• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    靠近第二臨界膠束濃度的C16TAB/AS/H2O系統(tǒng)的膠束聚集數(shù)和粘度

    2013-10-11 11:22:40陳燕梅何少青貴元香郝力生南延青
    關(guān)鍵詞:湖南師范大學(xué)二聚體脂蛋白

    陳燕梅,何少青,貴元香,郝力生,南延青

    (湖南師范大學(xué)化學(xué)化工學(xué)院,中國長(zhǎng)沙 410081)

    Aqueous mixtures of cationic and anionic surfactants usually exhibit complicated phase behaviors related to their strong self-assembly ability.Precipitation or turbidity generally occurs at low cT(usually slightly above),and then homogeneous transparent solution is obtained at high.The investigation of Kato et al.[7]illustrated that the apparent aggregation numbers N of SDS/OTAB/H2O homogeneous systems above the heterogeneous region decreased with the increase of cT,the viscosity η of these systems increased with the micellar growth(i.e.with the decrease of cT).The N values for aqueous mixed cationic/anionic surfactant homogenous systems become larger asapproaches 0.5 under constant.

    Previous study[9]indicated that the shear viscosities η ofTAB/AS/mixed systems at 318.15 K with different x2change in different patterns as cTwas increased.η of the mixed systems with x2=0.7 increases rapidly to a viscosity peak,then decreases,and the further increase of cTleads to aqueous two-phase separation;however,η of the mixed systems with x2=0.8 and 0.9 increases slowly.While,these mixed systems have comparable CMC2values[2].In this paper,N and η of mixed C16TAB/AS/H2O systems with x2=0.7,0.8 and 0.9 near CMC2have been measured.Inorganic salt effect on the aggregation numbers and viscosities of some mixed systems has been investigated.The purpose is to try to reveal the variations of N and η with cTwhen the shape of micelles changes from spherical to rodlike,and to reveal that when cT(>CMC2)increases further,whether more rodlike micelles form or the rodlike micelles grow further.

    1 Experimental Section

    1.1 Materials

    Sodium dodecylsulfonate(AS)purchased from Sinopharm Chemical Reagent Co.,Ltd.(purity≥97%)was recrystallized as previously[2,9].Cetyltrimethylammonium bromide(C16TAB)purchased from Sinopharm Chemical Reagent Co.,Ltd.(purity≥99%),sodium bromide(NaBr,AR)and sodium sulfate(Na2SO4,AR),were used without further purification.Pyrene(Py,F(xiàn)luka,purity≥90%)was recrystallized three times from ethanol.N-cetylpyridinium chloride(CPC,F(xiàn)luka,purity≥98%)was recrystallized three times from acetone-ethanol.All the above reagents were dried in a vacuum desiccator at 333.15 K for 24 h before use.Water was redistilled from potassium permanganate solution.

    1.2 Determination of the aggregation number

    Pyrene was used as the fluorescence probe and CPC as the quencher.The steady-state fluorescence spectra of pyrene were recorded with a Hitachi F-4500 spectrofluorometer in the range of 360~450 nm at an excitation wavelength of 335 nm.Excitation and emission band slits were 5 and 2.5 nm,respectively.

    The micellar aggregation number(N)can be determined from the slope obtained from the plot of ln(I0/I)versus cQaccording to the method[10]:

    where I0and I are the fluorescence intensities at 373 nm in the absence and presence of a quencher,respectively,cTis the total surfactant concentration,and cQis the quencher concentration.

    The concentration of pyrene cPywas kept constant at 6.0 ×10-7mol·L-1,while cQwas varied from 0 ~87 ×10-6mol·L-1for C16TAB/H2O or AS/H2O systems;and cPy=2.0 × 10-7mol·L-1,while cQwas varied from 0 ~5 ×10-6mol·L-1for C16TAB/salt aqueous systems,C16TAB/AS/H2O systems in the absence and in the presence of salt,assuring a Poisson distribution.All measurements were performed at(318.15 ±0.01)K.

    1.3 Determination of the relative viscosity

    Viscosity measurements were made using an Ubbelohde suspended level capillary viscometer,suspended vertically in a thermostat with a temperature maintained at(318.15 ±0.01)K.The flow times for the studied samples are about 120 s,and the densities of these dilute surfactant solutions are very close to those of their solvents.Thus the ratio of flow time of solution to that of solvent was regarded as the relative viscosity ηr:Where η and η0are the viscosities of solution and solvent,t and t0are the flow times of solution and solvent,respectively.For each sample,ηrwas taken as the mean value of three independent experiments.Then η can be obtained by the product of η0and ηr.

    2.2 急性缺血性腦卒中影響因素分析 血清脂蛋白相關(guān)磷脂酶A2水平升高、D-二聚體水平升高、高密度脂蛋白水平降低、高血壓病史是急性缺血性腦卒中的獨(dú)立影響因素(P<0.05)。見表2。

    2 Results and Discussion

    2.1 Micellar aggregation numbers of C16TAB and AS aqueous solutions

    Steady-state fluorescence quenching technique has been used to determine the N values.Fig.1 shows the fluorescence emission spectra of pyrene in C16TAB/H2O systems with different quencher concentrations.Fig.2 shows the linear plot of ln(I0/I)versus cQfor C16TAB.According to equation 1[10],values of the average N for these systems have been calculated from the slope of these linear plots and the CMC1values[2].The N results for C16TAB/H2O,AS/H2O and C16TAB/0.10 mol·kg-1NaBr(or 0.050 mol·kg-1Na2SO4)/H2O systems are shown in

    Tab.1.Some literature data[8,11,12]are also given.The results are well in accordance with the literature data.The results in Fig.3 indicated that the N values of aqueous solutions of C16TAB and AS increase linearly with the increase of cT(mmol·L-1)when CMC1<cT<CMC2,the linear relationships are as follows:

    Based on the CMC1values of C16TAB(1.06 mmol·L-1)and AS(11.53 mmol·L-1),respectively,NC16TAB=35 and NAS=31 at CMC1were evaluated.

