• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Steady thermal hydraulic characteristics of nuclear steam generatorsbased on the drift flux code model?

    2014-08-05 09:13:26ZHANGXiaoYing張小英CHENHuanDong陳煥棟BAINing白寧ZHUYuanBing朱元兵RENZhiHao任志豪andHUANGKai黃凱
    Nuclear Science and Techniques 2014年5期
    關(guān)鍵詞:志豪

    ZHANG Xiao-Ying(張小英),CHEN Huan-Dong(陳煥棟),BAI Ning(白寧),ZHU Yuan-Bing(朱元兵),REN Zhi-Hao(任志豪),and HUANG Kai(黃凱),

    1School of Electric Power,South China University of Technology,Guangdong 510640,China

    2China Nuclear Power Technology Research Institute,Shenzhen 518026,China

    Steady thermal hydraulic characteristics of nuclear steam generators
    based on the drift flux code model?

    ZHANG Xiao-Ying(張小英),1CHEN Huan-Dong(陳煥棟),1BAI Ning(白寧),2ZHU Yuan-Bing(朱元兵),2REN Zhi-Hao(任志豪),2and HUANG Kai(黃凱)2,?

    1School of Electric Power,South China University of Technology,Guangdong 510640,China

    2China Nuclear Power Technology Research Institute,Shenzhen 518026,China

    To investigate the steady thermal hydraulic characteristics of U-tube steam generator(SG),a 1D simulation code based on the four-equation drift flux model is developed.The U-tube channels presumably consist mainly of the primary channel,secondary channel,and tube wall.In the sub-cooling regions of the primary and secondary channels,flow is simulated using the single-phase flow model,whereas that in the boiling regions of the secondary channels is simulated using the four-equation drift flux model.The first-order equations of upwind difference are derived based on the staggered grid.Steady-state thermal hydraulic parameters are obtained with a cross-iteration scheme of heat balance and natural circulation requirement.The developed code is applied to analyze the SG behavior of the Qinshan I Nuclear Power Plant under 100%,75%,50%,30%,and 15%power conditions.Analysis results are then compared with the simulation results obtained using RELAP5.

    U-tube steam generator,Thermal hydraulic characteristic,Steady simulation,Four-equation drift flux model

    I.INTRODUCTION

    The U-tube steam generator(SG)is a heat exchanger that connects the primary and secondary coolant loops in a nuclear power plant(NPP).According to worldwide statistics, operational accidents of SG-related pressurized water reactor(PWR)account for a large proportion of all PWR accidents[1].Approximately 1/4 of the unplanned outage cases in PWR NPPs are caused by SG failure.Given that the flow and heat transfer in the primary and secondary loops are closely connected to the safety and stable operation of the SG,it is of importance to understand their thermal hydraulic characteristics.

    The U-tube SG can presumably be a nonlinear,complex system with many flowing parameters.Studies on the thermal hydraulic behavior of SGs have achieved greatly.The followings are examples of SG simulation codes.The THEDA2 code developed in the U.S.uses 3D conservation equations of mass,momentum,and energy for a homogeneous equilibrium mixture(HEM)model[2].The ATHOS code applies either the three-equation HEM model or the four-equation drift flux model with options for 1D,2D,and 3D analyses[3].The THIRST code developed by AECL for 700MWe SG,is a 1D thermal hydraulic[4].Several thermal hydraulic codes for NPP SGs were developed in China.Based on the 1D separated fluid model,the SGTH-2 performs steady analysis of the U-tube SG[5].The MOFS is based on the 1D HEM model[6],while the SG code for high-temperature gas cooling reactors follows the 2D HEM model[7].

    Most of the existing thermal hydraulic codes for NPP SGs utilize the classical HEM model,which treats the two-phaseflow of steam and water as a uniform mixture.However,it usually simulates the flow in the secondary loop with areaaveraged variables.Given that coolant temperature varies significantly from the top to bottom of the U-tube bundles, both temperature and heat transfer coefficients vary considerably in the two flows.To examine the thermal-hydraulic characteristics of NPP SGs thoroughly,a code with a detailed model shall be developed.

    In this paper,we present a thermal hydraulic code for NPP SGs in a geometric model composed of the primary and secondary loops,U-tube,and steam room.The unique secondary loop model is divided into hot and cold sides,and the flow in it is simulated using the four-equation drift flux model and is analyzed thermal-hydraulically through coupling with heat transfer of the tube wall.Finally,the code is used to implement and verify the Qinshan NPP SG.The thermal hydraulic parameters are computed at 100%,75%,50%,30%,and 15% power rates.

    II.GEOMETRIC MODEL

    Given the complicated actual structure,the geometry of the nuclear SG should be simplified in modeling and thermal hydraulic simulation.This work considers the U-tube NPP SG. The primary loop of the SG is assumed as a straight tube of equal length.The secondary loop is circular and consists of the water supply chamber and the descending and ascending channels.The ascending channel consists of the sub-cooling, boiling,and ascent sections.In the secondary loop,the division of hot and cold sides is defined by the flow direction in the primary loop.The side with the primary inlet flow(the hot side)is hotter than the side with the primary outlet flow (the cold side).The SG structure is composed of the primary and secondary loops,heat transfer tube,and steam room,as shown in Fig.1.The straight section of the two loops is 7-mlong.The U-tubes are 0.022m in diameter,with a total length of 16m.

    Fig.1.Simplified geometric frame of the SG.

