李雁杰 (浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,浙江 金華 321004; 浙江省農(nóng)業(yè)科學(xué)院作物與核技術(shù)利用研究所,浙江 杭州 310021)
朱丹華,董德坤 (浙江省農(nóng)業(yè)科學(xué)院作物與核技術(shù)利用研究所,浙江 杭州 310021)
在自然條件下,植物常常遭受干旱、凍害和高鹽等非生物脅迫因素的危害[1],進(jìn)而影響其正常生長(zhǎng)發(fā)育和生產(chǎn)。在長(zhǎng)期進(jìn)化過(guò)程中,植物體已經(jīng)形成了一套復(fù)雜的調(diào)控體系,從而減弱外界不利環(huán)境所帶來(lái)的影響[2]。干旱是影響作物產(chǎn)量的重要因素之一,由于全球范圍內(nèi)的可用水資源日趨匱乏,干旱耕地面積擴(kuò)張迅速,大豆等糧食作物的生產(chǎn)安全受到了嚴(yán)重的威脅[3]。干旱環(huán)境下,植物細(xì)胞失水,滲透勢(shì)發(fā)生變化,細(xì)胞代謝進(jìn)程隨之改變,植物體內(nèi)就會(huì)形成一系列復(fù)雜的進(jìn)程來(lái)應(yīng)對(duì)干旱脅迫的影響,包括前期的信號(hào)識(shí)別和后期的各種分子、生化和生理反應(yīng),使細(xì)胞能夠適應(yīng)新的環(huán)境[4]。隨著現(xiàn)代分子生物技術(shù)的迅猛發(fā)展,基因芯片技術(shù)、數(shù)量性狀定位技術(shù) (QTL)、RNA-seq測(cè)序等技術(shù)[5-6]幫助人們發(fā)現(xiàn)了大量參與干旱脅迫應(yīng)答的基因。根據(jù)這些基因的功能,可以分為2類:一類是調(diào)控性基因,主要包括信號(hào)傳遞和基因表達(dá)調(diào)控的轉(zhuǎn)錄因子、感應(yīng)和傳導(dǎo)信號(hào)的蛋白激酶以及信號(hào)傳遞過(guò)程中的蛋白酶[7];另一類是功能性基因,該類基因表達(dá)的產(chǎn)物直接參與對(duì)干旱脅迫的抵御,主要包括保護(hù)細(xì)胞免受干旱脅迫傷害的功能蛋白、滲透調(diào)節(jié)因子的相關(guān)酶類等,在維持細(xì)胞的正常生理代謝、維護(hù)細(xì)胞膜、葉綠體膜、減緩干旱脅迫傷害的過(guò)程中具有重要的功能,已被人們廣泛研究和認(rèn)知[8]。然而,干旱脅迫下的植物細(xì)胞是如何感應(yīng)、傳遞逆境信號(hào)并調(diào)控下游基因的機(jī)制尚不明確。因此,研究干旱脅迫下的轉(zhuǎn)錄相關(guān)因子對(duì)大豆的抗旱反應(yīng)機(jī)制以及抗旱大豆品種的培育具有重要的意義。為此,筆者重點(diǎn)綜述了干旱脅迫發(fā)生時(shí),大豆中參與干旱脅迫調(diào)控的轉(zhuǎn)錄因子基因的研究進(jìn)展。
轉(zhuǎn)錄因子 (Transcription factor,TF),又稱反式作用因子,是一類能夠跟真核生物啟動(dòng)子區(qū)域的順式作用元件序列發(fā)生結(jié)合的蛋白分子[9],其作用是抑制或激活下游基因的轉(zhuǎn)錄,保證目的基因在特定條件下的表達(dá)。轉(zhuǎn)錄因子的結(jié)構(gòu)一般由4個(gè)功能區(qū)構(gòu)成:識(shí)別、結(jié)合DNA順式作用元件的DNA結(jié)合區(qū) (DNA-binding domain);調(diào)控下游基因表達(dá)的轉(zhuǎn)錄調(diào)控區(qū) (Activation domain);調(diào)控其進(jìn)入細(xì)胞核的寡聚化位點(diǎn) (Oligomerization site);核定位信號(hào)位點(diǎn) (Nuclear localization signal)[10]。各類轉(zhuǎn)錄因子功能區(qū)上的差異直接決定了轉(zhuǎn)錄因子的特性和功能。根據(jù)轉(zhuǎn)錄因子的表達(dá)特點(diǎn),可以將其分為2種類型,一種是組成型轉(zhuǎn)錄因子,即正常情況下和逆境條件下轉(zhuǎn)錄因子基因都會(huì)表達(dá),但是在逆境條件下轉(zhuǎn)錄因子空間結(jié)構(gòu)會(huì)發(fā)生變化,增強(qiáng)與下游受調(diào)控基因的結(jié)合能力;另一種是誘導(dǎo)型的轉(zhuǎn)錄因子,該類轉(zhuǎn)錄因子的基因被逆境條件誘導(dǎo)表達(dá),從而調(diào)控其下游基因的表達(dá)[11]。