    Fig.1 Variation of the emission spectra of 6 × 10-7 mol·L-1pyrene in 8.05 mmol·L-1C16TAB/H2O systems with different quencher concentrations.The vibronic peak noted by an arrow is used for quenching analysis

    Fig.2 Linear plot of ln(I0/I)for 6 × 10-7mol·L-1pyrene in aqueous solutions of C16TAB with different concentrations as a function of the quencher CPC concentrations cQ

    Fig.3 Micellar aggregation number of aqueous solutions of C16TAB in the absence and in the presence of sodium salt at 318.15 K

    The results in Tab.1 and Fig.3 clearly indicate that the addition of NaBr or Na2SO4into C16TAB/H2O system leads to the significant increase of N,and the salt effect of NaBr on N is stronger than that of Na2SO4.Usually,the local aggregate curvature can be described by a surfactant packing parameter p=v/(lmaxa),where v and lmaxare the volume and length of the hydrophobic part,respectively and a the apparent area per molecule at the interface(hydrated headgroup)[13].If p < 1/3,the surfactant is expected to form spherical micelles;if 1/3<p<1/2,rodlike micelles tend to be formed.The addition of inorganic salt into the C16TAB/H2O system increases the number of counterions as well as the electrostatic screening effect,thus reduces the electrostatic repulsion between the headgroups and a,which is in favor of the formation and growth of micelles,and the transition from spherical micelles to rodlike micelles at lower concentration.Therefore,N is measurable at lower cTand N increases significantly with the addition of salt.

    Tab.1 The aggregation number for the studied C16TAB or AS systems at 318.15 K

    a and b[12]:steady-state fluorescence quenching technique(SSQT,(303 ± 0.1)K)and simulation method,respectively;c[11]:SSQT,(298.15 ± 0.1)K;d and e[12]:SSQT and time-resolved fluorescence quenching technique,respectively,313.15 K.

    The specific ion effects on CMC1of ionic surfactant generally depend on counterions and usually follow direct or reversed Hofmeister series.According to Collins'concept of matching water affinities[14],the chaotropic headgroups of C16TAB should come in close contact with chaotropic counterions like Br-,making it more possible to form direct ion pairs,whereas kosmotropic SO2-4remain further away.Such ion pairs will be much less hydrated than separate ions and headgroups.This smaller hydration is reflected in smaller effective headgroup areas a while does not significantly influence v and lmax[15],thus leading to larger packing parameter and larger aggregates.That is why the salt effect of NaBr on N of C16TAB is stronger than that of Na2SO4.

    2.2 Micellar aggregation numbers of C16TAB/AS mixed systems

    The C16TAB/AS/H2O mixed systems with x2=0.7,0.8 and 0.9 were chosen as samples of N measurements,in order to try to interpret the variation tendency of η at higher cTin our previous work[9].Fig.4 presents the N values of C16TAB/AS/H2O mixed homogeneous transparent systems with different composition near CMC2.Our results are totally different from the experimental results reported by Kato et al.[7]For the mixed systems with x2=0.9,N increases significantly first when cT< CMC2,then increases slightly when cTis very near CMC2,and finally becomes near constant when cT>CMC2.It indicates that N increases significantly as the micelles change from spherical to rodlike.Whereas for the rodlike micelles,N is almost unchanged with the increase of cTwhen CMC2<cT<2CMC2.The micellar aggregation number increases with the decrease of x2from 0.9 to 0.7 under the same cT.For the mixed systems with x2=0.8,N increases slightly as cTis very near CMC2(i.e.cTincreases from 1.5 mmol·L-1to 1.69 mmol·L-1),and N is almost constant as cTis somewhat larger than CMC2.However,different from the case for the mixed systems with x2=0.8 and 0.9,N increases successively for the mixed systems with x2=0.7 as cTincreases from 1.50 mmol·L-1(<CMC2)to 2.70 mmol·L-1(>CMC2).It suggests that for the mixed systems with x2=0.7,N increases as the micelles change from spherical to rodlike,meanwhile for the formed rodlike micelles,N increases further with the increase of cT.

    The micellar compositions of the mixed cationic/anionic surfactants at CMC1are nearly equimolar for a wide range of mixing ratios.Whereas at cTmuch higher than CMC1,the micelle composition approaches the bulk solution mixing ratio[16,17].Thus the micellar compositions at CMC2are more close to the bulk compositions.For the mixed systems with x2=0.7,0.8 and 0.9,the compositions of rodlike micelles are more far from equimolar with the increase of x2.Micelle composition more close to equimolar corresponds to stronger electrostatic attraction between the oppositely charged headgroups,and weaker electrostatic repulsion between the like-charged headgroups in excess,thus means smaller effective headgroup areas a.According to the simple geometrical model,the smaller the a value,the larger the N value,that is why N increases with the decrease of x2under the same cT.For the mixed systems near the equimolar composition,floc or precipitate is easy to form(unsuitable for N measurement),indicating the significant increasing tendency of N as the equimolar composition is approached.

    Israelachvili et al.[13]have argued that rodlike micelles form spherical end-caps in order to reduce the free energy cost of hydrocarbon ends in contact with water.For rodlike micelles[5],since a is at its optimum value everywhere except an end-cap part,the surfactant molecules residing in the end-cap parts have higher chemical potential than those in the cylindrical part.This unfavorable end-cap energy determines the growth tendency of rodlike micelles.For the mixed systems with x2=0.8 or 0.9,the end-cap energy of the rodlike micelles is low due to larger a value in favor of forming higher curvature structures such as end-caps,and the increase of cTleading to the formation of large amount of small rodlike micelles other than the formation of larger rodlike micelles.That is why their N values above CMC2are almost constants.On the other hand,for the mixed systems with x2=0.7,the end-cap energy of the rodlike micelles is high due to smaller a,thus leading to the enhancement of micellar growth in the axial dimension(i.e.the increase of N)with the increase of cT.