    III.FIELD EQUATIONS

    In the U-tube SG,the flow types are of the single-and two-phase regions.Specifically,the flow in the primary loop and in sub-cooling sections of the secondary loop remains single-phase,whereas the two-phase region is illustrated by the flow in the boiling sections of the secondary loop.The two-phase regions are complicated in terms of flow and heat transfer.Thus,two sets of governing equations are established to model the single-and two-phase flows.

    A.Balance equations for single-phase regions

    In the sub-cooling sections of the U-tube SG,the singlephase region covers the primary loop,descending channel, and sub-cooling sections of the secondary loop.These regions utilize the single-phase flow model,and the respective balance equations of mass,energy,and momentum are as follows:

    B.Balance equations for two-phase regions

    The two-phase flow is mainly observed in the boiling section of the secondary loop of the U-tube SG.The equation of the four-equation drift flux model governs this region.This equation considers the velocity slipurat the two-phase interface and the variation in void fraction along the flow path.In our work,the 1D,area-averaged governing equations of the four-equation drift flux model used are expressed as[8]:

    where the subscript“m”pertains to fluid mixture parameters;ρmis density;Gmis mass rate;umis velocity;hmis enthalpy; andur=ug?ufis the relative velocity of the liquid and gaseous phases.

    C.Heat transfer model

    We model the heat transfer between the primary and secondary loops in the U-tube SG through the heat conduction of the tube wall.The heat transfer of the U-tube wall can then be simulated through 1D conduction in the cylindrical geometry.The convection heat transfer rate between the wall and the coolant is the source term,and the heat conduction equation is given by

    D.Correlations

    To close the field equations discussed above,we must determine the correlations in the thermal property of the fluid and wall materials,as well as the criteria for the different flow structures,resistances,heat,and mass transfers.Theunknown variables that must be derived from correlations includeρm,cp,m,Γg,hf,hg,τwf,τwg,Uwf,Uwg,Uhf,Uhg,q,ρf, andρg.

    To identify the thermal property of water and steam,we apply the formulas provided by the industrial standard IAPWSIF97[9].The property of the Incoloy-800 alloy is considered for the tube wall.Moreover,we apply the model of Taitel and Dukler in the structural criteria for flow[10].According to their model,bubble flow transitions to slug flow when bubble speedubis greater than Taylor bubble speedutbgiven a low flow rate in the tube with a small diameter tube(Gm<2000kg/(m2s)).This transition occurs when the void fraction is greater than 0.5 at an increased flow rate (Gm>3000kg/(m2s)),as shown by

    The transition from slug flow to annular flow can be determined through the superficial velocity and the Kutateladze (Ku)number of the flow[11].The transition is observed in the flow in the channels with small diameters when gaseous superficial velocity exceeds the critical superficial velocityjg,crit.However,the transition is initiated when the gaseous Ku number is greater than the critical Ku number,as expressed by

    The flow resistance in the U-tube SG considers the resistance to both gravitation and friction.The Darcy formula is applied in relation to the friction resistance of the singlephase flow.The split-phase friction model of Martinelli is employed[11]in relation to the friction resistance in the twophase flow as:

    The convective heat transfer coefficient of the single-phase flow is calculated using the D–B formula with regard to flow in the primary loop and in the pre-heating section of the secondary loop.The D–B formula is calculated according to Chen’s equation for the boiling section of the secondary loop [12],

    The onset of nucleate boiling is computed using the model developed by Bergles and Rohsenow[13]:

    IV.NUMERICAL SCHEMES

    A.Numerical schemes of the flow field

    In our solution,we apply the semi-implicit difference scheme.We treat the convection terms in the mass and energy equations,the pressure gradient,and the two-phase mass transfer in the momentum equation implicitly,whereas all other differential terms are examined explicitly.The staggered grids are applied in discretization,and two groups of control volumes are established in the same flow channel. The control volumes for pressure,void,density,and enthalpy are arranged in a staggered formation along with those for velocity.The mass and energy equations are discretized given thecontrolvolumegroupsi?1,i,andi+1,whicharealsoimplemented by control volume groupsj?1,j,andj+1 given the momentum equation.The values of the flow parameter are presumably uniform in all control volumes.Fig.2 depicts the established staggered grids and control volumes.

    Fig.2.Staggered grids for the discretization of flow conservation equations.

    In relation to the four-equation drift flux model used in the secondary loop,the semi-implicit discretization equations are listed below[13]:

    The discretization equations of the single-phase flow in the primary loop are similar in form to those given above. To solve these discretization equations,we adopt a velocity–pressure correction scheme.First,the unknown pressure of the new time step is assigned a value equal to that of the old time step.Subsequently,the momentum equation is solved to estimate the velocity value of the new time step.Once the mixture mass,gaseous mass,and mixture energy equationsarerearranged,weobtainthefollowingmatrixequations for

    We apply a large time step,such as Δt=106s,for the steady state analysis.In this case,the time-derivative term is very small and can be disregarded in the discretization equations.Thus,the balance equations above can then be applied to the steady-state solution.

    B.Solution for the U-tube wall conduction

    Equation(8)is integrated into cylindrical volume 2πrdrdlat the time step Δtin relation to the heat conduction of the U-tube wall to generate the discretization equation for wall temperature.

    C.Cross-iteration of heat balance and the natural circulation condition

    In the U-tube SG,heat transfer is simultaneous in the primaryandsecondaryloops;thus,flowandheattransferinboth loops must be coupled for solving.We adopt a coupled iteration scheme that converges these factors when both heat balance and the natural circulation condition are satisfied.In heat balance,the heat transfer in the primary loop is equal to that in the secondary loop.In the natural circulation condition,the head of driving pressure must meet the total pressure drop of the entire system,that is,

    In the iteration of heat balance,the heat fluxes in the primary and secondary loops are initially assumed to be a group of values.Subsequently,matrix Eq.(18)is solved to determine the flow parameters.The heat fluxes in the two loops are then computed in turn.In addition,the heat balance condition is validated.If the difference in heat flux between the primary and secondary loops is greater than a preset limit, the temperature of the coolant that enters the primary loop is corrected and a new iteration of heat balance is initiated.