干旱脅迫下,植物體內(nèi)代謝發(fā)生改變,被激活的逆境相關(guān)轉(zhuǎn)錄因子參與到干旱信號(hào)的傳遞和下游基因的表達(dá)調(diào)控中,幫助植物體降低不利環(huán)境所帶來(lái)的傷害。在植物基因組研究中,人們發(fā)現(xiàn)植物體內(nèi)存在著大量的轉(zhuǎn)錄因子,僅模式植物擬南芥的基因組中就至少含有5.9%的轉(zhuǎn)錄因子基因[12]。自1987年P(guān)az-Ares等[13]首次從玉米中克隆到轉(zhuǎn)錄因子以來(lái),人們已經(jīng)在大豆、棉花、水稻、小麥、玉米等作物中發(fā)現(xiàn)了許多逆境相關(guān)的轉(zhuǎn)錄因子。目前,借助各種生物技術(shù)方法,人們從大豆中克隆出了許多參與干旱脅迫調(diào)控的轉(zhuǎn)錄因子。經(jīng)研究發(fā)現(xiàn),這些轉(zhuǎn)錄因子可以根據(jù)DNA結(jié)合域特點(diǎn)分為5大家族:乙烯應(yīng)答元件結(jié)合因子家族 (APETALA2/ethylene-responsive element binding proteins,AP2/EREBPs)、堿性亮氨酸拉鏈家族 (Basic region/leucine zipper motif,bZIP)、MYB家族、WRKY家族和NAC家族[14]。
AP2/EREBPs家族轉(zhuǎn)錄因子為植物所特有,其成員龐大,據(jù)植物轉(zhuǎn)錄因子數(shù)據(jù)庫(kù)記錄 (http://plntfdb.bio.uni-potsdam.de/v3.0/),在 擬 南 芥 (Arabidopsis thaliana) 中 有 147 個(gè) 成 員, 水 稻(Oryza sativa)中有196個(gè),玉米 (Zea mays)中有330個(gè),高粱 (Sorghum bicolor)中有161個(gè)轉(zhuǎn)錄因子屬于AP2/EREBP家族。AP2/EREBPs轉(zhuǎn)錄因子含有一個(gè)約60個(gè)氨基酸的DNA結(jié)合域[15]。該DNA結(jié)合域高度保守,包括YRG和RAYD 2個(gè)區(qū),其中YRG區(qū)位于DNA結(jié)合域的N端,主要負(fù)責(zé)各類順勢(shì)作用元件的識(shí)別和結(jié)合;RAYD區(qū)位于結(jié)合域的C端,可能跟其他轉(zhuǎn)錄因子和DNA發(fā)生相互作用[16]。在模式植物擬南芥中,F(xiàn)eng等[17]根據(jù)DNA結(jié)合域的數(shù)量將AP2/EREBPs家族轉(zhuǎn)錄因子分為了4個(gè)亞家族:AP2(APETALA2)亞家族、RAV (Related to ABI3/VP1)亞家族、DREB (Dehydration-responsive element binding protein)亞家族和 ERF (Ethylene-response factor)亞家族,其命名則是根據(jù)首字母組合而來(lái)。此外,AP2/EREBPs家族中還有一些轉(zhuǎn)錄因子不能根據(jù)DNA結(jié)合域數(shù)量歸類到這4個(gè)亞家族中,因而這些無(wú)法歸類的轉(zhuǎn)錄因子成為第5亞家族[18]。
在大豆中,DREB和ERF是AP2/EREBPs家族轉(zhuǎn)錄因子中參與非生物脅迫響應(yīng)的2個(gè)主要亞家族,都含有1個(gè)AP2結(jié)構(gòu)域。DREB轉(zhuǎn)錄因子主要特異結(jié)合DRE/CRT (dehydration-responsive element/C-repeat)元件,含有DRE/CRT元件的基因就會(huì)受到DREB基因的調(diào)控。目前人們?cè)诖蠖怪邪l(fā)多個(gè)DREB亞家族基因[19],分別為GmDREBa、GmDREBb、GmDREBc、GmDREB1、GmDREB2、GmDREB3、GmDREB4、GmDREB5,這些基因通過(guò)識(shí)別細(xì)胞的脫水信號(hào)來(lái)參與大豆植株對(duì)干旱脅迫的調(diào)控。2007年,Chen等[20]從大豆中克隆得到了GmDREB2基因,研究發(fā)現(xiàn)該調(diào)控因子參與了依賴脫落酸和不依賴脫落酸信號(hào)途徑,并且能夠誘導(dǎo)下游基因Rd29A和cor15a的表達(dá),從而增強(qiáng)大豆對(duì)干旱和高鹽環(huán)境的抵抗能力。2010年,Chu等[21]從越南大豆栽培品種 ‘Xanh Tiendai’中克隆了長(zhǎng)為924bp的GmDREB5基因,經(jīng)序列比對(duì)發(fā)現(xiàn)與中國(guó)大豆栽培種的GmDREB5序列有90.4%相似,經(jīng)驗(yàn)證后將用于大豆的抗旱性試驗(yàn)。此外,Junya等[22]發(fā)現(xiàn)新的大豆基因GmDREB2A:2,該基因可有效減少由低溫和高溫造成的脫水傷害。
ERF轉(zhuǎn)錄因子目前僅在植物中發(fā)現(xiàn),含有1個(gè)58或59個(gè)氨基酸殘基的DNA結(jié)合域以及DRE/CRT區(qū),主要特異結(jié)合GCC-box元件。截止2010年,大豆中只有3個(gè)ERF轉(zhuǎn)錄因子的功能確定跟抗旱性相關(guān),分別是2002年Mazarei等[23]發(fā)現(xiàn)的GmEREBP1,Zhang等在2009年發(fā)現(xiàn)的GmERF3[24]和2010年發(fā)現(xiàn)的GmERF4[25]。2011年,Zhai等[26]從大豆中克隆出了1個(gè)新的ERF轉(zhuǎn)錄因子基因GmERF6,該轉(zhuǎn)錄因子具有1個(gè)AP2/ERF區(qū),兩個(gè)核定位信號(hào)位點(diǎn) (Nuclear localization signalsNLSs)以及1個(gè)關(guān)聯(lián)ERF的兩性分子抑制中心 (ERF-associated amphiphilic repression,EAR)。在實(shí)驗(yàn)中,他們對(duì)大豆苗進(jìn)行干旱處理,然后提取RNA進(jìn)行了熒光定量PCR檢測(cè),發(fā)現(xiàn)干旱處理下的GmERF6表達(dá)量增加;同時(shí),將該基因轉(zhuǎn)入擬南芥中,轉(zhuǎn)GmERF6的擬南芥跟野生對(duì)照相比,耐旱能力也顯著增加了。