    Fig.4 The aggregation numbers of C16TAB/AS/H2O mixed systems

    Fig.5 The aggregation numbers of C16TAB/AS/(0.1 mol·L-1NaBr aq)mixed systems

    Fig.5 shows the N values of C16TAB/AS/0.1 mol·L-1NaBr/H2O mixed systems.Fig.6 shows the influences of NaBr and Na2SO4on N of C16TAB/AS/H2O mixed systems with x2=0.9.In comparison with the results shown by Fig.4,for the mixed systems with x2=0.8 and 0.9,the addition of NaBr or Na2SO4does not change the variation tendency of N with cT,but leads to the significant increase of N for the C16TAB/AS/H2O mixed systems with cT<CMC2,and leads to the slight increase or near invariableness of N for the C16TAB/AS/H2O mixed systems with cTnear or larger than CMC2.This is mainly due to a decrease in the a value with the addition of salt,which does not significantly influence v and lmax[14],thus leads to an increase of p and is beneficial for the formation of rodlike micelles at lower cTand the increase of N.Similar to the case of C16TAB,the salt effect of NaBr on N of C16TAB/AS/H2O mixed systems with x2=0.9 is stronger than that of Na2SO4.In these mixed systems C16TAB is in large excess,the mixed micelles are positively charged,the counterions Br-screens more efficiently the positive charge on the mixed micelles than counterions.However for the C16TAB/AS/H2O mixed systems with x2=0.7,the addition of NaBr leads to the decrease of N.The larger N values and the increase of N with the increase of cTfor the C16TAB/AS/H2O mixed systems with x2=0.7 shown by Fig.4 suggest that p is suitable for the formation of larger rodlike micelles and the elongation of rodlike micelles with the increase of cT.The addition of NaBr leads to the increase of p,thus is less suitable for the elongation of rodlike micelles.

    2.3 Viscosities of C16TAB/AS mixed systems

    The viscosities of surfactant systems are generally related to their microstructures[18].In order to verify the above experimental N results,as well as to replenish the η data of the C16TAB/AS mixed systems at low cT,the viscosities of some C16TAB/AS mixed systems near CMC2have been measured.Fig.7 gives the viscosities of some C16TAB/AS/H2O mixed systems at 318.15 K.The η variation of the mixed systems with x2=0.8 and 0.9 is very small as cTincreases due to that surfactant solutions containing spherical micelles or short rodlike micelles tend to have low η near to or slightly higher than η of solvent.The experimental η results also illustrate that the C16TAB/AS/H2O mixed systems with x2=0.8 and 0.9 are less viscous than the mixed systems with x2=0.7,which is in line with the experimental N results.For the mixed systems with x2=0.7,η increases more apparently when cT>CMC2due to the growth of rodlike micelles.These experimental η results for the dilute C16TAB/AS/H2O mixed systems with x2=0.7,0.8 and 0.9 are in good agreement with our previous shear viscosity results of these mixed systems at higher cTrange[9],the variation tendencies of η with cTare consistent.

    Fig.6 Aggregation numbers of C16TAB/AS/H2O with x2=0.9 in the absence or in the presence of salt at 318.15 K

    Fig.7 Viscosity of C16TAB/AS/H2O with different compositions at 318.15 K

    Fig.8 gives the viscosities of some C16TAB/AS/(0.1 mol·L-1NaBr aq)mixed systems at 318.15 K.Different from the case with pure water as solvent,the mixed systems with x2=0.8 are more viscous than those systems with x2=0.7 and 0.9 at the same cT,the η sequence shown in Fig.8 is in accordance with the N sequence shown in Fig.5,i.e.,C16TAB/AS/(0.1 mol·L-1NaBr aq)mixed systems containing micelles with larger N are more viscous.In comparison with the result shown in Fig.7,the addition of NaBr into the C16TAB/AS/H2O mixed systems with x2=0.8 and 0.9 leads to η increase due to the increase of N.However,for the mixed systems with x2=0.7,the situation is different.The experimental η results in Fig.9 clearly illustrate that for the aqueous mixed systems with cT<2 mmol·L-1,addition of NaBr leads to η increase due to the decrease ofand the η increase of solvent when 0.1 mol·L-1NaBr aqueous solution substitutes water as solvent[19].Whereas when cT≥2 mmol·L-1,addition of NaBr results in the decrease of η due to the decrease of N.

    Fig.8 Viscosity of C16TAB/AS/(0.1 mol·L-1NaBr aq)with different compositions at 318.15 K

    Fig.9 Viscosity of C16TAB/AS/H2O or C16TAB/AS/(0.1 mol·L-1NaBr aq)mixed systems with x2=0.7 at 318.15 K

