• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    聚乙烯吡咯烷酮輔助的水熱法合成形貌可控的銀納米結(jié)構(gòu)

    2014-06-23 06:53:02徐麗紅闞彩俠王長順施大寧
    物理化學學報 2014年3期
    關(guān)鍵詞:吡咯烷酮南京航空航天大學水熱法

    徐麗紅 闞彩俠,2,* 王長順 從 博 倪 媛 施大寧,*

    (1南京航空航天大學理學院應用物理系,南京211106;2南京航空航天大學,納智能材料器件教育部重點實驗室,南京211106)

    1 Introduction

    Metal nanostructures have been of extensive interest in many different areas because of their unique or improved electronic,catalytic,optical properties.1-5The synthesis of shapecontrolled metal nanocrystals has achieved great progress.The top-down solid-state methods,such as sol-gel,6molten salt,7physical grinding,and high energy ball milling,8,9etc.have taken the lead in industrial production of nanomaterials.But preparation cost of these methods is relatively expensive and products are not uniform in size and morphology.Solution-phase chemical approaches provide economic routes to obtain highquality nanomaterials in specified morphology.These include template-assistant deposition approach,10chemical reduction method,11-15irradiation-photoreduction processes.16-18Among these methods,the common chemical reduction method especially the polyol process,which is the most convenient,versatile,and low cost,is usually adopted for the synthesis of noble metal nanoparticles.By changing the preparation parameters in the system,all kinds of nanostructures with different morphologies can be obtained,and the morphology could be further well controlled through introducing surfactant.For example,polyvinylpyrrolidone(PVP)plays a remarkable important role to control the shapes of different nanostructures such as Ag nanowires,19,20Ag nanocubes,21and newly shaped Au nanoplates22etc.It is believed that the selective adsorption of surfactant molecules onto particular crystal facets of nanoparticles results in various morphologies due to different growth rates along different directions.23Moreover,surrounding environment of the reaction system does affect the properties of metal nanocrystals.Many research groups synthesize metal nanostructures mostly in oil bath which can afford uniform heat distribution under a controllable temperature.The reaction solution was placed in a vial or flask,capped as appropriate and heated with stirring.In such an open circumstance,oxygen plays a vital role in the formation of nanostructures.24,25

    Currently,Ag nanostructures are of great interest because of their unique microstructures,optical properties,and potential applications.Shape control provides one of the most powerful means to tailor the optical properties of metal nanostructures.The number,position,and intensity of surface plasma resonance(SPR)have a strong correlation with their exact morphology.The uniformity of size and monodispersity of nanoparticles are important physical parameters for both technological usage and foundational research.

    In this paper,we report a simple way for the synthesis of Ag nanostructures(nanowires and nanodecahedrons)with welldefined shapes by hydrothermal method in a 60 mL stainless steel autoclave.This hydrothermal synthesis process assisted by PVP provides a sealed,high-pressure surrounding.PVP polymers of various average molecular weight(MW)marked asK17,K30,K60,and,K90 are applied(Kis usually used to represent the characteristic value of relative viscosity of PVP solution.The larger MW of PVP,the higher relative viscosity of the PVP solution is).Based on the optical evolution and microscopy results,the effects of PVP and solvents(such as ethylene glycol(EG)and deionized water)on the morphology of Ag nanostructures are studied in detail.Plausible growth mechanisms can be proposed through analyzing the structural characteristics of Ag nanostructures as well as the role of PVP surfactants.

    2 Experimental

    2.1 Synthesis

    2.1.1 Materials

    Silver nitrate(AgNO3,99.8%,Sinopharm Chemical Reagent Co.,Ltd.),sodium chloride(NaCl,99.5%,Nanjing Chemical Reagent Co.,Ltd.),hydrochloric acid(HCl,37%,Sinopharm Chemical Reagent Co.,Ltd.),and ethylene glycol(EG,98%,Nanjing Chemical Reagent Co.,Ltd.)were used in this work.Polyvinylpyrrolidone(PVP,Sinopharm Chemical Reagent Co.,Ltd.)with various average MW values of 8000,40000,160000,and 360000 were chosen,which were marked asK17,K30,K60,andK90,respectively.All reagents were used without further purification.Water was purified using a MilliQ setup(QYFX,Chongqing Qianyan water treatment equipment Co.LTD.)for ultrapure water(18.25 MΩ·cm).

    2.1.2 Synthesis of Ag nanowires

    An improved hydrothermal PVP-directed polyol process was used to synthesize Ag nanowires.Firstly,10 mL EG,2 mL HCl(3 mmol·L-1solution in EG),6 mL PVP(0.15 mol·L-1in terms of the repeating unit,K30,K60,K90 solution respectively in EG)and 6 mLAgNO3(0.1 mol·L-1solution in EG)were respectively added into a 60 mL stainless steel autoclave and heated at 140°C for 15 h.The molar ratio(R)of PVPrepeatunitto AgNO3is 1.5.After cooling to room temperature naturally,the obtained suspensions were washed with acetone and deionized water by centrifugating for several times.

    2.1.3 Synthesis of Ag nanodecahedrons

    In a typical experiment,the reaction solution was prepared by dissolving 0.710 g of PVP(K17)and 0.068 g AgNO3in 40 mL deionized water(R=16).Then,the solution was transferred into the 60 mL stainless steel autoclave and heated at 195°C for 10 h,followed by cooling to room temperature naturally.After the hydrothermal reaction,the obtained suspensions were washed with deionized water and centrifugated for several times.

    2.2 Characterization

    The optical absorption spectra of the prepared samples were collected using a UV-Vis spectrophotometer(UV-6300)in thewavelength range of 200-1100 nm.For transmission electron microscopy(TEM,JEM-1010)analysis,the products were diluted with deionized water,and a droplet of the dispersions placed onto the carbon-coated copper grids.For field emissionscanning electron microscopic(FE-SEM,Nova NanoSEM 230-FEI)measurement,the condensed products were dispersed on copper sheets.All the samples were dried at room temperature.