bZIP轉(zhuǎn)錄因子在所有的真核生物中均有存在,含有1個(gè)堿性DNA結(jié)合域和1個(gè)亮氨酸拉鏈二聚體,在植物逆境信號(hào)傳遞、種子成熟、成花過(guò)程和抗病反應(yīng)中具有重要的作用。在非生物逆境脅迫下,植物中的脫落酸 (Abscisic acid,ABA)含量就會(huì)發(fā)生變化,bZIP轉(zhuǎn)錄因子就會(huì)發(fā)揮作用,使得植物能夠躲避干旱、高鹽等逆境的影響。逆境環(huán)境下的植物體內(nèi),存在著依賴ABA和不依賴ABA這2條調(diào)控途徑,其中ABRE(ACGTGG/TC)轉(zhuǎn)錄因子存在于依賴ABA途徑中,DRE/CRT存在于不依賴ABA途徑中,bZIP通過(guò)操縱ABREs對(duì)植物的逆境相關(guān)基因進(jìn)行表達(dá)調(diào)控[27]。在擬南芥中,bZIP家族轉(zhuǎn)錄因子有123個(gè),許多能夠跟ABRE結(jié)合參與干旱脅迫應(yīng)答,如AREB1/ABF2,AREB2/ABF4,AREB3/DPBF2,ABF1,ABF3/DPBF5,ABI5/DPBF1,EEL/DPBF4,DPBF2,AT5G42910等[28]。在大豆中,人們已經(jīng)發(fā)現(xiàn)了有131個(gè)bZIP家族的轉(zhuǎn)錄因子跟干旱、高鹽、凍害等脅迫相關(guān)。Liao等[27]對(duì)大豆中克隆出的GmbZIP44、GmbZIP62和GmbZIP78進(jìn)行研究,發(fā)現(xiàn)這3個(gè)基因能夠通過(guò)調(diào)控磷酸酶2C蛋白的2個(gè)基因ABI1和ABI2的表達(dá),降低擬南芥對(duì)ABA的敏感性,提高植物對(duì)高鹽和干旱耐力。2011年,Gao等[29]從大豆品種Tiefeng 8克隆出了1個(gè)新的bZIP基因GmbZIP1,轉(zhuǎn)入擬南芥和煙草中進(jìn)行過(guò)表達(dá),結(jié)果發(fā)現(xiàn)在干旱、高鹽和ABA誘導(dǎo)環(huán)境下,葉片氣孔大量關(guān)閉,細(xì)胞失水量下降,對(duì)抵抗干旱具有一定的效果。
MYB家族轉(zhuǎn)錄因子是植物中數(shù)量最多,功能最多的一類轉(zhuǎn)錄因子之一,廣泛參與植物對(duì)環(huán)境脅迫的應(yīng)答、次生代謝調(diào)控和植物形態(tài)的建成。MYB轉(zhuǎn)錄因子中含有1~3個(gè)不完全的螺旋-轉(zhuǎn)角-螺旋(Helix-turn-helix)重復(fù)結(jié)構(gòu),能夠跟DNA雙螺旋結(jié)構(gòu)中的大溝識(shí)別和結(jié)合,激活目的基因的表達(dá),只有少數(shù)是負(fù)調(diào)控因子[30]。在擬南芥中,根據(jù)MYB結(jié)構(gòu)域,可以將MYB家族轉(zhuǎn)錄因子分為4個(gè)亞家族:R1-MYB、R2R3-MYB、R1R2R3-MYB和4R-MYB[31]。在干旱脅迫作用下,MYB轉(zhuǎn)錄因子通過(guò)調(diào)控葉片氣孔、細(xì)胞的分生水平以及根系發(fā)育等方式發(fā)揮作用[32]。近些年來(lái),人們對(duì)于MYB轉(zhuǎn)錄因子的抗旱功能研究,大多是在模式植物擬南芥上進(jìn)行的,如1993年Urao等[33]發(fā)現(xiàn)的AtMYB002,2005年Cominelli等[34]發(fā)現(xiàn)的2個(gè)AtMYB060/AtMYB094,以及2008年Jung等[35]發(fā)現(xiàn)的3個(gè)AtMYB070/AtMYB073/AtMYB077,2009年Seo等[36]發(fā)現(xiàn)的AtMYB096,這些基因都不同程度地提高了擬南芥對(duì)干旱條件的忍耐力。MYB家族部分轉(zhuǎn)錄因子對(duì)植物遭受干旱的調(diào)控能力,已經(jīng)在擬南芥中有所驗(yàn)證,但是在大豆抗旱的研究中報(bào)道很少,這可能跟大豆中龐大的基因組相關(guān)。2008年,Liao等[37]從前人報(bào)道的56147個(gè)大豆基因中獲得了156個(gè)MYB家族基因,然后他們用酵母單雜交方法 (Yeast one-hybrid assay)對(duì)這些基因進(jìn)行基因功能分析,篩選出了43個(gè)跟ABA、鹽害、干旱、凍害相關(guān)的基因,將這些基因轉(zhuǎn)入擬南芥進(jìn)行功能驗(yàn)證,發(fā)現(xiàn)轉(zhuǎn)GmMYB76、GmMYB92、GmMYB177的擬南芥對(duì)ABA的敏感性下降了,但是提高了對(duì)干旱、鹽害和凍害的耐性。