    The above results illustrate that the η variation of mixed cationic/anionic surfactant systems with cTis the reflection of the N variation with cT.For the rodlike micelles,larger N values mean more viscous.Similar to the investigation of Kato et al.[7],our investigation also suggests that η increases with the micellar growth of the mixed systems.In spite of that for the C16TAB/AS/H2O mixed systems with x2=0.7 and 0.8 in the absence or in the presence of NaBr,there is a heterogeneous region between CMC1and CMC2,which is similar to case of SDS/OTAB/H2O system.However,totally different N variation tendency with cTwas obtained for the clear solutions formed by these two cationic/anionic surfactant systems at concentrations above the heterogeneous region.This difference may be originated from the difference of average chain length of these two systems.Shorter chain length corresponds to stronger hydrophilicity and weaker hydrophobicity,and vice versa.It is deserved to mention that for the studied C16TAB/AS mixed systems in the heterogeneous region,the amount of floc or the insoluble solid is very small,and the formation of floc or insoluble solid shows almost no influence on the electrical conductivity vs cTcurve and the viscosity vs cTcurve.For these C16TAB/AS mixed systems,the micellar compositions at or slightly larger than CMC1are nearly equimolar for a wide range of mixing ratios,strong electrostatic attraction exists between the oppositely charged headgroups in the micelles.As cTincreases first,it is beneficial for the formation of catanionic complex(CTA+AS-)which is slightly soluble in water[20].Then,as cTincreases further,the micellar compositions are gradually far from equimolar ratios and approach to their bulk compositions,the formation of catanionic complex becomes unbeneficial and the originally formed complex is solubilized into mixed micelles.That is why these heterogeneous systems are formed at cTslightly above CMC1.Finally,as cTincreases above certain concentrations,the solutions become clear again,and sphere-to-rod micelle transition[2]first and then the growth of rodlike micelles or the increase of the number of small rodlike micelles were observed with increasing cT,that is why N increases with increasing cTfor these C16TAB/AS mixed systems.

    3 Conclusions

    The N values of the C16TAB/AS/H2O mixed systems with excess C16TAB at dilute concentrations above the heterogeneous region,increase with increasing cTat the same x2,or increase with decreasing x2at the same cT.Experimental η results increase with the micellar growth of the mixed systems,verifies the experimental N results.For the aqueous mixed systems with x2=0.8 and 0.9,low end-cap energy of the rodlike micelles is beneficial for the formation of large amount of small rodlike micelles other than larger rodlike micelles with increasing cT,thus N at concentrations slightly above CMC2are almost constants.However,for the aqueous mixed systems with x2=0.7,high end-cap energy of rodlike micelles is beneficial for the growth of rodlike micelles,thus increasing cTleads to the increase of N.

    The addition of inorganic salt into the C16TAB/AS/H2O mixed systems with different x2gives different influ-ences on N.The addition of salt into the C16TAB/AS/H2O mixed systems with x2=0.8 and 0.9 leads to the significant increase of N at cT<CMC2and the slight increase or near invariableness of N at cTnear or larger than CMC2,respectively.The salt effect of NaBr on N is stronger than that of Na2SO4.The chaotropic counterions Br-screens more efficiently the positive charge of the excess chaotropic headgroups of C16TAB on the micelles than the kosmotropic,leading to lower CMC2and larger aggregates.However,the addition of NaBr into the C16TAB/AS/H2O mixed systems with x2=0.7 leads to decreasing N.Since the addition of NaBr leads to the increase of p,is less suitable for the elongation of rodlike micelles.

    [1]ZANA R,LéVY H,DANINO D,et al.Mixed micellization of cetyltrimethylammonium bromide and an anionic dimeric(gemini)surfactant in aqueous solution [J].Langmuir,1997,13(3):402-408.

    [2]HAO L S,DENG Y T,ZHOU L S,et al.Mixed micellization and the dissociated margules model for cationic/anionic surfactant systems[J].J Phys Chem B,2012,116(17):5213-5225.

    [3]DANINO D,TALMON Y,ZANA R.Alkanediyl-α,ω-bis(dimethylalky1ammonium bromide)surfactants(dimeric surfactants).5.Aggregation and microstructure in aqueous solutions[J].Langmuir,1995,11(5):1448-1456.

    [4]ZANA R,LEVY H,PAPOUTSI D,et al.Micellization of two triquaternary ammonium surfactants in aqueous solution[J].Langmuir,1995,11(10):3694-3698.

    [5]KWON S Y.Length control in rigid cylindrical nanoassembly by tuning molecular interactions in aqueous solutions[J].Langmuir,2008,24(19):10674-10679.

    [6]HAYASHI S,IKEDA S.Micelle size and shape of sodium dodecyl sulfate in concentrated sodium chloride solutions[J].J Phys Chem,1980,84(7):744-751.

    [7]KATO T,TAKEUCHI H,SEIMIYA T.Change in size and composition of mixed micelles with concentration in anionic/cationic surfactant solutions[J].J Colloid Interface Sci,1990,140(1):253-257.

    [8]LI G Z,LI F,ZHENG L Q,et al.Fluorescence-probe study of anionic/cationic surfactant systems 2.Alkylsulfonate/alkyltrimethylammonium bromide[J].Colloids Surfaces A:Physicochem Eng Aspects,1993,76:257-265.

    [9]YOU Y L,HAO L S,NAN Y Q.Phase behavior and viscous properties of cetyltrimethylammonium bromide and sodium dodecyl sulfonate aqueous mixtures[J].Colloids Surfaces A:Physicochem Eng Aspects,2009,335(1-3):154-167.

    [10]TURRO N,YEKTA A.Luminescent probes for detergent solutions.A simple procedure for determination of the mean aggregation number of micelles[J].J Am Chem Soc,1978,100(18):5951-5952.

    [11]GUO R,ZHU X J,GUO X.The effect of β-cyclodextrin on the properties of cetyltrimethylammonium bromide micelles[J].Colloid Polym Sci,2003,281(9):876-881.

    [12]RAY G B,CHAKRABORTY I,GHOSH S,et al.Self-aggregation of alkyltrimethylammonium bromides(C10-,C12-,C14-,and C16TAB)and their binary mixtures in aqueous medium:a critical and comprehensive assessment of interfacial behavior and bulk properties with reference to two types of micelle formation [J].Langmuir,2005,21(24):10958-10967.

    [13]ISRAELACHVILI J N,MITCHELL D J,NINHAM B W.Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers[J].J Chem Soc,F(xiàn)araday Trans 2,1976,72:1525-1568.

    [14]COLLINS K D.Ion hydration:implications for cellular function,polyelectrolytes,and protein crystallization[J].Biophys Chem,2006,119(3):271-281.