    3 Results and discussion

    3.1 Ag nanowires

    Fig.1 shows the TEM images of synthesized silver nanowires.It is found that the aspect ratios of the obtained Ag nanowires increased with increasing the MW of PVP.Ag nanowires synthesized with PVP-K30 are not uniform in size and diameter,and a lot of nanocubes and other polyhedral nanostructures appear in the products,as presented in Fig.1(a).With the MW of PVP increasing,the yields of Ag nanowires increase greatly and only few particles could be observed in the products,as shown in Fig.1(b,c).The diameter of these Ag nanowires is quite uniform which is around 85 and 120 nm produced with the existence of PVP-K60 and PVP-K90,respectively.Fig.1(d)shows the typical products synthesized in the same condition except for the absence of HCl.The products are dominated by Ag nanoparticles and other polyhedral nanostructures with size larger than 100 nm,and no Ag nanowires can be seen no matter which PVP was used.We can see the application of HCl is important for the growth of Ag nanowires under the hydrothermal condition,which is quite different from that produced in an open atmosphere,as reported previously.26,27In an open atmosphere,polyhedral Ag nanostructures are the dominant products without the addition of HCl in the reaction system.

    Fig.1 TEM images of the synthesizedAg nanostructures using PVP of different molecular weights(MWs)

    Since Ag nanostructures with different shapes and sizes exhibit different SPR bands at different frequencies,we also carried out UV-Vis spectrum measurements for the samples.Fig.2 shows the optical absorption spectra of Ag colloid solutions synthesized using PVP of different MW values.All of the obtained products show the evident plasma peaks at~350 and~385 nm,which should be attributed to the quadrupole resonance and dipole resonance of the Ag nanowires,respectively.28-30For curve a,there is another obvious peak at~450 nm attributed to the SPR resonance of the polyhedral Ag nanostructures which indicates that the final products should be a mixture of Ag nanowires and polyhedral nanostructures.This is consistent with the results of TEM observations which contain nanocubes and other polyhedral nanostructures.Inset of Fig.2 shows the absorption spectra of Ag nanostructures obtained in the absence of HCl,all of which show one main SPR peak at~425 nm together with a weak absorption shoulder at~350 nm,belonging to Ag nanoparticles and other polyhedral nanostructures.31

    Meanwhile,we also explored the influence of the reaction temperature on the Ag nanostructures.Figs.3(a)and 3(b)show the optical absorption spectra of Ag colloid solution sampled at 160 and 180°C,respectively.With the reaction temperature rising,the absorption peak of the products synthesized by PVPK30 becomes wider and shifts to~420 nm.In the case of PVPK60,the absorption peak drops slowly at a higher temperature and even shows a weak shoulder peak at~410 nm when the temperature rises up to 180°C.As for PVP-K90,we can see red shift of the absorption peak atT=160°C and a new shoulder peak at~410 nm at 180 °C.We can conclude that more nanoparticles appear in the products with the reaction temperature rising that might attribute to a higher reaction rate.As we know,in such a polyol synthesis process,EG serves as solvent as well as reducing agent.To figure out the effect of EG,we replaced EG with deionized water as the solvent at 140°C with-out any other changes.The products were almost Ag nanoparticles in this case,although there is a weak absorption shoulder at~350 nm,as shown in Fig.3(c).When PVP-K60 and PVPK90 were used,only one resonance peak at~405 nm of Ag nanoparticles was observed in the absorption spectra.

    Fig.2 UV-Vis absorption spectra ofAg nanowires synthesized using PVPof different MWs

    Fig.3 UV-Vis absorption spectra ofAg nanostructures synthesized using PVPof different MWs under different conditions(in the presence of HCl)

    Furthermore,we carried our experiment by replacing HCl with NaCl in the same concentration(2 mL of 3 mmol·L-1solution in EG).The SEM images(Fig.4)of the products demonstrate that Ag nanowires are obtained with the application of NaCl.Meanwhile,the aspect ratios of Ag nanowires increase with the MW of PVP as well,as presented in Fig.4(a-c)that were respectively synthesized by PVP-K30,K60,andK90.One can also observe in Fig.4(d)that the Ag nanowires should be five-fold symmetry from the cross section.The UV-Vis absorption spectra(Fig.5)show that the absorption peak ofK60 is narrow and drops more quickly than the other two curves.Compared with Fig.2a,it is worth noting that Fig.5a does not show a peak at 450 nm.That might because of the absence of nanocubes in the products,as we can see in Fig.4(a),all of which are nanowires with some irregular nanoparticles.

    According to the above results,we can conclude that Clplays a critical role in fabricating Ag nanowires.With no Clwas applied,the chemical reactions of the growth and reduction processes are as follows:

    One plausible growth mechanism of Ag nanowires is that,at a high temperature,ethylene glycol can be oxidized to aldehyde(reaction(1))which reduces Ag+to Ag atoms(reaction(2))that will start to nucleate and grow into nanoparticles.At the same time,nitric acid was generatedin situdue to the generation of protons and could dissolve Ag solids into Ag+at high temperature again(reaction(3)).

    The introduction of Cl-could slow down reaction(2)through the formation of colloid AgCl.Therefore,in our synthesis,HCl or NaCl was used to introduce Cl-so as to decrease the concentration of free Ag+ions that will reduce the generation rate of Ag crystal which results in the generation of more small Ag nanoparticles as Ag sources for the formation of nanowires.Furthermore,Ag+ions can be released to the solution and reduced again when the solution is heated to a high temperature(140°C here).32,33It is known that the oxygen may etch multiply twinned seeds since defects inherently present insuch a structure and would provide active sites for oxidative dissolution.25Therefore,the sealed circumstance of the autoclave with little oxygen is benefit for the formation of multiply twinned structure which is required for wire growth.34,35

    Fig.4 FE-SEM images ofAg nanowires synthesized with PVPof different MWs by replacing HCl with NaCl

    Fig.5 UV-Vis absorption spectra ofAg nanowires synthesized with PVPof different MWs by replacing HCl with NaCl