    In the iteration of natural circulation,the dichotomy scheme is applied.First,the value of flow rateWis set,and the difference in pressure head and resistance is computed asf(W)=DH?D.The flow rate is then modified slightly to flip the sign off(W′).The value of the flow rate is updated byWn+1=(W+W′)/2.The corrective iteration ofWcontinues untilf(W)meets a pre-set limit.Based on the theoretical model above,we therefore develop a code for the steady-state thermal hydraulic simulation of the nuclear U-tube SG.A numerical scheme is also established using MATLAB software.

    V.SIMULATION RESULTS

    The steady-state thermal hydraulic characteristics of the SG in the Qinshan 300MW PWR are investigated with respect to the thermal hydraulic code presented for nuclear U-tube SGs.The grid gap measures 1.2m along the U-tube length.Moreover,this study considers five cases under different power conditions,namely,100%,75%,50%, 30%,and 15%.The results at the 100%power condition are compared with those simulated using the RELAP5 code[14]. Table 1 lists the required computation parameters given this power condition.

    Figures 3–7 show the computed steady-state thermal hydraulic parameters at the100%power level.The tube lengths are 0–8m and 8–16m for the hot and cold sides of the secondary loop,respectively.The results of the primary loop are plotted according to full tube length,whereas those of the secondary loop are plotted based on half tube length.Fig.3 presents the temperatures of the coolant in the primary and secondary loops and of the tube wall.The coolant temperature decreases along the tube in the primary loop;in the secondary loop,however,the inlet coolant is slightly sub-cooled.Thus,the coolant temperature increases to saturation level after a short distance.

    TABLE 1.Condition parameters for 100%power.

    Fig.3.Temperatures of the primary fluid(■,□),secondary fluid(?,?),andU-tubewall(▲,△)intheSG.Thesolidsymbolsrepresentsthe results of the current work,and the blank symbols denote the results obtained from RELAP5.

    The simulation results with our code differ only slightly from those obtained with RELAP5.With respect to the coolant temperature of the secondary loop,our results are slightly lower than those derived from RELAP5.This may be attributed to different correlations assigned to the convection coefficient.In RELAP5,a modified correlation of the convection heat transfer coefficient(Nu=2.0+ 0.74Re1/2Pr1/3)is applied to the single-phase liquid and sub-cooled boiling regions[14],whereas our study utilizes the D–B correlation.So,our technique generates a convection coefficient value that is smaller than that obtained with RELAP5.Temperature of the U-tube wall varies along the lengths in a manner that is almost similar to the coolant in the primary loop.This is ascribed to the fact that the heat resistance of the primary loop is much smaller than that of the secondary loop because the latter displays a noticeable fouling resistance.

    Fig.4.Phase velocity in the hot((■,□)and cold((▲,△)channels of the secondary loop under the 100%power condition.The solid symbols represent the results of this work,and the blank symbols denote the results obtained from RELAP5.

    Fig.5.Enthalpy of the fluid in the primary and secondary loops.

    Figure 4 displays the gaseous and liquid velocities of the flow in the secondary loop under the 100%power rate.Both velocities increase continually in the secondary loop from the lower room to the steam room with tube heating and coolant boiling.The two-phase velocities increase in the steam room as a result of the expanding area.Furthermore,gas velocity is always higher than that of liquid because gas phase flow is affected by buoyancy.Nonetheless,the RELAP5 results are 5%higher than those of our code.

    Fig.6.Heat flux on the interior of the U-tube wall.

    Figure 5 exhibits the variation in coolant enthalpy along the tube lengths in the primary and secondary loops.Fig.6 shows the heat flux on the interior of the U-tube wall,which is equal to that of the exterior of the U-tube in steady-state analysis.The coolant enthalpy in the primary loop continues to decrease along the tube length with heat transfer from the primary to the secondary loops,whereas that in the secondary loop continually increases throughout the process as depicted in Fig.5.The heat flux on the interior of the U-tube decreases with tube length as the temperature difference between the tube wall and the coolant decreases along the tube(Fig.6).

    Fig.8.Fluid pressure in the primary and secondary loops under the 100%power.

    Fig.9.Fluid temperature in the primary and secondary loops under the 100%power rate.

    Figure 7 displays the void fraction and the heat transfer coefficient along the tube lengths in the secondary loop.The coolant void fraction is higher in the hot side of secondary loop than that in the cold side given that the heat flux in the hot side is higher.However,the coolant void fractions that enter the steam room from both sides of the secondary loop are similar as a result of lateral mixing.

    Figure 8 depicts the variation in the pressure of the primary and secondary loops.The pressure of the primary loop continually decreases in the ascending part but increases in the descending part with the increase in gravitational potential energy.The pressures are similar at both sides of the secondary loop and continue to progress downward along the tube length.

    Fig.10.Variation in the circulation ratio and in circulation flow with power rate.

    Fig.11.Void fractions inthe cold and hot channels of the secondary loop given different power.