    [15]VLACHY N,JAGODA-CWIKLIK B,KUNZ W,et al.Hofmeister series and specific interactions of charged headgroups with aqueous ions[J].Adv Colloid Interface Sci,2009,146(1-2):42-47.

    [16]HERRINGTON K L,KALER E W,MILLER D D,et al.Phase behavior of aqueous mixtures of dodecyltrimethylammonium bromide(DTAB)and sodium dodecyl sulfate(SDS)[J].J Phys Chem,1993,97(51):13792-13802.

    [17]KATO T,TAKEUCHI H,SEIMIYA T.Concentration dependence of micellar size and composition in mixed anionic/cationic surfactant solutions studied by light scattering and pulsed-gradient FT-NMR spectroscopy[J].J Phys Chem,1992,96(16):6839-6843.

    [18]RAGHAVAN S R,F(xiàn)RITZ G,KALER E W.Wormlike micelles formed by synergistic self-assembly in mixtures of anionic and cationic surfactants[J].Langmuir,2002,18(10):3797-3803.

    [19]ISONO T.Density,viscosity,and electrolytic conductivity of concentrated aqueous electrolyte solutions at several temperatures.Alkaline-earth chlorides,lanthanum chloride,sodium chloride,sodium nitrate,sodium bromide,potassium nitrate,potassium bromide,and cadmium nitrate[J].J Chem Eng Data,1984,29(1):45-52.

    [20]MARQUES E F,BRITO R O,WANG Y,et al.Thermotropic phase behavior of triple-chained catanionic surfactants with varying headgroup chemistry[J].J Colloid Interface Sci,2006,294(1):240-247.

