考點(diǎn)一:考查同底數(shù)冪的乘法
例1 (2013·連云港)計(jì)算a2·a4的結(jié)果是( ).
A. a8 B. a6
C. 2a6 D. 2a8
【分析】運(yùn)用同底數(shù)冪相乘的法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加.
解:a2·a4=a2+4=a6. 故選B.
考點(diǎn)二:考查冪的乘方與積的乘方
例2 (2013·遵義)計(jì)算
-ab23的結(jié)果是( ).
A. -a3b6 B. -a3b5
C. -a3b5 D. -a3b6
【分析】先根據(jù)積的運(yùn)算性質(zhì),分別把積中的每個(gè)因式分別乘方,再根據(jù)冪的乘方的意義求(b2)3.
解:
-ab23=
-3·a3(b2)3=-a3b6,故選D.
考點(diǎn)三:考查同底數(shù)冪的除法
例3 (2013·臺(tái)州)計(jì)算:x5÷x3=______.
【分析】根據(jù)同底數(shù)冪的除法法則“底數(shù)不變,指數(shù)相減”進(jìn)行運(yùn)算即可.
解:原式=x5-3=x2.
考點(diǎn)四:考查冪的法則逆用
例4 (2013·福州)已知實(shí)數(shù)a、b滿足:a+b=2,a-b=5,則(a+b)3·(a-b)3的值是______.
【分析】直接將a+b=2和a-b=5代入代數(shù)式,然后應(yīng)用積的乘方公式進(jìn)行化簡(jiǎn).
解:∵a+b=2,a-b=5,
∴原式=23×53=103=1 000.
【評(píng)注】形如an·bn的算式,當(dāng)ab的值為1、-1或10的時(shí)候,考慮逆用積的乘方公式,達(dá)到簡(jiǎn)化的目的.
考點(diǎn)五:考查0次冪和負(fù)指數(shù)冪
例5 (2013·遵義)計(jì)算:20130-2-1=_____.
【分析】任何不等于0的數(shù)的0次冪等于1,任何不等于0的數(shù)的負(fù)整數(shù)指數(shù)冪是這個(gè)數(shù)的正整數(shù)指數(shù)冪的倒數(shù).
解:20130-2-1=1-=.
考點(diǎn)六:考查冪的法則綜合運(yùn)用
例6 (2013·茂名)先化簡(jiǎn),后求值:a2·a4-a8÷a2+(a3)2,其中a=-1.
【分析】按照運(yùn)算順序先根據(jù)冪的運(yùn)算法則計(jì)算,再合并同類(lèi)項(xiàng),最后代入計(jì)算.
解:原式=a6-a6+a6=a6.
當(dāng)a=-1時(shí),原式=(-1)6=1.
考點(diǎn)七:考查運(yùn)用冪的法則判斷正誤
例7 (2013·黃岡)下列計(jì)算正確的是( ).
A. x4·x4=x16
B. (a3)2·a4=a9
C. (ab2)3÷(-ab)2=-ab4
D. (a6)2÷(a4)3=1
【分析】A選項(xiàng),x4·x4=x4+4=x8,錯(cuò)誤;B選項(xiàng),(a3)2·a4=a6·a4=a10,錯(cuò)誤;C選項(xiàng),(ab2)3÷(-ab)2=a3b6÷a2b2=a3-2b6-2=ab4,錯(cuò)誤;D選項(xiàng),(a6)2÷(a4)3=a12÷a12=1,正確. 故選擇D.
(作者單位:江蘇省興化市茅山中心校)