WRKY類轉(zhuǎn)錄因子是一類在植物的干旱和凍害脅迫響應(yīng)、生長(zhǎng)發(fā)育及抗病防御過(guò)程中起重要作用的轉(zhuǎn)錄因子。早期的研究中,該類轉(zhuǎn)錄因子只有在植物中發(fā)現(xiàn),認(rèn)為植物所特有,但是最近的研究顯示,在原生動(dòng)物梨形鞭毛蟲(chóng) (Giardia lamblia)[38]和屬于真菌的盤(pán)基網(wǎng)柄菌 (Dictyostelium discoideum)中均有發(fā)現(xiàn)[39]。WRKY蛋白含有1個(gè)60個(gè)氨基酸組成的 WRKY保守區(qū),其N端是含WRKYGQK序列的保守區(qū),C端為鋅指結(jié)構(gòu);另外還有1個(gè)與 W-box(C/TTGACT/C)特異結(jié)合的DNA結(jié)合區(qū)[40]。根據(jù)WRKY區(qū)的數(shù)量和鋅指結(jié)構(gòu)的特征,WRKY家族轉(zhuǎn)錄因子分為3個(gè)亞家族:第一亞家族含2個(gè)分別具有DNA結(jié)合活性和不具DNA結(jié)合活性的WRKY結(jié)構(gòu)域以及1個(gè)鋅指結(jié)構(gòu);第二家族和第三家族成員的都只含有1個(gè)WRKY結(jié)構(gòu)域和1個(gè)鋅指結(jié)構(gòu)[41]。目前已經(jīng)在擬南芥和水稻中分別發(fā)現(xiàn)了74個(gè)和109個(gè) WRKY轉(zhuǎn)錄因子[42]。2009年,Wu等[43]和Qiu等[44]分別將OsWRKY11和OsWRKY45轉(zhuǎn)入水稻中進(jìn)行超表達(dá),結(jié)果發(fā)現(xiàn)OsWRKY11能夠提高水稻耐旱和耐熱能力,Os-WRKY45則提高了水稻的耐旱、耐鹽能力,還增強(qiáng)了抗病性。Zhou等[45]則從大豆中克隆了3個(gè)WRKY家族轉(zhuǎn)錄因子基因GmWRKY13、GmWRKY21和GmWRKY54,轉(zhuǎn)入煙草中過(guò)表達(dá)后發(fā)現(xiàn)GmWRKY21提高了擬南芥的耐寒性,轉(zhuǎn)GmWRKY13的擬南芥植株的抗旱和抗鹽性能得到增強(qiáng),轉(zhuǎn)GmWRKY54的則提高了擬南芥對(duì)鹽和甘露醇的敏感性。2013年,Luo等[46]人從野生大豆 (Glycine soja)中克隆了GsWRKY20基因,發(fā)現(xiàn)該基因能夠抑制ABA途徑中的正調(diào)控因子;然后他們把GsWRKY20轉(zhuǎn)入野生大豆植株中過(guò)表達(dá)后顯示,野生大豆的失水能力和氣孔密度顯著降低,植株的抗旱能力有所增強(qiáng),這也是首個(gè)WRKY家族基因在豆科植物抗旱性研究的報(bào)道。
NAC家族轉(zhuǎn)錄因子是發(fā)現(xiàn)最晚的一類植物所特有的轉(zhuǎn)錄因子,在植物的生長(zhǎng)發(fā)育、干旱等逆境脅迫應(yīng)答等過(guò)程中具有重要的作用。NAC類轉(zhuǎn)錄因子N端含有一段150個(gè)氨基酸組成的NAC保守結(jié)構(gòu)域,可能具有DNA結(jié)合域功能;C端為非保守性的轉(zhuǎn)錄調(diào)控區(qū),是植物轉(zhuǎn)錄激活結(jié)構(gòu)域[47]。1992年,Yamaguchi-Shinozaki等[48]首次在擬南芥中發(fā)現(xiàn)了跟脫水相關(guān)的NAC轉(zhuǎn)錄因子基因RD26,之后ERD1、ANAC019、ANAC055等大量干旱相關(guān)基因在擬南芥中克隆出來(lái)并得到了功能驗(yàn)證。近些年來(lái),在大豆中人們發(fā)現(xiàn)了大約200個(gè)NAC家族的轉(zhuǎn)錄因子[49]。2007年,Meng等[50]在大豆中鑒定到了6個(gè)干旱脅迫下調(diào)節(jié)細(xì)胞滲透基因的NAC類轉(zhuǎn)錄因子,根據(jù)編號(hào)分別為GmNAC1、GmNAC2、GmNAC3、GmNAC4、GmNAC5、GmNAC6。2009年,Tran等[51]以大豆幼苗為材料,用高通量篩選方法獲得了31個(gè)GmNAC家族基因,其中有9個(gè)GmNAC基因跟干旱脫水、高鹽脅迫的響應(yīng)相關(guān)。2011年,Le等[52]從大豆中獲得了152個(gè)GmNAC轉(zhuǎn)錄因子的全序列基因;次年,他們又從中篩選出38個(gè)可能跟干旱脅迫相關(guān)的GmNAC轉(zhuǎn)錄因子,轉(zhuǎn)入大豆中進(jìn)行表達(dá)分析,根據(jù)熒光定量PCR結(jié)果,發(fā)現(xiàn)干旱作用下有25個(gè)GmNAC基因發(fā)生了上調(diào),另有6個(gè)GmNAC基因的表達(dá)量則下降了。2013年,Nguyen等[53]同樣以Le發(fā)表的152個(gè)GmNAC基因中篩選出了17個(gè)上調(diào)和6個(gè)下調(diào)的干旱相關(guān)基因,以大豆抗旱品種DT51和干旱敏感品種MTD720作為材料篩選組織特異性抗旱相關(guān)轉(zhuǎn)錄因子基因。在抗旱大豆品種DT51的根中,他們發(fā)現(xiàn)有9個(gè)基因的表達(dá)上調(diào),1個(gè)基因下調(diào);而在干旱敏感品種MTD720中,8個(gè)基因表達(dá)上調(diào)。由此可以看出大豆植株在的干旱脅迫作用下,GmNAC基因的表達(dá)情況跟作物品種緊密相關(guān),篩選出大豆各品種中通用且高效的GmNAC抗旱基因的任務(wù)仍然很艱巨。