    Bounded by five{111}facets at each end and five{100}facets at the side,the five-fold twinned Ag nanoparticles in the initial stage are of minimized surface-energy.36As we know that the growth morphology is often determined by the surface free energies under thermal equilibrium.However,crystal growth is usually far from the thermal equilibrium;thus,the shape is not characterized by minimizing the surface energy,but rather the growth rate of each face as determined by the kinetics.37It is commonly believed that PVP interacts more strongly with sliver atoms on the{100}facets than those on the{111}facets.38Once the five-fold twinned particles formed,PVP would selectively adsorb onto the{100}facets as a result that{100}facets are completely passivated.Hence,the reduced Ag atoms preferentially deposited onto the{111}facets leading to the anisotropic growth ofAg nanowires.36

    Moreover,as we know that PVP has the structure of polyvinyl skeleton with strong polar group(pyrrolidone ring),it has an affinity toward many chemicals to form coordinative compounds.The polar groups,such as the>C=O groups of PVP chain,can interact with metal ions and form coordinating complex.39The long-chain PVP has higher degree of polymerization compared with the short one,the average number of repeating units in one PVP macromolecule chainnis very high(7207,1802,and 522 respectively of PVP-K90,K60,andK30).Thus,there are more carbonyl groups in one PVP macromolecule and more Ag+coordinated along the long chain of PVP.Combining with our experiment,the heating process followed after all the reaction reagents were added into the stainless steel autoclave and maintained a period of time to heat up to the set temperature.That means Ag+might be reduced after combining with the long-chain PVP macromolecule.This induced the formation of long one-dimensional Ag nanostructures directly.So the previous interaction between Ag+and the PVP chains in the initial stage and the chain length of PVP both are critical factors to the synthesis of Ag nanowires.This interpretation seems more appropriate to explain our experimental results.

    3.2 Ag nanodecahedrons

    Fig.6(a,b)shows the TEM and SEM images for the typical samples of Ag nanodecahedrons,the mean edge length of which is~100 nm.There are also a small amount of nanorods and nanoplates in the products.Fig.6(c)shows a magnified TEM image of one Ag decahedron.It gives obvious evidence of the five-fold twinned structure of the Ag decahedron.We can clearly see the five truncated corners of the decahedrons and the twin boundaries between two neighboring{111}facets.Fig.6(d)is the UV-Vis absorption spectrum of the final products.The weak absorption shoulder located at~350,~415 nm and the broad peak of~510 nm are assigned to be the out-ofplane quadrupole,in-plane quadrupole,and dipole resonances of theAg nanostructures,respectively.40,41

    Since there are only two reagents(AgNO3and PVP-K17)in the synthesis of Ag decahedron,PVP acts as reducing agent as well as surface capping agent.With the presence of high PVP concentration(R=16),the reduction rate of Ag+increases in the closed system,and the rates of nuclei formation and crystal growth increase simultaneously.Under thermodynamic growth,stable five-twinned seeds which are of the lowest surface energy are more easily formed.It is well known that twin boundary is the locus of high energy where defects accumulate due to configurational misfit.42The defect zones in twinned seeds are most susceptible to an oxidative environment,with their atoms being attacked by the etchant,oxidizer,and dissolved into the solution.43While in our experiment,the defect zones are not easily etched because of little oxygen and protected by PVP in the sealed hydrothermal reaction system.The subsequent growth process of Ag decahedrons has been studied by many groups and substantially divided into two ways:fivefold twinned Ag seeds grow into Ag decahedrons uniformly and five tetrahedrons assemble into the Ag decahedrons.42,44Reactions in such a high-pressure and sealed autoclave,it is difficult to track the morphological evolution involved in the growth process.A detailed growth mechanism for Ag decahedrons needs further study.However,it is reasonable to believe that the Ag decahedrons formed in the first way in our experiment since nanorods existed in the final products(seen in Fig.6(b))which were also grown from five-fold twinned nanostructures.Ag atoms reduced by PVP preferentially fall onto the stabilized twin boundaries of five-fold twin seeds which leads to the emergence of five{100}facets,consequently the formation of the truncated decahedrons.

    As for Ag nanorods,PVP-K17 selectively adsorbs onto the{100}facets of few five-fold twinned seeds leading to the existence of rod-like products.Moreover,PVP-K17 acts with the{111}facets of plate-seeds with stacking faults,which directs the growth of a small amount of Ag nanoplates.45However,in the presence of PVP-K30,K60,andK90 in EG solution,no nanorods or nanoplates exist in the final products,all of which are only nanowires and little nanoparticles.In this case,as wehave mentioned previously,PVP also selectively adsorbs onto the{100}facets of five-fold twinned seeds,which directs the formation of nanowires.It is interesting that under the similar growth mechanism,we obtain different nanostructures.The shape evolution is related with the PVP as well as the solvent(EG and deionized water).It is hard to explain why this happens since the growth of crystals depends deeply on the reaction conditions.37And it is difficult to sample in our experiment process to track the morphological evolution under a high-pressure and sealed autoclave condition.More efforts should be taken to enrich our research.

    Fig.6 (a)TEM and(b)SEM images ofAg nanostructures including decahedron and a small amount of truncated nanorods and nanoplates;(c)magnified TEM image of a typical five-fold twinned decahedron;(d)UV-Vis absorption spectrum of theAg nanostructures

    4 Conclusions

    In summary,we developed a convenient,versatile,and low cost hydrothermal process for the synthesis of Ag nanostructures in different solution systems with the presence of PVP.PVP of higher MW,such asK30,K60,andK90,plays a critical role in directing the growth of Ag nanowires while PVPK17 is benefit for the synthesis of Ag nanodecahedrons.The results show that PVP plays a critical role in the process of ion reduction,nuclei formation,and further crystal growth.Plausible growth mechanisms of Ag nanowires and nanodecahedrons have been put forward.More efforts should be taken to track the morphological evolution which is required both in technological usage and foundational research.

    (1) Lu,W.;Lieber,C.M.Nat.Mater.2007,6,841.doi:10.1038/nmat2028

    (2) Lal,S.;Link,S.;Halas,N.J.Nat.Photonics2007,1,641.doi:10.1038/nphoton.2007.223

    (3)Xiong,Y.;Wiley,B.J.;Xia,Y.Angew.Chem.Int.Edit.2007,46,7157.