    Figure 9 displays coolant temperatures at five power rates in the primary and secondary loops.In the primary loop,inlet,outlet,and average coolant temperatures increase with the increase in power rate.The temperature of the inlet coolant increases more quickly than that of the outlet coolant.Hence, the variation amplitude of temperature in the primary loop increases with power rate.Fig.10 indicates that the saturation temperature of the coolant decreases when power rate increases.This finding suggests that the cooling capability of the secondary loop has been strengthened.

    Figure 10 presents the variations in circulation ratio and in circulation flow with power rate with regard to the SG.With the increase in power rate from 15%to 100%,the SG circulation flow initially increases at the small power rate but decreases when the power rate exceeds 50%.This result is induced by the coupled effect of driving pressure and circulation resistance.As the boiling length in the secondary loop increases with increasing power rate,the void fraction and driving pressure increase as well.Moreover,the circulation resistance increases with increasing flow rate;hence,the circulation flows downward along the tube length.The circulation ratio continually increases with power rate,as shown in Fig.9.Furthermore,the mass flow of the vapor in the SG continually increases.

    Fig.12.Enthalpy in the(a)primary and(b)secondary loops under different power rates.

    Figure 11 shows the gaseous void fractions in both sides of the secondary loop at 75%,50%,30%and 15%power rates. This fraction increases along the tube lengths of both sides of the secondary loop.In addition,the gaseous void fraction is higher in the hot side than that in the cold side because boiling length is longer in the former.

    Figure 12 depicts the variation in coolant enthalpy with tube length in the primary and secondary loops under15%–75%power rate.The coolant temperature in primary loop decreases along the tube length,where as that in the secondary loop is maximized.The enthalpy variation between the inlet and outlet of the two loops increases with high power rate.This result proves that the heat transfer process from the primary loop to the secondary loop is strengthened.In the secondary loop,coolant enthalpy increases more in the hot side than in the cold side.

    VI.CONCLUSION

    This study presents a steady-state thermal hydraulic code that was developed to thoroughly investigate the thermal hydraulic characteristics of the nuclear U-tube SG.This code is based on the two-zone geometry model of secondary loop. Thermal hydraulic analysis was conducted using the fourequation flux model,and a cross-iteration solution was established to meet the conditions of heat balance and natural circulation.This solution is based on the staggered grids and the first-order scheme of explicit–implicit difference.The steady state thermal hydraulic characteristics of the SG were thus identified using the developed code for the QINSHAN I PWR under 100%,75%,50%,30%and 15%power rates. Moreover,some important thermal and hydraulic parameters were identified for the primary and secondary loops.The results obtained under the100%power rate agree well with the results simulated using RELAP5.Hence,the established theoretical model and numerical scheme can guide the design and safe operation of a nuclear U-tube SG.

    SYMBOL LIST

    ρdensity,kg/m3;

    uvelocity,m/s;

    ttime,s;

    zdistance,m;

    henthalpy,kJ/(kgK);

    Hheat transfer coef fi cient,W/(m2K);

    qheat fl ux,W/m2;

    qvvolume heat,W/m3;

    ggravity,m/s2;

    τwall shearing,Pa;

    Uheat perimeter,m;

    Deequivalent diameter,m;

    ξresistance coef fi cient;

    Φ2two-phase coef fi cient;

    cpspeci fi c heat,J/(kgK);

    Ttemperature,?C;

    rradius,m;

    Ddiameter,m;

    Across section,m2;

    Wmass fl flow,kg/s;

    αvoid fraction;

    xsteam quality;

    λconductivity,W/(m2K);

    Hpressure head,Pa;

    jg,critcritical super fi cial velocity,m/s;

    Tsatsaturation temperature of secondary loop;

    Tpooutlet temperature of primary loop;

    Tpiinlet temperature of primary loop;

    Taveaverage temperature of primary loop;

    SUBSCRIPT

    f liquid;

    g gas;

    p primary loop;

    s secondary loop;

    m mixture;

    w wall;

    b bubble;

    tb Taylor bubble;

    onb bubble onset;

    i,jvolume index;

    a acceleration;

    c Form resistance;

    SUPERSCRIPT

    n,n+1 time step

    [1]James C S and James K A.Nuel Eng Inter,1986,31,83–86.

    [2]Moskal T E,Childerson M T,Carter H R.Amer Contr Conf, 1984,1:85–92.

    [3]Heistand J W and Thakkar J G.ATHOS and FLOW3 simulation of the FRIGG heated rod bundle experiment,Technical Report NP-3541,EPRI,1984.

    [4]Yetisir M,Pietralik J,Mirzai M.Pres Ves P,2003,2:61–69.

    [5]Xue H J and Yan J Q.Nucl P Eng,1989,10:47–50.(in Chinese)

    [6]Xie H,Zhang J L,Jia D N,et al.Nucl P Eng,1998,19:413–418.(in Chinese)

    [7]Yu Y and Ju H M.J Tsinghua Univ(Sci&Tech),2004,44: 1202–1204.(in Chinese)

    [8]Kazimi M and Massoud M.A condensed review of nuclear reactor thermal-hydraulic computer codes for two-phase fl ow analysis.Energy Laboratory Report No.MIT-EL 79-018, February 1980,37–40.

    [9]IAPWS,Revised release on the IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam [OL].Aug.2007,available at http://www.iapws.org.

    [10]Taitel Y,Bornea D,Dukler A E.Aiche J,1980,26:345–354.

    [11]Lockhart R W and Martinelli R C.Chem Eng Prog,1949,1: 39–48.

    [12]Chen J C.Ind Eng Chem Proc DD,1966,5:531–535.

    [13]Bergles A E and Rohsenow W M.J Heat Transf,1964,86: 365–372.