Trihelix家族轉(zhuǎn)錄因子是最近才引發(fā)關(guān)注的一類基因家族[54-59],在DNA結(jié)合結(jié)構(gòu)域含有3個(gè)串聯(lián)的螺旋結(jié)構(gòu),富含堿性和酸性氨基酸、谷氨酰胺和脯氨酸。因其保守結(jié)構(gòu)域能特異的與DNA序列上的光應(yīng)答元件GT元件結(jié)合,所以又稱GT因子[60-61]。除在模式植物擬南芥 (Arabidopsis thaliana)和水稻 (Oryza sative)中有部分Trihelix轉(zhuǎn)錄因子家族被克隆外,在大豆 [Glycine max (L.)Merr.]和煙草 (Nicotiana tabacumL.)等作物中也被克隆到。研究表明,Trihelix基因家族成員在鹽脅迫、干旱脅迫和冷脅迫等生物脅迫與非生物脅迫中表現(xiàn)出應(yīng)答反應(yīng)[62]。AtGT-3b屬于GT-1亞家族,通過(guò)與基因SCaM-4啟動(dòng)子上GT元件結(jié)合來(lái)調(diào)控ScaM-4的表達(dá),AtGT-3b和SCaM-4基因的表達(dá)量均可在植株受到病害處理和NaCl處理后提高[63]。AtGT-3b可與合成甜菜堿的2個(gè)關(guān)鍵酶膽堿單加氧酶(Choline monooxygenase,CMO)基因和甜菜堿醛脫氫酶 (Betaine aldehyde dehydrogenase,BADH)基因啟動(dòng)子中的GT-1順式作用元件相互作用,而甜菜堿是一種在植物耐鹽中起重要作用的小分子滲透調(diào)節(jié)物質(zhì)[64-66]。GmGT-2A和GmGT-2B屬于GT-2亞家族,兩者在大豆幼苗受到不同鹽、冷、干旱等脅迫時(shí)表達(dá)量升高,在擬南芥中過(guò)量表達(dá)可提高植物對(duì)冷脅迫、干旱脅迫、鹽脅迫等的耐受性[62]。此外,Trihelix家族基因在植物形態(tài)建成、營(yíng)養(yǎng)器官的生長(zhǎng)和生殖器官的發(fā)育都起著重要的作用。
生長(zhǎng)素響應(yīng)因子ARF在調(diào)控植物生長(zhǎng)發(fā)育、細(xì)胞分裂和應(yīng)對(duì)環(huán)境刺激中扮演重要的角色。大量研究證實(shí),在大豆基因組中存在51個(gè)GmARFs基因。CHIEN等[67]通過(guò)對(duì)大豆和擬南芥的ARFs的系統(tǒng)發(fā)育分析后發(fā)現(xiàn),二者在2個(gè)ARF家族 (ARF和Aux/IAA)之間存在一定的相似性和差異性,且GmARF基因具有良好的組織特異性和脅迫應(yīng)答能力。這將對(duì)提高轉(zhuǎn)基因大豆抗旱能力具有巨大的應(yīng)用潛力。
干旱脅迫是影響大豆生長(zhǎng)和產(chǎn)量的重要環(huán)境因素之一。近些年來(lái),人們借助各種先進(jìn)的生物技術(shù)方法發(fā)現(xiàn)并克隆出了許多干旱誘導(dǎo)的基因,為選育抗旱作物品種奠定了分子基礎(chǔ)。在這些抗旱相關(guān)的基因中,有一大部分是轉(zhuǎn)錄因子,參與調(diào)節(jié)下游功能基因的表達(dá),提高植物的抗逆性。然而,植物體對(duì)逆境的響應(yīng)是一個(gè)復(fù)雜的調(diào)節(jié)系統(tǒng),大量的轉(zhuǎn)錄因子參與到了調(diào)控網(wǎng)絡(luò)中,各調(diào)控因子之間也存在著交叉影響。目前,人們對(duì)于一些植物的抗旱響應(yīng)和調(diào)節(jié)機(jī)制有了初步的認(rèn)識(shí),但是對(duì)于這些抗旱相關(guān)轉(zhuǎn)錄因子的研究仍處于發(fā)掘階段,實(shí)驗(yàn)對(duì)象也主要是以模式植物為主,鮮有轉(zhuǎn)基因大豆的大田試驗(yàn)報(bào)道。因此,從龐大的轉(zhuǎn)錄因子庫(kù)中篩選出大豆特異的抗旱轉(zhuǎn)錄因子并進(jìn)行功能驗(yàn)證,對(duì)解開(kāi)大豆等作物的抗旱調(diào)控機(jī)制,是一項(xiàng)具有挑戰(zhàn)性的難題,而選育出高產(chǎn)的優(yōu)質(zhì)的大豆抗旱品種,還有很長(zhǎng)的路要走。
[1]Wang W,Vinocur B,Altman A.Plant responses to drought,salinity and extreme temperatures:towards genetic engineering for stress tolerance[J].Planta,2003,218:1-14.
[2]Vij S,Tyagi A K.Emerging trends in the functional genomics of the abiotic stress response in crop plants[J].Plant Biotechnology Journal,2007,5:361-380.