    (4) Feng,M.;Zhang,M.;Song,J.;Li,X.;Yu,S.ACS Nano2011,5,6726.doi:10.1021/nn202296h

    (5) Pedireddy,S.;Li,A.;Bosman,M.;Phang,I.Y.;Li,S.;Ling,X.Y.J.Phys.Chem.C2013,117,16640.doi:10.1021/jp4063077

    (6) Mackenzie,J.D.;Bescher,E.P.Accounts Chem.Res.2007,40,810.doi:10.1021/ar7000149

    (7) Reddy,M.V.;Jose,R.;Teng,T.H.;Chowdari,B.V.R.;Ramakrishna,S.Electrochim.Acta2010,55,3109.doi:10.1016/j.electacta.2009.12.095

    (8) Koch,C.C.Rev.Adv.Mater.Sci.2003,5,91.

    (9) Zhang,D.L.Prog.Mater.Sci.2004,49,537.doi:10.1016/S0079-6425(03)00034-3

    (10) Fang,J.Y.;Qin,S.Q.;Zhang,X.A.;Wang,G.;Wang,F.;Chang,S.L.Micro&Nano Lett.2011,6,971.doi:10.1049/mnl.2011.0480

    (11) Duan,J.Y.;Zhang,Q.X.;Wang,Y.L.;Guan,J.G.Acta Phys.-Chim.Sin.2009,25,1405.[段君元,章橋新,王一龍,官建國.物理化學學報,2009,25,1405.]doi:10.3866/PKU.WHXB20090731

    (12)Wu,H.;Kuo,C.;Huang,M.H.Langmuir2010,26,12307.doi:10.1021/la1015065

    (13) Li,Z.C.;Shang,T.M.;Zhou,Q.F.;Feng,K.Micro&Nano Lett.2011,6,90.doi:10.1049/mnl.2010.0183

    (14) Silva,J.N.;Saade,J.;Farias,P.M.A.;Falc?o,E.H.L.Advances in Nanoparticles2013,2,217.doi:10.4236/anp.2013.23030

    (15)Wang,Y.;Zheng,Y.;Huang,C.Z.;Xia,Y.J.Am.Chem.Soc.2013,135,1941.doi:10.1021/ja311503q

    (16) Zhang,Q.;Ge,J.;Pham,T.;Goebl,J.;Hu,Y.;Lu,Z.;Yin,Y.Angew.Chem.Int.Edit.2009,48,3516.doi:10.1002/anie.v48:19

    (17) Huang,X.;Qi,X.;Huang,Y.;Li,S.;Xue,C.;Gan,C.L.;Boey,F.;Zhang,H.ACS Nano2010,4,6196.doi:10.1021/nn101803m

    (18) Bordenave,M.D.;Scarpettini,A.F.;Roldán,M.V.;Pellegri,N.;Bragas,A.V.Mater.Chem.Phys.2013,139,100.doi:10.1016/j.matchemphys.2012.12.061

    (19) Korte,K.E.;Skrabalak,S.E.;Xia,Y.J.Mater.Chem.2008,18,437.doi:10.1039/b714072j

    (20) Chen,D.;Qiao,X.;Qiu,X.;Chen,J.G.;Jiang,R.J.Colloid Interface Sci.2010,344,286.doi:10.1016/j.jcis.2009.12.055

    (21) Im,S.H.;Lee,Y.T.;Wiley,B.;Xia,Y.Angew.Chem.Int.Edit.2005,117,2192.

    (22) Kan,C.;Wang,C.;Li,H.;Qi,J.;Zhu,J.;Li,Z.;Shi,D.Small2010,6,1768.doi:10.1002/smll.201000600

    (23) Sun,Y.;Xia,Y.Science2002,298,2176.doi:10.1126/science.1077229

    (24) Wiley,B.;Herricks,T.;Sun,Y.;Xia,Y.Nano Lett.2004,4,1733.doi:10.1021/nl048912c

    (25) Tang,X.;Tsuji,M.;Jiang,P.;Nishio,M.;Jang,S.;Yoon,S.Colloid Surface A2009,338,33.doi:10.1016/j.colsurfa.2008.12.029

    (26) Zhu,J.;Kan,C.;Zhu,X.;Wan,J.;Han,M.;Zhao,Y.;Wang,B.;Wang,G.J.Mater.Res.2007,22,1479.doi:10.1557/JMR.2007.0222

    (27) Zhao,T.;Sun,R.;Yu,S.;Zhang,Z.;Zhou,L.;Huang,H.;Du,R.Colloid Surface A2010,366,197.doi:10.1016/j.colsurfa.2010.06.005

    (28) Kottmann,J.P.;Martin,O.J.F.;Smith,D.R.;Schultz,S.Phys.Rev.B2001,64,235402.doi:10.1103/PhysRevB.64.235402

    (29) Kottmann,J.P.;Martin,O.J.F.;Smith,D.R.;Schultz,S.Opt.Express2000,6,213.doi:10.1364/OE.6.000213

    (30) Rycenga,M.;Cobley,C.M.;Zeng,J.;Li,W.;Moran,C.H.;Zhang,Q.;Qin,D.;Xia,Y.Chem.Rev.2011,111,3669.doi:10.1021/cr100275d

    (31) Kan,C.;Wang,C.;Zhu,J.;Li,H.J.Solid State Chem.2010,183,858.doi:10.1016/j.jssc.2010.01.021

    (32) Gou,L.;Chipara,M.;Zaleski,J.M.Chem.Mater.2007,19,1755.doi:10.1021/cm070160a

    (33) Hu,M.;Gao,J.;Dong,Y.;Yang,S.;Li,R.K.Y.RSC Adv.2012,2,2055.doi:10.1039/c2ra01162j

    (34) Chen,D.;Qiao,X.;Qiu,X.;Chen,J.;Jiang,R.J.Mater.Sci-Mater.El.2011,22,6.doi:10.1007/s10854-010-0074-2

    (35) Zhang,W.C.;Wu,X.L.;Chen,H.T.;Gao,Y.J.;Zhu,J.;Huang,G.S.;Chu,P.K.Acta Mater.2008,56,2508.doi:10.1016/j.actamat.2008.01.043

    (36) Mao,H.;Feng,J.;Ma,X.;Wu,C.;Zhao,X.J.Nanopart.Res.2012,14,1.