    [14]NUREG/CR-5535/RevP3-VolIV,Relap5mod3.3codemanual volume IV:models and correlations,prepared for the Of fi ce of Nuclear Regulatory Research,US NRC,Washington DC, 2006,42.

    10.13538/j.1001-8042/nst.25.050601

    (Received December 3,2013;accepted in revised form March 3,2014;published online September 20,2014)

    ?Supported by the National Natural Science Foundation of China(Nos. 51376065 and 51176052)

    ?Corresponding author,huangkai@ipp.ac.cn

    猜你喜歡
    志豪
    兵媽媽的腳步
    歌海(2022年4期)2023-01-02 13:29:52
    學(xué)生作品
    火之殤
    大眾攝影(2020年11期)2020-11-02 02:57:36
    黃志豪:尋常生活自有詩(shī)意
    戰(zhàn)友永在我心里
    歌海(2020年1期)2020-03-23 06:05:32
    第二次高考
    青秀山
    歌海(2019年1期)2019-06-11 07:02:15
    基于AHP的外賣商戶綜合評(píng)價(jià)模型
    考試周刊(2018年15期)2018-01-21 10:40:25
    Analyze On—line Star Economy Basing on Models of Entrepreneurship
    等我長(zhǎng)大了,天天背你
    日韩欧美精品免费久久| av黄色大香蕉| h视频一区二区三区| 久久久欧美国产精品| 亚洲三级黄色毛片| 国产成人freesex在线| 女性生殖器流出的白浆| 精品熟女少妇av免费看| 国产精品成人在线| av免费在线看不卡| av天堂久久9| 亚洲国产最新在线播放| 天堂俺去俺来也www色官网| 18禁观看日本| 80岁老熟妇乱子伦牲交| 国产免费现黄频在线看| 91午夜精品亚洲一区二区三区| 亚洲美女视频黄频| 亚洲av电影在线观看一区二区三区| 亚洲高清免费不卡视频| 午夜激情福利司机影院| 99久久人妻综合| 赤兔流量卡办理| 国产在线视频一区二区| 色网站视频免费| 高清黄色对白视频在线免费看| 久久久午夜欧美精品| 亚洲色图 男人天堂 中文字幕 | 国产精品不卡视频一区二区| 欧美激情极品国产一区二区三区 | 成人毛片60女人毛片免费| 国产极品天堂在线| 国产午夜精品久久久久久一区二区三区| 国产欧美日韩综合在线一区二区| 十分钟在线观看高清视频www| 国产精品欧美亚洲77777| 亚洲色图综合在线观看| 大香蕉97超碰在线| 亚洲精品成人av观看孕妇| 纯流量卡能插随身wifi吗| 国产一区有黄有色的免费视频| 欧美变态另类bdsm刘玥| 国产伦理片在线播放av一区| 亚洲中文av在线| 九九在线视频观看精品| 亚洲av中文av极速乱| 最黄视频免费看| av又黄又爽大尺度在线免费看| 久久综合国产亚洲精品| av电影中文网址| 一级黄片播放器| 九九爱精品视频在线观看| 一个人免费看片子| 黄色欧美视频在线观看| 极品少妇高潮喷水抽搐| 国产精品麻豆人妻色哟哟久久| 老司机影院毛片| 久热这里只有精品99| 人体艺术视频欧美日本| 国产白丝娇喘喷水9色精品| av在线app专区| 丁香六月天网| 看免费成人av毛片| 成人毛片a级毛片在线播放| 国产一区二区在线观看日韩| 亚洲精品乱久久久久久| av电影中文网址| 老司机亚洲免费影院| 国产精品99久久99久久久不卡 | 久久毛片免费看一区二区三区| 国产白丝娇喘喷水9色精品| 亚洲精品日韩在线中文字幕| 九色成人免费人妻av| 91在线精品国自产拍蜜月| 日韩亚洲欧美综合| 一个人免费看片子| 99国产综合亚洲精品| 亚洲美女黄色视频免费看| 日韩三级伦理在线观看| 亚洲高清免费不卡视频| 另类精品久久| 在线播放无遮挡| 免费观看在线日韩| 色吧在线观看| 国模一区二区三区四区视频| 黑人巨大精品欧美一区二区蜜桃 | 边亲边吃奶的免费视频| 亚洲av男天堂| 国产黄片视频在线免费观看| 99热这里只有是精品在线观看| 精品一区二区三卡| 纵有疾风起免费观看全集完整版| 免费不卡的大黄色大毛片视频在线观看| 国产精品一区二区在线不卡| 亚洲欧美日韩另类电影网站| 久久婷婷青草| 久久久久久久久久久久大奶| 少妇的逼好多水| 最后的刺客免费高清国语| 亚洲精品456在线播放app| 久久精品熟女亚洲av麻豆精品| 