[3]Arumingtyas E L,Widoretno W,Indriyani S.Somaclonal variations of soybeans(Glycine Max.(L.)Merr)stimulated by drought stress based on random amplified polymorphic DNAs(RAPDs)[J].American Journal of Molecular Biology,2012,2:85-91.
[4]Ku Y,Au-Yeung W,Yung Y,et al.Drought Stress and Tolerance in Soybean[A].Board J E.A Comprehensive Survey of International Soybean Research-Genetics,Physiology,Agronomy and Nitrogen Relationships[C].Rijeka:In Tech,2013:209-237.
[5]Schuster S C.Next-generation sequencing transforms today’s biology[J].Nature,2008,5:16-18.
[6]Wang Z,Gerstein M,Snyder M.RNA-Seq:a revolutionary tool for transcriptomics[J].Nature Reviews Genetics,2009,10:57-63.
[7]Shinozaki K,Yamaguchi-Shinozaki K.Gene networks involved in drought stress response and tolerance[J].Journal of Experimental Botany,2007,58:221-227.
[8]Vinocur B,Altman A.Recent advances in engineering plant tolerance to abiotic stress:achievements and limitations[J].Current O-pinion in Biotechnology,2005,16:123-132.
[9]Singh K B,F(xiàn)oley R C,O?ate-Sánchez L.Transcription factors in plant defense and stress responses[J].Current Opinion in Plant Biology,2002,5:430-436.
[10]Liu L,White M J,Macrae T H.Transcription factors and their genes in higher plants[J].European Journal of Biochemistry,1999,262:247-257.
[11]Xue G P.The DNA‐binding activity of an AP2transcriptional activator HvCBF2involved in regulation of low-temperature responsive genes in barley is modulated by temperature[J].The Plant Journal,2003,33:373-383.
[12]Riechmann J L,Ratcliffe O J.A genomic perspective on plant transcription factors[J].Current Opinion in Plant Biology,2000,3:423-434.
[13]Paz-Ares J,Ghosal D,Wienand U,et al.The regulatory c1locus of Zea mays encodes a protein with homology to MYB proto-oncogene products and with structural similarities to transcriptional activators.[J].The EMBO Journal,1987,6:3553.
[14]Umezawa T,F(xiàn)ujita M,F(xiàn)ujita Y,et al.Engineering drought tolerance in plants:discovering and tailoring genes to unlock the future[J].Current Opinion in Biotechnology,2006,17:113-122.
[15]Okamuro J K,Caster B,Villarroel R,et al.The AP2domain of APETALA2defines a large new family of DNA binding proteins in Arabidopsis[J].Proceedings of the National Academy of Sciences,1997,94:7076-7081.