    (37) Wang,Z.L.J.Phys.Chem.B2000,104,1153.doi:10.1021/jp993593c

    (38) Sun,Y.;Mayers,B.;Herricks,T.;Xia,Y.Nano Lett.2003,3,955.doi:10.1021/nl034312m

    (39) Jiang,P.;Li,S.;Xie,S.;Gao,Y.;Song,L.Chem.-Eur.J.2004,10,4817.

    (40) Sosa,I.O.;Noguez,C.;Barrera,R.G.J.Phys.Chem.B2003,107,6269.doi:10.1021/jp0274076

    (41) Kan,C.;Zhu,J.;Zhu,X.J.Phys.D:Appl.Phys.2008,41,155304.doi:10.1088/0022-3727/41/15/155304

    (42) Li,C.R.;Lu,N.P.;Xu,Q.;Mei,J.;Dong,W.J.;Fu,J.L.;Cao,Z.X.J.Cryst.Growth2011,319,88.doi:10.1016/j.jcrysgro.2011.01.068

    (43) Xia,Y.;Xiong,Y.;Lim,B.;Skrabalak,S.E.Angew.Chem.Int.Edit.2009,48,60.doi:10.1002/anie.200802248

    (44) Gao,Y.;Jiang,P.;Song,L.;Wang,J.X.;Liu,L.F.;Xiang,Y.J.;Zhang,Z.X.;Zhao,X.W.;Dou,X.Y.;Luo,S.D.;Zhou,W.Y.;Xie,S.S.J.Cryst.Growth2006,289,376.doi:10.1016/j.jcrysgro.2005.11.123

    (45)Mo,B.;Kan,C.X.;Ke,S.L.;Cong,B.;Xu,L.H.Acta Phys.-Chim.Sin.2012,28,2511.[莫 博,闞彩俠,柯善林,從 博,徐麗紅.物理化學學報,2012,28,2511.]doi:10.3866/PKU.WHXB201208132