    猜你喜歡
    湖南師范大學(xué)二聚體脂蛋白
    湖南師范大學(xué)作品
    大眾文藝(2021年8期)2021-05-27 14:05:54
    湖南師范大學(xué)美術(shù)作品
    大眾文藝(2020年11期)2020-06-28 11:26:50
    湖南師范大學(xué)作品
    大眾文藝(2019年16期)2019-08-24 07:54:00
    湖南師范大學(xué)作品欣賞
    大眾文藝(2019年10期)2019-06-05 05:55:32
    非配套脂蛋白試劑的使用性能驗(yàn)證
    D-二聚體和BNP與ACS近期不良心血管事件發(fā)生的關(guān)聯(lián)性
    高密度脂蛋白與2型糖尿病發(fā)生的研究進(jìn)展
    氧化低密度脂蛋白對(duì)泡沫細(xì)胞形成的作用
    聯(lián)合檢測(cè)D-二聚體和CA153在乳腺癌診治中的臨床意義
    兩種試劑D-二聚體檢測(cè)值與纖維蛋白降解產(chǎn)物值的相關(guān)性研究
    久久国内精品自在自线图片| 乱码一卡2卡4卡精品| 国产欧美日韩精品一区二区| 国产精品久久久久久久电影| www.色视频.com| 欧美性猛交╳xxx乱大交人| 久久国内精品自在自线图片| 夜夜爽夜夜爽视频| 日本黄大片高清| 视频区图区小说| 观看美女的网站| 国产精品一区www在线观看| 又黄又爽又刺激的免费视频.| 亚洲色图av天堂| 国产亚洲5aaaaa淫片| 黑人高潮一二区| 一区二区三区免费毛片| 国产爽快片一区二区三区| 国产毛片在线视频| 亚洲欧美日韩无卡精品| 一级毛片久久久久久久久女| 国产一级毛片在线| 看免费成人av毛片| 亚洲欧美成人综合另类久久久| 国产精品女同一区二区软件| 男人狂女人下面高潮的视频| 在线精品无人区一区二区三 | 午夜福利网站1000一区二区三区| 欧美精品国产亚洲| 简卡轻食公司| 亚洲精华国产精华液的使用体验| 亚洲真实伦在线观看| 欧美另类一区| 国产乱来视频区| 成人午夜精彩视频在线观看| 免费高清在线观看视频在线观看| 久久影院123| 51国产日韩欧美| 一级毛片aaaaaa免费看小| 一级毛片黄色毛片免费观看视频| 日韩制服骚丝袜av| 黄色日韩在线| 国产精品一区二区在线观看99| 日本免费在线观看一区| 久久久亚洲精品成人影院| 国产黄色免费在线视频| 亚洲美女视频黄频| 精品一区在线观看国产| 欧美zozozo另类| 在线免费十八禁| 中文字幕制服av| 久久久久久久亚洲中文字幕| 国内精品美女久久久久久| 日韩大片免费观看网站| 亚洲高清免费不卡视频| av黄色大香蕉| 日本-黄色视频高清免费观看| 免费电影在线观看免费观看| 男人爽女人下面视频在线观看| 国产一区有黄有色的免费视频| 国产有黄有色有爽视频| 色吧在线观看| 下体分泌物呈黄色| 大又大粗又爽又黄少妇毛片口| 永久网站在线| 欧美国产精品一级二级三级 | 97热精品久久久久久| 亚洲美女搞黄在线观看| 肉色欧美久久久久久久蜜桃 | 久久精品熟女亚洲av麻豆精品| 身体一侧抽搐| 自拍欧美九色日韩亚洲蝌蚪91 | 精品国产三级普通话版| 久久久久久久久久成人| 久久久精品欧美日韩精品| 午夜亚洲福利在线播放| 亚洲色图综合在线观看| 黄色视频在线播放观看不卡| 久久久久久久久久久丰满| 伊人久久国产一区二区| 黄色一级大片看看| 2021天堂中文幕一二区在线观| 国产av不卡久久| 视频中文字幕在线观看| 五月天丁香电影| 亚洲人成网站在线播| 联通29元200g的流量卡| 亚洲欧美成人综合另类久久久| 国产成人精品福利久久| 久久久久国产网址| 美女脱内裤让男人舔精品视频| 伦精品一区二区三区| 天天一区二区日本电影三级| h日本视频在线播放| 日本黄大片高清| 在线观看一区二区三区| 久久久国产一区二区| 久久午夜福利片| 国产视频内射| 搞女人的毛片| av又黄又爽大尺度在线免费看| 一本一本综合久久| 看黄色毛片网站| 久久99精品国语久久久| 久久久精品94久久精品| 欧美成人a在线观看| 青青草视频在线视频观看| 免费av不卡在线播放| 麻豆久久精品国产亚洲av| 亚洲国产av新网站| 国产视频首页在线观看| 毛片一级片免费看久久久久| 国产91av在线免费观看| 在线精品无人区一区二区三 | 亚洲国产高清在线一区二区三| 九九久久精品国产亚洲av麻豆| av在线播放精品| 香蕉精品网在线| 免费av观看视频| 亚洲精品亚洲一区二区| a级毛片免费高清观看在线播放| 禁无遮挡网站| 亚洲精品一区蜜桃| 看十八女毛片水多多多| av在线观看视频网站免费| 久久久精品94久久精品| 欧美成人一区二区免费高清观看| 热re99久久精品国产66热6| 午夜免费观看性视频| 成人毛片60女人毛片免费| 天堂中文最新版在线下载 | 国产亚洲5aaaaa淫片| av免费在线看不卡| av在线播放精品| a级毛色黄片| 秋霞伦理黄片| 国产精品一区二区在线观看99| 免费电影在线观看免费观看| 老司机影院成人| 另类亚洲欧美激情| 精品久久久久久电影网| 久久精品夜色国产| 在线a可以看的网站| 日韩三级伦理在线观看| 欧美3d第一页| 亚洲第一区二区三区不卡| 国产精品人妻久久久影院| 日韩 亚洲 欧美在线| 精品少妇黑人巨大在线播放| 国产成人精品婷婷| 色视频www国产| 大香蕉久久网| 有码 亚洲区| 秋霞在线观看毛片| 一级毛片黄色毛片免费观看视频| 少妇裸体淫交视频免费看高清| 精品熟女少妇av免费看| 中文天堂在线官网| 国产成人免费观看mmmm| 欧美zozozo另类| 美女视频免费永久观看网站| 特级一级黄色大片| av播播在线观看一区| 久久影院123| 人妻系列 视频| 国产在线男女| 午夜福利高清视频| 777米奇影视久久| 中文乱码字字幕精品一区二区三区| 老师上课跳d突然被开到最大视频| 亚洲色图av天堂| 亚洲怡红院男人天堂| 天天躁日日操中文字幕| 国产精品久久久久久久久免| 高清视频免费观看一区二区| 国产午夜精品久久久久久一区二区三区| 男女国产视频网站| 少妇熟女欧美另类| 国产在线男女| 