[16]Liu Q,Zhang G,Chen S.Structure and regulatory function of plant transcription factors[J].Chinese Science Bulletin,2001,46:271-278.
[17]Feng J,Liu D,Pan Y,et al.An annotation update via cDNA sequence analysis and comprehensive profiling of developmental,hormonal or environmental responsiveness of the Arabidopsis AP2/EREBP transcription factor gene family[J].Plant Molecular Biology,2005,59:853-868.
[18]Sakuma Y,Liu Q,Dubouzet J G,et al.DNA-binding specificity of the ERF/AP2domain of Arabidopsis DREBs,transcription factors involved in dehydration-and cold-inducible gene expression [J].Biochemical and Biophysical Research Communications,2002,290:998-1009.
[19]Mau C H,Thanh Thanh N V,Minh Hong N T,et al.Characteristics of DREB1gene isolated from local xanhlo-Ba Be(Bac Kan)soybean(Glycine max (L.)Merrill)cultivar[J].Journal of Biology,2012,33:74-79.
[20]Chen M,Wang Q,Cheng X,et al.GmDREB2,a soybean DRE-binding transcription factor,conferred drought and high-salt tolerance in transgenic plants[J].Biochemical and Biophysical Research Communications,2007,353:299-305.
[21]Lan C H,Anh N T,Thanh N V T,et al.Characterization of the GmDREB5gene isolated from the soybean cultivar Xanh Tiendai,Vietnam[R].Singapore:IACSIT,2011:354-358.
[22]Junya M,Teppei O,Takashi M,et al.GmDREB2A;2,a canonical DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN2-type transcription factor in soybean,is posttranslationally regulated and mediates dehydration-responsive element-depend-ent gene expression[J].Plant Physiology,2013,161:346-361.
[23]Mazarei M,Puthoff D P,Hart J K,et al.Identification and characterization of a soybean ethylene-responsive element-binding protein gene whose mRNA expression changes during soybean cyst nematode infection[J].Molecular Plant-Microbe Interactions,2002,15:577-586.
[24]Zhang G,Chen M,Li L,et al.Overexpression of the soybean GmERF3gene,an AP2/ERF type transcription factor for increased tolerances to salt,drought,and diseases in transgenic tobacco[J].Journal of Experimental Botany,2009,60:3781-3796.
[25]Zhang G,Chen M,Chen X,et al.Isolation and characterization of a novel EAR-motif-containing gene GmERF4from soybean(Glycine max L.)[J].Molecular Biology Reports,2010,37:809-818.
[26]Zhai Y,Li J,Li X,et al.Isolation and characterization of a novel transcriptional repressor GmERF6from soybean[J].Biologia Plantarum,2013,57:26-32.
[27]Liao Y,Zou H,Wei W,et al.Soybean GmbZIP44,GmbZIP62and GmbZIP78genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis[J].Planta,2008,228:225-240.
[28]Fujita Y,F(xiàn)ujita M,Satoh R,et al.AREB1is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis[J].The Plant Cell Online,2005,17:3470-3488.
[29]Gao S Q,Chen M,Xu Z S,et al.The soybean GmbZIP1transcription factor enhances multiple abiotic stress tolerances in transgenic plants[J].Plant Molecule Biology,2011,75:537–553
[30]Yanhui C,Xiaoyuan Y,Kun H,et al.The MYB transcription factor superfamily of Arabidopsis:expression analysis and phylogenetic comparison with the rice MYB family[J].Plant Molecular Biology,2006,60:107-124.
[31]Dubos C,Stracke R,Grotewold E,et al.MYB transcription factors in Arabidopsis[J].Trends in Plant Science,2010,15:573-581.
[32]Feller A,Machemer K,Braun E L,et al.Evolutionary and comparative analysis of MYB and bHLH plant transcription factors[J].The Plant Journal,2011,66:94-116.
[33]Urao T,Yamaguchi-Shinozaki K,Urao S,et al.An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence.[J].The Plant Cell Online,1993,5:1529-1539.
[34]Cominelli E,Galbiati M,Vavasseur A,et al.A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance[J].Current Biology,2005,15:1196-1200.
[35]Jung C,Seo J S,Han S W,et al.Overexpression of AtMYB44enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis[J].Plant Physiology,2008,146:623-635.
[36]Seo P J,Xiang F,Qiao M,et al.The MYB96transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis[J].Plant Physiology,2009,151:275-289.
[37]Liao Y,Zou H,Wang H,et al.Soybean GmMYB76,GmMYB92,and GmMYB177genes confer stress tolerance in transgenic Arabidopsis plants[J].Cell Research,2008,18:1047-1060.
[38]Pan Y,Cho C,Kao Y,et al.A novel WRKY-like protein involved in transcriptional activation of cyst wall protein genes in Giardia lamblia [J].Journal of Biological Chemistry,2009,284:17975-17988.
[39]Zhang Y,Wang L.The WRKY transcription factor superfamily:its origin in eukaryotes and expansion in plants[J].BMC Evolutionary Biology,2005,5:1.
[40]Ulker B,Somssich I E.WRKY transcription factors:from DNA binding towards biological function[J].Current Opinion in Plant Biology,2004,7:491-498.
[41]Eulgem T,Rushton P J,Robatzek S,et al.The WRKY superfamily of plant transcription factors[J].Trends in Plant Science,2000,5:199-206.