    猜你喜歡
    吡咯烷酮南京航空航天大學水熱法
    N-甲基吡咯烷酮降解菌株的篩選鑒定及應用
    南京航空航天大學機電學院
    聚乙烯吡咯烷酮分子三級中紅外光譜研究
    南京航空航天大學機電學院
    南京航空航天大學
    水熱法原位合成β-AgVO3/BiVO4復合光催化劑及其催化性能
    陶瓷學報(2021年5期)2021-11-22 06:35:00
    南京航空航天大學生物醫(yī)學光子學實驗室
    歐盟重新評估聚乙烯吡咯烷酮(E1201)和聚乙烯聚吡咯烷酮(E1202)作為食品添加劑的安全性
    水熱法制備NaSm(MoO4)2-x(WO4)x固溶體微晶及其發(fā)光性能
    水熱法制備BiVO4及其光催化性能研究
    應用化工(2014年4期)2014-08-16 13:23:09
    丝袜脚勾引网站| 日韩av在线免费看完整版不卡| 午夜免费男女啪啪视频观看| av黄色大香蕉| av在线老鸭窝| av在线老鸭窝| 亚洲国产精品999| 在线精品无人区一区二区三 | 91狼人影院| 国产精品人妻久久久久久| 国产成人一区二区在线| 欧美激情久久久久久爽电影| 国产精品久久久久久久电影| 国产免费一级a男人的天堂| 久久久久久久久久久免费av| 五月伊人婷婷丁香| 在线观看国产h片| 午夜福利视频1000在线观看| 一级爰片在线观看| 午夜福利网站1000一区二区三区| 国产亚洲91精品色在线| 国产精品久久久久久精品电影小说 | 亚洲欧美日韩另类电影网站 | 国产成人一区二区在线| 精华霜和精华液先用哪个| 日韩强制内射视频| 少妇 在线观看| 亚洲三级黄色毛片| 身体一侧抽搐| 精品久久国产蜜桃| 97精品久久久久久久久久精品| 午夜精品一区二区三区免费看| 一级毛片黄色毛片免费观看视频| 大码成人一级视频| av女优亚洲男人天堂| 国产色爽女视频免费观看| 夫妻性生交免费视频一级片| www.色视频.com| 91久久精品国产一区二区成人| 婷婷色av中文字幕| 黄色一级大片看看| 国产伦精品一区二区三区视频9| 嫩草影院新地址| 性色av一级| 在线播放无遮挡| 久久久亚洲精品成人影院| 又粗又硬又长又爽又黄的视频| 久久久久九九精品影院| 精品久久久噜噜| 夜夜看夜夜爽夜夜摸| 亚洲国产精品专区欧美| 国产亚洲精品久久久com| av在线app专区| 国产精品一区二区在线观看99| 3wmmmm亚洲av在线观看| 18禁在线无遮挡免费观看视频| 久久精品国产a三级三级三级| 色综合色国产| 亚洲av成人精品一二三区| 91久久精品国产一区二区成人| 欧美极品一区二区三区四区| 成人亚洲欧美一区二区av| 成人国产麻豆网| 国产av国产精品国产| 亚洲精品中文字幕在线视频 | 欧美3d第一页| 免费av不卡在线播放| 国内揄拍国产精品人妻在线| 一二三四中文在线观看免费高清| 伊人久久国产一区二区| 最近中文字幕2019免费版| 日韩制服骚丝袜av| 国语对白做爰xxxⅹ性视频网站| 乱码一卡2卡4卡精品| 大陆偷拍与自拍| 亚洲综合色惰| 丰满少妇做爰视频| 国产伦精品一区二区三区四那| 日韩成人伦理影院| 神马国产精品三级电影在线观看| 青青草视频在线视频观看| 蜜桃亚洲精品一区二区三区| 搞女人的毛片| 免费av毛片视频| 亚洲国产最新在线播放| 精品视频人人做人人爽| 亚洲精品,欧美精品| 久久综合国产亚洲精品| 高清毛片免费看| 国产精品一区二区三区四区免费观看| 少妇被粗大猛烈的视频| 亚洲国产精品成人综合色| 国产爽快片一区二区三区| 欧美激情久久久久久爽电影| 五月玫瑰六月丁香| 麻豆成人午夜福利视频| 日韩国内少妇激情av| 亚洲精品成人久久久久久| 欧美zozozo另类| 成年av动漫网址| 黄色一级大片看看| 精品久久久久久电影网| 国产精品久久久久久精品电影小说 | 97超碰精品成人国产| 亚洲真实伦在线观看| 99九九线精品视频在线观看视频| 亚洲精品乱码久久久v下载方式| 久久久久久久久久久免费av| 一边亲一边摸免费视频| 久久精品久久久久久久性| 99re6热这里在线精品视频| 亚洲天堂av无毛| 日日摸夜夜添夜夜爱| 97在线人人人人妻| 日韩一本色道免费dvd| 国产视频首页在线观看| 亚洲久久久久久中文字幕| 大陆偷拍与自拍| 免费不卡的大黄色大毛片视频在线观看| 性色avwww在线观看| 国产高清三级在线| 91久久精品电影网| 日日摸夜夜添夜夜爱| 精品人妻一区二区三区麻豆| 国产永久视频网站| 国产黄a三级三级三级人| 麻豆成人午夜福利视频| 亚洲无线观看免费| 美女国产视频在线观看| 五月天丁香电影| 99久久精品一区二区三区| 日本与韩国留学比较| 免费观看性生交大片5| 精品99又大又爽又粗少妇毛片| 三级男女做爰猛烈吃奶摸视频| 五月玫瑰六月丁香| 如何舔出高潮| 大话2 男鬼变身卡| 九色成人免费人妻av| 日韩一区二区三区影片| 国产男女超爽视频在线观看| 精品久久国产蜜桃| 内地一区二区视频在线| av网站免费在线观看视频| 国产高清国产精品国产三级 | 看免费成人av毛片| 中文精品一卡2卡3卡4更新| 亚洲最大成人手机在线| 特级一级黄色大片| 国产亚洲91精品色在线| 亚洲精品国产av蜜桃| 成人亚洲欧美一区二区av| 一级片'在线观看视频| 亚洲精品成人av观看孕妇| 久久精品国产亚洲av涩爱| 亚洲国产av新网站| 97精品久久久久久久久久精品| 国产一区二区三区综合在线观看 | 一区二区三区免费毛片| 成人欧美大片| 最新中文字幕久久久久| 日本一二三区视频观看| 麻豆成人av视频| 久久精品国产自在天天线| 王馨瑶露胸无遮挡在线观看| 国产成人午夜福利电影在线观看| www.