精品一区二区免费观看| 韩国av在线不卡| 亚洲av二区三区四区| 久久人人爽人人爽人人片va| 中文字幕免费在线视频6| 国产熟女欧美一区二区| 午夜免费鲁丝| 精品视频人人做人人爽| 精品国产三级普通话版| 国产乱来视频区| 三级男女做爰猛烈吃奶摸视频| 国产一区二区亚洲精品在线观看| 国产在线一区二区三区精| 亚洲av欧美aⅴ国产| 日韩成人av中文字幕在线观看| 中文在线观看免费www的网站| 神马国产精品三级电影在线观看| 97热精品久久久久久| 午夜免费男女啪啪视频观看| 日日撸夜夜添| 中文字幕亚洲精品专区| 久久精品人妻少妇| 国语对白做爰xxxⅹ性视频网站| 久久久精品免费免费高清| 国产一区二区三区av在线| 精品久久久精品久久久| 日韩国内少妇激情av| 国产成人精品婷婷| 亚洲精品乱码久久久v下载方式| 亚洲av日韩在线播放| 久久99热这里只频精品6学生| 亚洲天堂国产精品一区在线| 亚洲精品成人久久久久久| 春色校园在线视频观看| 黄色一级大片看看| 亚洲最大成人av| 高清在线视频一区二区三区| 亚洲精品成人久久久久久| 亚洲精品日本国产第一区| 色5月婷婷丁香| 中国三级夫妇交换| 内地一区二区视频在线| 国产精品福利在线免费观看| 熟女人妻精品中文字幕| 免费观看av网站的网址| 六月丁香七月| 99re6热这里在线精品视频| 国产欧美另类精品又又久久亚洲欧美| 亚洲不卡免费看| 天天躁夜夜躁狠狠久久av| 卡戴珊不雅视频在线播放| 欧美变态另类bdsm刘玥| www.色视频.com| 建设人人有责人人尽责人人享有的 | 中文乱码字字幕精品一区二区三区| 亚洲最大成人中文| 国国产精品蜜臀av免费| 国产 一区 欧美 日韩| 一区二区三区精品91| 亚洲综合精品二区| 三级经典国产精品| 嫩草影院新地址| 免费少妇av软件| 少妇丰满av| 国产中年淑女户外野战色| 久久久久久久久久人人人人人人| 色视频在线一区二区三区| 男女无遮挡免费网站观看| 日韩中字成人| 免费看av在线观看网站| 亚洲精品日韩在线中文字幕| 色婷婷久久久亚洲欧美| 夫妻性生交免费视频一级片| 在线观看国产h片| 国产日韩欧美在线精品| 久久99热这里只有精品18| 国产亚洲一区二区精品| 亚洲av欧美aⅴ国产| 一区二区三区免费毛片| 白带黄色成豆腐渣| 久久影院123| 亚洲三级黄色毛片| 97超视频在线观看视频| 亚洲图色成人| 久久久久精品久久久久真实原创| 美女视频免费永久观看网站| 久久99蜜桃精品久久| 色婷婷久久久亚洲欧美| 国产老妇女一区| 国产黄片视频在线免费观看| 亚洲欧美成人精品一区二区| 激情五月婷婷亚洲| 精品一区二区三卡| 中国三级夫妇交换| videos熟女内射| eeuss影院久久| 麻豆乱淫一区二区| 肉色欧美久久久久久久蜜桃 | 麻豆久久精品国产亚洲av| 亚洲精品影视一区二区三区av| 日韩成人伦理影院| 一级毛片电影观看| 欧美潮喷喷水| 九色成人免费人妻av| 亚洲精品乱码久久久v下载方式| av播播在线观看一区| 国产 精品1| 欧美日韩一区二区视频在线观看视频在线 | 少妇熟女欧美另类| 永久免费av网站大全| 亚洲精品影视一区二区三区av| 特级一级黄色大片| 免费大片18禁| 亚洲欧美成人精品一区二区| 亚洲精品国产色婷婷电影| 精品久久久噜噜| 久久久久久伊人网av| 国产欧美日韩一区二区三区在线 | 久久久久久久久久久丰满| 少妇人妻一区二区三区视频| 国产人妻一区二区三区在| 欧美区成人在线视频| 最近中文字幕高清免费大全6| 80岁老熟妇乱子伦牲交| 国国产精品蜜臀av免费| 国产伦精品一区二区三区四那| 国产成年人精品一区二区| 久久精品国产鲁丝片午夜精品| av免费观看日本| 99热6这里只有精品| 亚洲精品aⅴ在线观看| 日韩免费高清中文字幕av| 国产白丝娇喘喷水9色精品| 欧美一区二区亚洲| 日日摸夜夜添夜夜添av毛片| 校园人妻丝袜中文字幕| 国产乱人偷精品视频| 大陆偷拍与自拍| 高清av免费在线| 亚洲精品456在线播放app| 欧美日韩综合久久久久久| 精品一区在线观看国产| 婷婷色av中文字幕| .国产精品久久| 国产成人免费观看mmmm| 99热这里只有是精品在线观看| 女人久久www免费人成看片| 精品午夜福利在线看| 国产视频内射| 国产精品久久久久久久电影| 在线观看国产h片| 久久精品国产亚洲av天美| 国产高清不卡午夜福利| 国产精品国产三级国产av玫瑰| 国产精品一二三区在线看| 免费av不卡在线播放| 免费大片18禁| 美女被艹到高潮喷水动态| 成人国产麻豆网| 三级国产精品片| 插逼视频在线观看| 我要看日韩黄色一级片| 国产久久久一区二区三区| 深夜a级毛片| 美女高潮的动态| 边亲边吃奶的免费视频| 久久6这里有精品| 免费看不卡的av| 最近的中文字幕免费完整| 亚洲国产精品999| 亚洲熟女精品中文字幕| 午夜老司机福利剧场| 美女被艹到高潮喷水动态| 日韩中字成人| 国产 精品1| av天堂中文字幕网| 欧美性猛交╳xxx乱大交人| av线在线观看网站| 精品熟女少妇av免费看| 国产精品女同一区二区软件| 亚洲精品乱码久久久v下载方式| 午夜福利在线在线| 91精品伊人久久大香线蕉| 午夜视频国产福利| 丰满人妻一区二区三区视频av| 少妇熟女欧美另类| 亚洲第一区二区三区不卡| 国产免费视频播放在线视频| 国产午夜精品一二区理论片| 日韩三级伦理在线观看| 高清毛片免费看| 日韩一本色道免费dvd| 久久久久九九精品影院| 国产精品不卡视频一区二区| 日韩精品有码人妻一区| 在线免费十八禁| 成人免费观看视频高清| 国国产精品蜜臀av免费| 亚洲精品一区蜜桃| 亚洲精品久久久久久婷婷小说| 插阴视频在线观看视频| 国内精品美女久久久久久| 五月天丁香电影| 午夜福利网站1000一区二区三区| 久久久久国产精品人妻一区二区| 午夜福利在线在线| 久热久热在线精品观看| 久久精品久久久久久噜噜老黄| 久热久热在线精品观看| 国产 一区精品| 乱系列少妇在线播放| 在线精品无人区一区二区三 | 狂野欧美白嫩少妇大欣赏| 欧美人与善性xxx| 国产av不卡久久| 国产亚洲一区二区精品| 国产成人精品久久久久久| 午夜免费鲁丝| 