[42]Berri S,Abbruscato P,F(xiàn)aivre-Rampant O,et al.Characterization of WRKY co-regulatory networks in rice and Arabidopsis [J].BMC Plant Biology,2009,9:120.
[43]Wu X,Shiroto Y,Kishitani S,et al.Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101promoter[J].Plant Cell Reports,2009,28:21-30.
[44]Qiu Y,Yu D.Over-expression of the stress-induced OsWRKY45enhances disease resistance and drought tolerance in Arabidopsis[J].Environmental and Experimental Botany,2009,65:35-47.
[45]Zhou Q Y,Tian A G,Zou H F,et al.Soybean WRKY-type transcription factor genes,GmWRKY13,GmWRKY21,and Gm-WRKY54,confer differential tolerance to abiotic stress in transgenic Arabidopsis plants[J].Plant Biotechnology Journal.2008,6:486-503.
[46]Luo X,Bai X,Sun X,et al.Expression of wild soybean WRKY20in Arabidopsis enhances drought tolerance and regulates ABA signalling[J].Journal of Experimental Botany,2013,64:2155-2169.
[47]Nakashima K,Takasaki H,Mizoi J,et al.NAC transcription factors in plant abiotic stress responses[J].Biochimica et Biophysica Acta(BBA)-Gene Regulatory Mechanisms,2012,1819:97-103.
[48]Yamaguchi-Shinozaki K,Koizumi M,Urao S,et al.Molecular cloning and characterization of 9cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana:sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein[J].Plant and Cell Physiology,1992,33:217-224.
[49]Mochida K,Yoshida T,Sakurai T,et al.In silico analysis of transcription factor repertoires and prediction of stress-responsive transcription factors from six major gramineae plants[J].DNA Research,2011,18:321-332.
[50]Meng Q,Zhang C,Gai J,et al.Molecular cloning,sequence characterization and tissue-specific expression of six NAC-like genes in soybean[Glycine max (L.)Merr.][J].Journal of Plant Physiology,2007,164:1002-1012.
[51]Tran L P,Quach T N,Guttikonda S K,et al.Molecular characterization of stress-inducible GmNACgenes in soybean[J].Molecular Genetics and Genomics,2009,281:647-664.
[52]Le D T,Nishiyama R,Watanabe Y,et al.Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis[J].PloS One,2012,7:e49522.
[53]Thao N P,Thu N B A,Hoang X L T,et al.Differential expression analysis of a subset of drought-responsive GmNACgenes in two soybean cultivars differing in drought tolerance[J].International Journal of Molecular Sciences,2013,14:23828-23841.
[54]Li C B,Zhou A L,Sang T.Rice domestication by reducing shattering[J].Science,2006,311:1936-1939.
[55]Lin Z W,Griffith M E,Li X R,et al.Origin of seed shattering in rice(Oryza sativa L.).Planta,2007,226:11-20.
[56]Gao M J,Lydiate D J,Li X,et al.Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings[J].Plant Cell,2009,21:54-71.
[57]Fang Y J,Xie K B,Hou X,et al.Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress response[J].Molecular Genetics and Genomics,2010,283:157-169.
[58]Willman M R,Mehalick A J,Packer R L,et al.MicroRNAs regulate the timing of embryo maturation in Arabidopsis[J].Plant Physionlogy,2011,155:1871-1884.
[59]Kaplan-Levy R N,Brewer P B,Quon T,et al.The trihelix family of transcription factors-light,stress and development[J].Trends Plant Science,2012,17:163-171.
[60]Green P J,Kay S A,Chua N H.Sequence-specific interactions of a pea nuclear factor with light-responsive elements upstream of the rbcS-3Agene[J].The EMBO Journal,1987,6:2543-2549.
[61]關(guān)秋玲,陳煥新,張毅,等.植物GT元件和GT因子的研究進(jìn)展 [J].遺傳,2009,31(2):123-130
[62]Xie Z M,Zou H F,Lei G,et al.Soybean trihelix transcription factors GmGT-2Aand GmGT-2Bimprove plant tolerance to abiotic stresses in transgenic Arabidosis[J].PloS One,2009,4:e6898.
[63]Park H C,Kim M L,Kang Y H,et al.Pathogen and NaCl-induced expression of the SCaM-4promoter is mediated in part by a GT-1box that interacts with a gGT-1-like transcrition factor[J].Plant Physiology,2004,135:2150-2161.
[64]李秋莉,張毅,尹輝,等.遼寧堿蓬甜菜堿醛脫氫酶基因 (BADH)啟動(dòng)子分離及序列分析 [J].生物工程學(xué)報(bào),2006,22(1):77-81.
[65]尹輝.遼寧堿蓬CMO基因啟動(dòng)子功能分析 [D].大連:遼寧師范大學(xué),2007.
[66]Zhang Y,Yin H,Li D,et al.Functional analysis of BADHgene promoter fromSuaeda liaotungensis K[J].Plant Cell Reports,2008,27:585-592.
[67]Chien V H,Dung T L,Rie N,et al.The auxin response factor transcription factor family in soybean:genome-wide identification and expression analyses during development and water stress[J].DNA Research,2013,20:511-524.