看免费成人av毛片| 亚洲欧洲国产日韩| 黄色怎么调成土黄色| 国产精品嫩草影院av在线观看| 18禁观看日本| 国产在线免费精品| 国产一区二区在线观看日韩| 精品少妇内射三级| 乱码一卡2卡4卡精品| 大香蕉久久网| 日韩不卡一区二区三区视频在线| 男男h啪啪无遮挡| 啦啦啦啦在线视频资源| 午夜免费观看性视频| 国产成人精品久久久久久| 又大又黄又爽视频免费| 日日摸夜夜添夜夜爱| 麻豆精品久久久久久蜜桃| 免费人成在线观看视频色| 久久女婷五月综合色啪小说| 国产精品熟女久久久久浪| 男男h啪啪无遮挡| 美女内射精品一级片tv| 黄色视频在线播放观看不卡| 99热全是精品| 久久精品国产a三级三级三级| 91成人精品电影| 国产欧美另类精品又又久久亚洲欧美| 少妇熟女欧美另类| 国产精品一区二区在线观看99| 在线观看免费高清a一片| 久久久欧美国产精品| 色婷婷av一区二区三区视频| 永久免费av网站大全| 亚洲成色77777| 国产精品久久久久久久电影| 一级,二级,三级黄色视频| 人成视频在线观看免费观看| 美女大奶头黄色视频| 亚洲精品日韩av片在线观看| 亚洲一级一片aⅴ在线观看| 97在线视频观看| 观看av在线不卡| 亚洲av男天堂| 国产视频首页在线观看| 好男人视频免费观看在线| 蜜桃国产av成人99| 国产淫语在线视频| 欧美激情极品国产一区二区三区 | 久久韩国三级中文字幕| 国产av国产精品国产| 99九九在线精品视频| 欧美日韩在线观看h| 久久精品国产亚洲av涩爱| 性高湖久久久久久久久免费观看| 欧美亚洲 丝袜 人妻 在线| 69精品国产乱码久久久| 又大又黄又爽视频免费| 久久久精品94久久精品| 夜夜骑夜夜射夜夜干| 国产乱人偷精品视频| 晚上一个人看的免费电影| av专区在线播放| 伦理电影大哥的女人| 狠狠婷婷综合久久久久久88av| 男女啪啪激烈高潮av片| 日日摸夜夜添夜夜添av毛片| 国产一区二区三区综合在线观看 | 亚洲色图综合在线观看| 精品国产一区二区久久| 黄片无遮挡物在线观看| 亚洲一区二区三区欧美精品| 天天操日日干夜夜撸| 日韩不卡一区二区三区视频在线| 制服诱惑二区| 爱豆传媒免费全集在线观看| 少妇人妻久久综合中文| 桃花免费在线播放| 女性生殖器流出的白浆| 晚上一个人看的免费电影| 亚洲精品国产av成人精品| 国产女主播在线喷水免费视频网站| 国产亚洲一区二区精品| 18禁裸乳无遮挡动漫免费视频| 免费人成在线观看视频色| 五月天丁香电影| 欧美另类一区| 一区在线观看完整版| 国产精品99久久久久久久久| 精品一区二区三卡| 国产日韩欧美在线精品| 伊人久久国产一区二区| av不卡在线播放| 美女大奶头黄色视频| 免费黄频网站在线观看国产| 午夜免费鲁丝| 亚洲精品乱码久久久久久按摩| 高清黄色对白视频在线免费看| 夜夜看夜夜爽夜夜摸| 男的添女的下面高潮视频| 91成人精品电影| 精品亚洲乱码少妇综合久久| av国产精品久久久久影院| 欧美日韩在线观看h| 亚洲精品视频女| 免费看光身美女| av在线老鸭窝| 韩国av在线不卡| 日日爽夜夜爽网站| 精品午夜福利在线看| 亚洲精品中文字幕在线视频| 日韩一区二区三区影片| 在线观看国产h片| 亚洲精品一二三| 亚洲国产欧美在线一区| 精品熟女少妇av免费看| h视频一区二区三区| 美女cb高潮喷水在线观看| 女人精品久久久久毛片| 国产av一区二区精品久久| 日日爽夜夜爽网站| 亚洲性久久影院| 婷婷色综合www| 亚洲av日韩在线播放| 国产成人a∨麻豆精品| 亚洲人成77777在线视频| 久久ye,这里只有精品| 18禁动态无遮挡网站| 久久热精品热| 亚洲婷婷狠狠爱综合网| 国产欧美亚洲国产| 国产男女内射视频| 男人添女人高潮全过程视频| 亚洲精品乱久久久久久| 国产免费现黄频在线看| av国产精品久久久久影院| av又黄又爽大尺度在线免费看| 中国三级夫妇交换| 少妇丰满av| 少妇熟女欧美另类| 超色免费av| 国产精品国产三级国产专区5o| 看非洲黑人一级黄片| 老女人水多毛片| 亚洲av男天堂| 人妻 亚洲 视频| 一级a做视频免费观看| 日日啪夜夜爽| 黄片无遮挡物在线观看| 少妇高潮的动态图| 大陆偷拍与自拍| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产成人一精品久久久| 欧美成人精品欧美一级黄| 在线观看www视频免费| 三级国产精品片| 亚洲高清免费不卡视频| 一级片'在线观看视频| 精品国产乱码久久久久久小说| 亚洲色图 男人天堂 中文字幕 | 69精品国产乱码久久久| 久久热精品热| 一级,二级,三级黄色视频| 母亲3免费完整高清在线观看 | 不卡视频在线观看欧美| 80岁老熟妇乱子伦牲交| 国产精品.