久久久人妻| av播播在线观看一区| 狂野欧美白嫩少妇大欣赏| 欧美区成人在线视频| 91在线精品国自产拍蜜月| kizo精华| 精品午夜福利在线看| 亚洲图色成人| 街头女战士在线观看网站| 国产片特级美女逼逼视频| 波野结衣二区三区在线| 最近中文字幕高清免费大全6| 亚洲丝袜综合中文字幕| 少妇人妻久久综合中文| 建设人人有责人人尽责人人享有的| 欧美xxⅹ黑人| 好男人视频免费观看在线| 精品少妇黑人巨大在线播放| 噜噜噜噜噜久久久久久91| 欧美一级a爱片免费观看看| 极品人妻少妇av视频| 久久久久久久大尺度免费视频| 男人舔奶头视频| 亚洲精品乱码久久久久久按摩| 午夜视频国产福利| 两个人免费观看高清视频 | 在线观看一区二区三区激情| 在线亚洲精品国产二区图片欧美 | 国产精品嫩草影院av在线观看| 亚洲av不卡在线观看| 亚洲精品视频女| 久久久久精品性色| 黑丝袜美女国产一区| 亚洲色图综合在线观看| 欧美高清成人免费视频www| 啦啦啦在线观看免费高清www| 黑人巨大精品欧美一区二区蜜桃 | 内地一区二区视频在线| 日本与韩国留学比较| 成年人午夜在线观看视频| 成年美女黄网站色视频大全免费 | 国产黄片视频在线免费观看| av视频免费观看在线观看| 国产一区亚洲一区在线观看| 日日啪夜夜爽| 免费播放大片免费观看视频在线观看| 国产精品伦人一区二区| 亚洲欧美精品专区久久| 少妇人妻精品综合一区二区| 久久人妻熟女aⅴ| 最近手机中文字幕大全| 国产白丝娇喘喷水9色精品| 嫩草影院新地址| 两个人免费观看高清视频 | 黄色欧美视频在线观看| 黄片无遮挡物在线观看| 国产中年淑女户外野战色| 在线观看av片永久免费下载| 男人和女人高潮做爰伦理| 熟女电影av网| 国语对白做爰xxxⅹ性视频网站| 欧美最新免费一区二区三区| 91在线精品国自产拍蜜月| 精品人妻熟女毛片av久久网站| 国产亚洲最大av| 成人午夜精彩视频在线观看| 2018国产大陆天天弄谢| 亚洲国产毛片av蜜桃av| 色吧在线观看| 在线观看人妻少妇| www.色视频.com| 丁香六月天网| 七月丁香在线播放| 99久久人妻综合| 人人妻人人澡人人看| 精品99又大又爽又粗少妇毛片| 日本午夜av视频| 国产精品久久久久久精品古装| 蜜臀久久99精品久久宅男| 日韩一区二区三区影片| 精品人妻偷拍中文字幕| 国产淫片久久久久久久久| 永久免费av网站大全| 丝袜脚勾引网站| 欧美精品人与动牲交sv欧美| 麻豆成人午夜福利视频| 美女大奶头黄色视频| 51国产日韩欧美| 久久99精品国语久久久| 秋霞在线观看毛片| 亚洲精品日韩在线中文字幕| 久久精品夜色国产| 亚洲av国产av综合av卡| 熟女人妻精品中文字幕| 天天躁夜夜躁狠狠久久av| 欧美日韩av久久| 男女啪啪激烈高潮av片| 在线免费观看不下载黄p国产| 久久久午夜欧美精品| 天堂俺去俺来也www色官网| 国产黄频视频在线观看| 青春草国产在线视频| av播播在线观看一区| 嘟嘟电影网在线观看| 日本午夜av视频| 中文字幕免费在线视频6| 国产精品秋霞免费鲁丝片| 中文字幕免费在线视频6| 久久久久精品久久久久真实原创| 国产乱人偷精品视频| 日韩大片免费观看网站| 日韩视频在线欧美| 欧美国产精品一级二级三级 | 日韩视频在线欧美| 日韩不卡一区二区三区视频在线| 蜜桃久久精品国产亚洲av| 国产精品无大码| 久久人人爽人人片av| 国产精品成人在线| 欧美 日韩 精品 国产| 精品国产一区二区久久| 精品人妻一区二区三区麻豆| 各种免费的搞黄视频| 美女中出高潮动态图| 黑人猛操日本美女一级片| 国产精品国产av在线观看| 噜噜噜噜噜久久久久久91| 国产伦理片在线播放av一区| 国产日韩一区二区三区精品不卡 | 日本黄色片子视频| av播播在线观看一区| 纯流量卡能插随身wifi吗| 亚洲国产av新网站| 国产91av在线免费观看| 草草在线视频免费看| 国产高清三级在线| 777米奇影视久久| 久热这里只有精品99| 欧美国产精品一级二级三级 | 欧美国产精品一级二级三级 | 欧美另类一区| 中文资源天堂在线| 啦啦啦视频在线资源免费观看| av天堂中文字幕网| 国产片特级美女逼逼视频| 精品人妻偷拍中文字幕| 建设人人有责人人尽责人人享有的| 街头女战士在线观看网站| 18禁动态无遮挡网站| 99热网站在线观看| 亚洲av成人精品一区久久| 国产亚洲欧美精品永久| 两个人免费观看高清视频 | kizo精华| 久久久久久久精品精品| 成人亚洲精品一区在线观看| 亚洲精品国产av成人精品| 久久久亚洲精品成人影院| 一级av片app| 亚洲av男天堂|