色视频.com| 久久久久精品性色| 国产一区二区三区综合在线观看 | 亚洲婷婷狠狠爱综合网| 国产在线男女| 国产精品一及| 51国产日韩欧美| 久久精品国产亚洲av涩爱| 国产成人免费观看mmmm| 天堂俺去俺来也www色官网| 五月开心婷婷网| 免费不卡的大黄色大毛片视频在线观看| 免费黄色在线免费观看| 在线a可以看的网站| 少妇的逼好多水| 啦啦啦啦在线视频资源| 精品熟女少妇av免费看| 少妇裸体淫交视频免费看高清| 亚洲天堂国产精品一区在线| 亚洲精品,欧美精品| 成人无遮挡网站| 国产欧美日韩精品一区二区| 亚洲自拍偷在线| 欧美成人一区二区免费高清观看| 18+在线观看网站| 中文欧美无线码| 18禁在线无遮挡免费观看视频| 欧美潮喷喷水| 国产成人免费观看mmmm| 嘟嘟电影网在线观看| 人体艺术视频欧美日本| 搡老乐熟女国产| 熟妇人妻不卡中文字幕| 2022亚洲国产成人精品| 亚洲国产最新在线播放| 精品少妇黑人巨大在线播放| 少妇的逼好多水| 亚洲av不卡在线观看| 在线天堂最新版资源| 久久久精品94久久精品| videos熟女内射| 一区二区三区精品91| 亚洲高清免费不卡视频| 内射极品少妇av片p| 高清日韩中文字幕在线| 建设人人有责人人尽责人人享有的 | 看黄色毛片网站| 国产伦精品一区二区三区视频9| 亚洲欧美一区二区三区国产| 99视频精品全部免费 在线| 激情五月婷婷亚洲| av在线老鸭窝| 国产男女内射视频| 国产久久久一区二区三区| 日韩欧美 国产精品| 久久99热这里只频精品6学生| 丝袜喷水一区| 26uuu在线亚洲综合色| 久久久久网色| 三级男女做爰猛烈吃奶摸视频| 亚洲最大成人av| 亚洲国产精品国产精品| 精华霜和精华液先用哪个| 国产淫片久久久久久久久| 成人高潮视频无遮挡免费网站| 亚洲伊人久久精品综合| 99热全是精品| 大话2 男鬼变身卡| 午夜老司机福利剧场| 午夜免费男女啪啪视频观看| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲欧美一区二区三区国产| av天堂中文字幕网| av在线播放精品| 男女无遮挡免费网站观看| 视频区图区小说| 国产黄色视频一区二区在线观看| 亚洲欧美一区二区三区黑人 | 国产亚洲最大av| 亚洲国产精品国产精品| 亚洲成人精品中文字幕电影| 成人无遮挡网站| 亚洲,欧美,日韩| 国产精品人妻久久久影院| 欧美极品一区二区三区四区| 亚洲成人精品中文字幕电影| 国产中年淑女户外野战色| 夜夜看夜夜爽夜夜摸| 黄色怎么调成土黄色| 夜夜爽夜夜爽视频| 亚洲国产av新网站| 亚洲人成网站在线播| 日韩av不卡免费在线播放| 18禁裸乳无遮挡免费网站照片| 搞女人的毛片| 欧美性感艳星| 久久久欧美国产精品| 各种免费的搞黄视频| 国产欧美日韩一区二区三区在线 | 国产精品蜜桃在线观看| 蜜臀久久99精品久久宅男| 一本久久精品| 三级经典国产精品| 久久99热这里只频精品6学生| 日韩欧美一区视频在线观看 | 日韩伦理黄色片| 欧美xxxx性猛交bbbb| 在线天堂最新版资源| av国产精品久久久久影院| 看黄色毛片网站| 黑人高潮一二区| 欧美日韩亚洲高清精品| 欧美日韩视频精品一区| 美女高潮的动态| 国产爱豆传媒在线观看| 日本欧美国产在线视频| 欧美最新免费一区二区三区| 啦啦啦中文免费视频观看日本| 一级毛片aaaaaa免费看小| 亚洲av男天堂| 又爽又黄a免费视频| 婷婷色综合大香蕉| 国产精品一二三区在线看| 寂寞人妻少妇视频99o| 18禁在线无遮挡免费观看视频| 久久久久久久久久成人| 偷拍熟女少妇极品色| 精品一区二区三卡| 自拍欧美九色日韩亚洲蝌蚪91 | 香蕉精品网在线| 久久久午夜欧美精品| 热99国产精品久久久久久7| 亚洲色图av天堂| 视频中文字幕在线观看| 国产精品不卡视频一区二区| 国产成人精品婷婷| 欧美一级a爱片免费观看看| www.色视频.com| 亚洲国产成人一精品久久久| 亚洲天堂av无毛| 韩国av在线不卡| 午夜福利网站1000一区二区三区| 色婷婷久久久亚洲欧美| av.在线天堂| 女人十人毛片免费观看3o分钟| 亚洲欧美成人精品一区二区| 精品久久国产蜜桃| 99久久精品一区二区三区| 五月玫瑰六月丁香| 国产免费又黄又爽又色| 日日撸夜夜添| 国产综合懂色| 免费不卡的大黄色大毛片视频在线观看| 内地一区二区视频在线| 搡女人真爽免费视频火全软件| 国产v大片淫在线免费观看| 亚洲精品久久久久久婷婷小说| 国产精品熟女久久久久浪| 最近中文字幕2019免费版| 91精品伊人久久大香线蕉| 亚洲性久久影院| 搡老乐熟女国产| 久久久精品免费免费高清| 亚洲av免费在线观看| 亚洲天堂国产精品一区在线| 色吧在线观看| 又黄又爽又刺激的免费视频.| 精品一区二区免费观看| 久久精品国产亚洲av天美| 看非洲黑人一级黄片| 天堂俺去俺来也www色官网| 精品人妻偷拍中文字幕| 少妇人妻精品综合一区二区| 成人毛片a级毛片在线播放| 国内精品宾馆在线| 大话2 男鬼变身卡| 成年人午夜在线观看视频| 国产精品久久久久久久电影| 2021少妇久久久久久久久久久| 成人亚洲精品一区在线观看 | 国产亚洲精品久久久com| 人体艺术视频欧美日本| 国产亚洲av嫩草精品影院| av福利片在线观看| 一本久久精品| 寂寞人妻少妇视频99o| 久久国内精品自在自线图片| 我的老师免费观看完整版| 精品久久久精品久久久| 18+在线观看网站| 男的添女的下面高潮视频| 三级经典国产精品| 在线观看三级黄色| 国产精品99久久99久久久不卡 | xxx大片免费视频| 大片免费播放器 马上看| 国产一级毛片在线| 色网站视频免费| 久久久精品94久久精品| 嘟嘟电影网在线观看| 亚洲电影在线观看av| 一级毛片电影观看| 欧美 日韩 精品 国产| 国产有黄有色有爽视频| 国产成年人精品一区二区| 99久国产av精品国产电影| 天堂网av新在线| 精品人妻视频免费看| 国产免费视频播放在线视频| 黄片无遮挡物在线观看| 欧美日韩视频高清一区二区三区二| av线在线观看网站| 亚洲精品乱码久久久久久按摩| 久久久久九九精品影院| 国产精品一区二区性色av| 国产精品熟女久久久久浪| 身体一侧抽搐| 狂野欧美激情性bbbbbb| 国产亚洲5aaaaa淫片| 99热6这里只有精品| 男女边摸边吃奶| 亚洲精品第二区| 日韩av在线免费看完整版不卡| 免费黄色在线免费观看| 汤姆久久久久久久影院中文字幕| 婷婷色av中文字幕| 精品国产三级普通话版| 国产大屁股一区二区在线视频| 成人国产麻豆网| 直男gayav资源| 亚洲av成人精品一二三区| 久久久久久久久久久丰满| 99久久精品热视频| 国产成人精品一,二区| 国产精品人妻久久久影院| 男女无遮挡免费网站观看| 国产亚洲午夜精品一区二区久久 | 偷拍熟女少妇极品色| 亚洲在久久综合| 女人十人毛片免费观看3o分钟| 