久久久| 国产女主播在线喷水免费视频网站| 天堂中文最新版在线下载| 成人综合一区亚洲| av专区在线播放| 日韩,欧美,国产一区二区三区| 满18在线观看网站| 91国产中文字幕| 精品国产露脸久久av麻豆| 国产在线一区二区三区精| 欧美 日韩 精品 国产| 亚洲av综合色区一区| 妹子高潮喷水视频| 日韩 亚洲 欧美在线| 最近2019中文字幕mv第一页| 色婷婷久久久亚洲欧美| 美女cb高潮喷水在线观看| 丝袜美足系列| 大香蕉97超碰在线| 国产视频内射| 另类精品久久| 国产精品久久久久久精品古装| 在线免费观看不下载黄p国产| 青春草国产在线视频| 国产精品一区www在线观看| 亚洲人与动物交配视频| 久久人人爽人人片av| 成人二区视频| 嘟嘟电影网在线观看| 狂野欧美白嫩少妇大欣赏| 国产精品久久久久久久久免| 少妇熟女欧美另类| 妹子高潮喷水视频| 欧美成人精品欧美一级黄| 97超碰精品成人国产| 只有这里有精品99| 国产片内射在线| 最后的刺客免费高清国语| 嫩草影院入口| 精品卡一卡二卡四卡免费| 亚洲精品成人av观看孕妇| 夜夜爽夜夜爽视频| 久久鲁丝午夜福利片| 午夜日本视频在线| 18禁裸乳无遮挡动漫免费视频| 9色porny在线观看| 一本大道久久a久久精品| 亚洲国产精品国产精品| 国产毛片在线视频| 99精国产麻豆久久婷婷| 日本色播在线视频| www.色视频.com| 久久人人爽av亚洲精品天堂| 91精品伊人久久大香线蕉| 亚洲精品日本国产第一区| 久久精品久久久久久久性| 亚洲三级黄色毛片| 欧美变态另类bdsm刘玥| 久久久久久久久久久免费av| 精品久久久久久久久亚洲| 一级片'在线观看视频| 国产成人av激情在线播放 | 成人18禁高潮啪啪吃奶动态图 | 亚洲欧美日韩卡通动漫| 99久国产av精品国产电影| 免费日韩欧美在线观看| 飞空精品影院首页| 国产成人精品一,二区| 久久精品国产亚洲av涩爱| 欧美日韩一区二区视频在线观看视频在线| 九九在线视频观看精品| 亚洲欧美一区二区三区黑人 | 精品久久久久久电影网| 亚洲精品久久午夜乱码| 精品久久久精品久久久| 在线免费观看不下载黄p国产| 免费黄网站久久成人精品| 尾随美女入室| 亚洲欧洲国产日韩| 精品久久久久久久久亚洲| 亚洲av成人精品一二三区| 亚洲精品国产色婷婷电影| 亚洲情色 制服丝袜| 国产精品三级大全| 黑人欧美特级aaaaaa片| 国产成人av激情在线播放 | 免费播放大片免费观看视频在线观看| 亚洲高清免费不卡视频| 亚洲精品中文字幕在线视频| 久久亚洲国产成人精品v| 亚洲精品aⅴ在线观看| 免费播放大片免费观看视频在线观看| av在线播放精品| 亚洲欧美日韩另类电影网站| 久久国产精品男人的天堂亚洲 | 麻豆精品久久久久久蜜桃| 乱人伦中国视频| 乱人伦中国视频| 亚洲欧美一区二区三区黑人 | 女人精品久久久久毛片| 18禁在线播放成人免费| 国产片特级美女逼逼视频| 午夜影院在线不卡| 成人亚洲精品一区在线观看| 国产av一区二区精品久久| 久久久久久久久久久免费av| 亚洲精品乱码久久久久久按摩| 日本wwww免费看| 一区二区三区四区激情视频| 人妻系列 视频| 亚洲不卡免费看| 精品少妇黑人巨大在线播放| 91aial.com中文字幕在线观看| 大码成人一级视频| 国产老妇伦熟女老妇高清| 老熟女久久久| 成人亚洲精品一区在线观看| 视频在线观看一区二区三区| 国产成人精品在线电影| freevideosex欧美| 精品久久国产蜜桃| 中文乱码字字幕精品一区二区三区| av在线老鸭窝| 日韩,欧美,国产一区二区三区| 黄片无遮挡物在线观看| 18禁在线播放成人免费| 久久久精品区二区三区| 97超碰精品成人国产| 免费观看在线日韩| 欧美少妇被猛烈插入视频| 少妇 在线观看| a级片在线免费高清观看视频| 永久网站在线| 久久99蜜桃精品久久| 观看美女的网站| 欧美亚洲日本最大视频资源| 亚洲精品美女久久av网站| 日本-黄色视频高清免费观看| 少妇被粗大猛烈的视频| 免费观看无遮挡的男女| 亚洲精品456在线播放app| 成年女人在线观看亚洲视频| 精品人妻偷拍中文字幕| 一本色道久久久久久精品综合| 夜夜骑夜夜射夜夜干| 国产精品麻豆人妻色哟哟久久| 亚洲精品aⅴ在线观看| av一本久久久久| 日日啪夜夜爽| 日韩av不卡免费在线播放| 亚洲欧洲日产国产| 18禁观看日本| 寂寞人妻少妇视频99o| 久久久国产一区二区| 久久久久久久大尺度免费视频| 免费看光身美女| 欧美日韩成人在线一区二区| 99久久综合免费| 日本欧美视频一区| 欧美精品人与动牲交sv欧美| av在线播放精品| 夜夜爽夜夜爽视频| 成人毛片60女人毛片免费| 国产片内射在线| 亚洲精品456在线播放app| 黄色配什么色好看| 国产精品秋霞免费鲁丝片| 亚洲婷婷狠狠爱综合网| 亚洲图色成人| 少妇被粗大的猛进出69影院 | 人人妻人人爽人人添夜夜欢视频| 国产欧美亚洲国产| 少妇被粗大猛烈的视频| 免费日韩欧美在线观看| 午夜免费观看性视频| 这个男人来自地球电影免费观看 | 国产精品久久久久成人av| 美女cb高潮喷水在线观看| 久热这里只有精品99| 久久国产精品大桥未久av| 日本色播在线视频| 97在线人人人人妻| 