亚洲在线观看片| 亚洲精品日韩av片在线观看| 男插女下体视频免费在线播放| 日本熟妇午夜| 久久久久久国产a免费观看| 乱码一卡2卡4卡精品| 亚州av有码| 在线观看人妻少妇| 麻豆国产97在线/欧美| 另类亚洲欧美激情| 日本av手机在线免费观看| 免费大片黄手机在线观看| 久久ye,这里只有精品| 欧美一级a爱片免费观看看| 亚洲av成人精品一二三区| 国产美女午夜福利| 国产成人一区二区在线| 亚洲精品国产成人久久av| 亚洲人成网站在线观看播放| 国产综合精华液| 久久精品国产亚洲av涩爱| 最近中文字幕高清免费大全6| 女人久久www免费人成看片| 亚洲国产最新在线播放| 边亲边吃奶的免费视频| 日本黄色片子视频| 精品国产三级普通话版| 老女人水多毛片| 精品午夜福利在线看| 久热这里只有精品99| 中国国产av一级| 欧美激情国产日韩精品一区| 亚洲高清免费不卡视频| 人妻夜夜爽99麻豆av| 精品人妻熟女av久视频| 国产黄频视频在线观看| 亚洲美女搞黄在线观看| 在线观看三级黄色| 人人妻人人看人人澡| 午夜免费鲁丝| 欧美日韩综合久久久久久| 一本一本综合久久| 欧美亚洲 丝袜 人妻 在线| 国产v大片淫在线免费观看| 日本wwww免费看| 国产 一区 欧美 日韩| 国产男女内射视频| 特级一级黄色大片| 日韩欧美精品免费久久| 日韩欧美 国产精品| 少妇 在线观看| 亚洲精品日韩av片在线观看| 老师上课跳d突然被开到最大视频| 国产av不卡久久| 91精品一卡2卡3卡4卡| 亚洲,一卡二卡三卡| .国产精品久久| 中文乱码字字幕精品一区二区三区| 亚洲精品视频女| 亚洲成人一二三区av| 国产伦精品一区二区三区视频9| 一级爰片在线观看| 舔av片在线| 大香蕉久久网| 五月天丁香电影| 蜜臀久久99精品久久宅男| 久热久热在线精品观看| 97超视频在线观看视频| 国产精品不卡视频一区二区| 男男h啪啪无遮挡| 肉色欧美久久久久久久蜜桃 | 国产午夜精品久久久久久一区二区三区| 欧美极品一区二区三区四区| xxx大片免费视频| 欧美日本视频| 国产成人a∨麻豆精品| 寂寞人妻少妇视频99o| 日韩一区二区三区影片| 亚洲怡红院男人天堂| 精品一区二区三卡| 天美传媒精品一区二区| 亚洲国产色片| 亚洲av成人精品一区久久| 最近最新中文字幕免费大全7| 别揉我奶头 嗯啊视频| 亚洲美女视频黄频| 久久精品国产亚洲av天美| 久久99热这里只有精品18| 亚洲图色成人| 99久久精品热视频| 日日啪夜夜爽| 99久久中文字幕三级久久日本| 免费黄频网站在线观看国产| 少妇人妻久久综合中文| videos熟女内射| 亚洲自偷自拍三级| 老女人水多毛片| 亚洲国产欧美在线一区| 日韩视频在线欧美| 亚洲内射少妇av| 80岁老熟妇乱子伦牲交| 国产亚洲最大av| 少妇的逼水好多| 我要看日韩黄色一级片| 91狼人影院| 校园人妻丝袜中文字幕| 国产毛片a区久久久久| 久久99热这里只频精品6学生| 天天一区二区日本电影三级| 嫩草影院新地址| 色综合色国产| 王馨瑶露胸无遮挡在线观看| 99视频精品全部免费 在线| 亚洲国产最新在线播放| 国产精品久久久久久久电影| 亚洲va在线va天堂va国产| 男女边摸边吃奶| 成年av动漫网址| 有码 亚洲区| 国产毛片a区久久久久| 男人爽女人下面视频在线观看| 少妇人妻一区二区三区视频| 一级爰片在线观看| 校园人妻丝袜中文字幕| 身体一侧抽搐| 一级av片app| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲欧美日韩无卡精品| 老师上课跳d突然被开到最大视频| 国产高清国产精品国产三级 | 免费电影在线观看免费观看| 18+在线观看网站| 性插视频无遮挡在线免费观看| 国产乱人视频| 国产在线一区二区三区精| 精品久久国产蜜桃| 成人亚洲精品一区在线观看 | 中文字幕亚洲精品专区| 有码 亚洲区| 国产白丝娇喘喷水9色精品| 国内精品宾馆在线| 五月伊人婷婷丁香| 成人综合一区亚洲| 久久精品久久精品一区二区三区| 1000部很黄的大片| 精品99又大又爽又粗少妇毛片| 国产精品三级大全| 国产精品一区二区在线观看99| 少妇人妻精品综合一区二区| 免费av毛片视频| 国产精品不卡视频一区二区| 春色校园在线视频观看| 国产 一区精品| 大又大粗又爽又黄少妇毛片口| 久久久久久久精品精品| 午夜福利网站1000一区二区三区| 狠狠精品人妻久久久久久综合| 亚洲国产欧美人成| 网址你懂的国产日韩在线| 午夜激情福利司机影院| 一级毛片 在线播放| 麻豆成人av视频| 日本欧美国产在线视频| 97人妻精品一区二区三区麻豆| 天堂网av新在线| 久久99热这里只频精品6学生| 午夜福利网站1000一区二区三区| 成年av动漫网址| 国产亚洲最大av| 在线天堂最新版资源| 一级av片app| 七月丁香在线播放| 日韩成人伦理影院| 热99国产精品久久久久久7| 久久国产乱子免费精品| 欧美潮喷喷水| 欧美成人一区二区免费高清观看| 黄片无遮挡物在线观看| 在线观看一区二区三区激情| 超碰av人人做人人爽久久| h日本视频在线播放| 精品人妻熟女av久视频| 99热网站在线观看| 亚洲在久久综合| 人妻少妇偷人精品九色| 国产精品秋霞免费鲁丝片| 人人妻人人看人人澡| 高清欧美精品videossex| 美女主播在线视频| 国产午夜精品一二区理论片| 最近手机中文字幕大全| eeuss影院久久| 人人妻人人看人人澡| 高清欧美精品videossex| 黄片wwwwww| 18+在线观看网站| 日本欧美国产在线视频| 亚洲欧洲国产日韩| 国产成人午夜福利电影在线观看| 日本一二三区视频观看| av国产免费在线观看| 另类亚洲欧美激情| 国产亚洲精品久久久com| 精品国产乱码久久久久久小说| 久久久欧美国产精品| 最近中文字幕高清免费大全6| 日韩一本色道免费dvd| 丝袜喷水一区| 国产高清有码在线观看视频| 男人舔奶头视频| 国产成人精品一,二区| 欧美性感艳星| 男的添女的下面高潮视频| 涩涩av久久男人的天堂| 一区二区三区四区激情视频| 日韩一本色道免费dvd| 日本一本二区三区精品| 毛片一级片免费看久久久久|