国产白丝娇喘喷水9色精品| 国产免费视频播放在线视频| 精品国产露脸久久av麻豆| 最近手机中文字幕大全| 我的老师免费观看完整版| 日韩 亚洲 欧美在线| 久久精品人妻少妇| 免费看日本二区| 久久久午夜欧美精品| 婷婷色av中文字幕| 九九久久精品国产亚洲av麻豆| videos熟女内射| xxx大片免费视频| 日韩一区二区视频免费看| 久久久久久久午夜电影| 亚洲性久久影院| 亚洲,一卡二卡三卡| 国产白丝娇喘喷水9色精品| 能在线免费看毛片的网站| 亚洲av二区三区四区| 嫩草影院入口| 精品国产露脸久久av麻豆| 日韩亚洲欧美综合| 男女边摸边吃奶| 国产69精品久久久久777片| 成人黄色视频免费在线看| 欧美成人精品欧美一级黄| 日本wwww免费看| 99热这里只有是精品50| 啦啦啦在线观看免费高清www| 夜夜爽夜夜爽视频| 亚洲av电影在线观看一区二区三区 | 亚洲av.av天堂| 日韩视频在线欧美| 国产亚洲最大av| 十八禁网站网址无遮挡 | 国产综合精华液| 99re6热这里在线精品视频| 久久韩国三级中文字幕| 寂寞人妻少妇视频99o| 97精品久久久久久久久久精品| 亚洲自拍偷在线| 欧美高清性xxxxhd video| 免费不卡的大黄色大毛片视频在线观看| 一级毛片aaaaaa免费看小| 国产精品精品国产色婷婷| 国产成人freesex在线| 好男人视频免费观看在线| 寂寞人妻少妇视频99o| 亚洲欧美日韩另类电影网站 | 亚洲精品色激情综合| 日韩欧美一区视频在线观看 | 久久精品综合一区二区三区| 最近的中文字幕免费完整| 亚洲精品久久久久久婷婷小说| 嘟嘟电影网在线观看| 国产精品久久久久久精品电影| 国产一区有黄有色的免费视频| 精品久久久久久久久av| 国产成人freesex在线| 97热精品久久久久久| 国产成人精品久久久久久| 国产精品99久久99久久久不卡 | 超碰97精品在线观看| 草草在线视频免费看| 午夜精品一区二区三区免费看| 噜噜噜噜噜久久久久久91| 久久精品国产亚洲av涩爱| 成人无遮挡网站| 成人毛片a级毛片在线播放| 美女高潮的动态| 99久久精品热视频| 午夜免费观看性视频| 精品少妇久久久久久888优播| 免费av观看视频| 亚洲aⅴ乱码一区二区在线播放| 日本免费在线观看一区| 三级国产精品片| 搡女人真爽免费视频火全软件| 丝袜喷水一区| 一级二级三级毛片免费看| 一个人看的www免费观看视频| 高清欧美精品videossex| freevideosex欧美| 国产91av在线免费观看| 亚洲av免费在线观看| 国产精品人妻久久久久久| 国产成人免费无遮挡视频| 欧美三级亚洲精品| 久久久久性生活片| 菩萨蛮人人尽说江南好唐韦庄| 亚洲丝袜综合中文字幕| 亚洲,一卡二卡三卡| 制服丝袜香蕉在线| 久久99热6这里只有精品| 精品国产三级普通话版| 日韩一区二区视频免费看| 久久精品久久精品一区二区三区| 国产免费福利视频在线观看| 婷婷色av中文字幕| 亚洲av免费在线观看| 中文资源天堂在线| 插阴视频在线观看视频| 我的老师免费观看完整版| 国产精品久久久久久精品古装| 亚洲怡红院男人天堂| 国产伦精品一区二区三区四那| 国产高清有码在线观看视频| av在线蜜桃| 嘟嘟电影网在线观看| 亚洲av免费在线观看| 18+在线观看网站| 性插视频无遮挡在线免费观看| 国内精品美女久久久久久| 女人被狂操c到高潮| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | www.色视频.com| 赤兔流量卡办理| 欧美成人a在线观看| 日韩人妻高清精品专区| 免费看日本二区| 精品午夜福利在线看| 搞女人的毛片| 色婷婷久久久亚洲欧美| av国产免费在线观看| 欧美97在线视频| 色视频在线一区二区三区| 精品熟女少妇av免费看| 男人狂女人下面高潮的视频| 国产精品人妻久久久影院| 99re6热这里在线精品视频| 国内精品宾馆在线| 国产午夜精品久久久久久一区二区三区| 乱码一卡2卡4卡精品| 99九九线精品视频在线观看视频| 亚洲国产高清在线一区二区三| 成人鲁丝片一二三区免费| 亚洲av男天堂| a级一级毛片免费在线观看| 激情 狠狠 欧美| 国产探花极品一区二区| 国产老妇伦熟女老妇高清| 婷婷色综合大香蕉| 高清在线视频一区二区三区| 国产精品国产三级国产av玫瑰| 成年女人在线观看亚洲视频 | 全区人妻精品视频| 韩国高清视频一区二区三区| 高清日韩中文字幕在线| 国产精品99久久久久久久久| 五月天丁香电影| 99热国产这里只有精品6| 80岁老熟妇乱子伦牲交| 欧美xxxx黑人xx丫x性爽| 亚洲精品乱码久久久久久按摩| 尤物成人国产欧美一区二区三区| 亚洲精品国产色婷婷电影| 欧美区成人在线视频| 美女高潮的动态| 啦啦啦在线观看免费高清www| 精品酒店卫生间| 午夜爱爱视频在线播放| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品一二三| 精品久久久精品久久久| 国产真实伦视频高清在线观看| 欧美97在线视频| 国产精品久久久久久av不卡| 国产极品天堂在线| 三级国产精品片| 亚州av有码| 一个人看视频在线观看www免费| 一本一本综合久久| 美女主播在线视频| 美女被艹到高潮喷水动态| 精品久久久久久久末码| 国产精品福利在线免费观看| 黄色欧美视频在线观看| 午夜免费鲁丝| 国产乱人视频| 日日啪夜夜爽| 日韩成人av中文字幕在线观看| 欧美精品一区二区大全| 精品亚洲乱码少妇综合久久| 亚洲av一区综合| 国产精品一区二区性色av| 九九爱精品视频在线观看| 久久久精品94久久精品| 全区人妻精品视频| 女的被弄到高潮叫床怎么办| 黑人高潮一二区| 国产探花极品一区二区| 亚洲欧美一区二区三区国产| 色吧在线观看| www.av在线官网国产| 亚洲人与动物交配视频| 丰满人妻一区二区三区视频av| 久久久久国产网址| 韩国av在线不卡| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久久久久久成人| 人妻少妇偷人精品九色| 色吧在线观看| 大香蕉久久网| 国产视频内射| 国产男女内射视频| 欧美区成人在线视频| 女的被弄到高潮叫床怎么办| 噜噜噜噜噜久久久久久91|