一二三四中文在线观看免费高清| 一本久久精品| 午夜福利视频在线观看免费| 性高湖久久久久久久久免费观看| 亚洲美女视频黄频| 在线观看国产h片| 亚洲精品456在线播放app| 久久av网站| 女人久久www免费人成看片| 成人手机av| 91久久精品国产一区二区三区| 中文字幕精品免费在线观看视频 | 欧美日韩精品成人综合77777| 亚洲伊人久久精品综合| 午夜福利影视在线免费观看| 国产色爽女视频免费观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品人妻久久久久久| 国产一区二区三区综合在线观看 | 丰满少妇做爰视频| 午夜激情av网站| 国产午夜精品一二区理论片| 亚洲精品久久久久久婷婷小说| 97在线视频观看| 韩国高清视频一区二区三区| 不卡视频在线观看欧美| 最新的欧美精品一区二区| 好男人视频免费观看在线| 99热这里只有精品一区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 啦啦啦在线观看免费高清www| 国模一区二区三区四区视频| 一个人免费看片子| 人妻夜夜爽99麻豆av| 亚洲av.av天堂| 嫩草影院入口| 99热这里只有精品一区| 性高湖久久久久久久久免费观看| 3wmmmm亚洲av在线观看| 99九九在线精品视频| 中文字幕免费在线视频6| 久久av网站| 欧美日韩精品成人综合77777| 国产av国产精品国产| 91精品国产九色| 丝袜喷水一区| 午夜激情福利司机影院| 久久国产精品男人的天堂亚洲 | 国产精品.久久久| 一个人免费看片子| 中文天堂在线官网| 激情五月婷婷亚洲| 性色av一级| 国产一区有黄有色的免费视频| 亚洲av日韩在线播放| 国产亚洲最大av| 国产精品久久久久久精品古装| 久久精品久久久久久久性| 久久亚洲国产成人精品v| 2022亚洲国产成人精品| 亚洲欧洲日产国产| 人妻少妇偷人精品九色| av在线老鸭窝| 一级,二级,三级黄色视频| 成人国语在线视频| 欧美日韩av久久| av有码第一页| 日韩三级伦理在线观看| 亚洲国产色片| 亚洲国产精品国产精品| 亚洲av不卡在线观看| 亚洲第一区二区三区不卡| 午夜久久久在线观看| 美女国产高潮福利片在线看| 在线观看免费视频网站a站| 日韩av不卡免费在线播放| 国产视频首页在线观看| 少妇的逼好多水| 在现免费观看毛片| 久久精品国产亚洲av涩爱| 高清av免费在线| 久久国内精品自在自线图片| 人妻 亚洲 视频| 国产精品国产三级专区第一集| 亚洲精品国产av成人精品| 亚洲欧美色中文字幕在线| 91aial.com中文字幕在线观看| 少妇熟女欧美另类| 亚洲精品美女久久av网站| 我的女老师完整版在线观看| 免费黄色在线免费观看| 永久免费av网站大全| 一级片'在线观看视频| 男女无遮挡免费网站观看| 街头女战士在线观看网站| 亚洲av欧美aⅴ国产| √禁漫天堂资源中文www| 在线亚洲精品国产二区图片欧美 | 精品国产露脸久久av麻豆| 国产欧美另类精品又又久久亚洲欧美| 日韩 亚洲 欧美在线| www.av在线官网国产| 国产一区亚洲一区在线观看| freevideosex欧美| 一级a做视频免费观看| 日韩 亚洲 欧美在线| 免费av不卡在线播放| 少妇人妻久久综合中文| 国产欧美日韩一区二区三区在线 | 午夜久久久在线观看| 欧美亚洲日本最大视频资源| 高清午夜精品一区二区三区| 99九九线精品视频在线观看视频| 男人添女人高潮全过程视频| 亚洲精品视频女| 午夜激情福利司机影院| 国产白丝娇喘喷水9色精品| 黄片无遮挡物在线观看| 成人漫画全彩无遮挡| 国产亚洲av片在线观看秒播厂| 女的被弄到高潮叫床怎么办| 久久99一区二区三区| 嫩草影院入口| 高清黄色对白视频在线免费看| 久久精品国产亚洲网站| 日韩伦理黄色片| 十八禁高潮呻吟视频| xxx大片免费视频| 亚洲欧美成人精品一区二区| 亚洲精品av麻豆狂野| 欧美三级亚洲精品| 狂野欧美激情性bbbbbb| 国产黄色免费在线视频| 欧美3d第一页| 视频区图区小说| 大又大粗又爽又黄少妇毛片口| 激情五月婷婷亚洲| 伦精品一区二区三区| av在线播放精品| 国产白丝娇喘喷水9色精品| 成人无遮挡网站| 三级国产精品欧美在线观看| 一级黄片播放器| 视频在线观看一区二区三区| 国产精品久久久久久精品电影小说| 成人毛片60女人毛片免费| 人妻少妇偷人精品九色| 一级,二级,三级黄色视频| 国产老妇伦熟女老妇高清| 国产av码专区亚洲av| 热99国产精品久久久久久7| 日韩av在线免费看完整版不卡| 亚洲高清免费不卡视频| 岛国毛片在线播放| 纵有疾风起免费观看全集完整版| 国产成人精品婷婷| 热99国产精品久久久久久7| 国产亚洲精品第一综合不卡 | 免费大片18禁| 秋霞伦理黄片| 亚洲精品aⅴ在线观看| 人人澡人人妻人| 人人妻人人澡人人爽人人夜夜| 91精品伊人久久大香线蕉| 久久久国产精品麻豆| 久久 成人 亚洲|