• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    N3/Al2O3/N749交替組裝結(jié)構(gòu)拓寬準(zhǔn)固態(tài)染料敏化太陽能電池光響應(yīng)范圍和界面修飾效果

    2013-09-21 08:59:16牛廣達(dá)王立鐸馬蓓蓓
    物理化學(xué)學(xué)報(bào) 2013年1期
    關(guān)鍵詞:敏化物理化學(xué)學(xué)報(bào)

    高 瑞 牛廣達(dá) 王立鐸 馬蓓蓓 邱 勇

    (清華大學(xué)化學(xué)系,有機(jī)光電子及分子工程教育部重點(diǎn)實(shí)驗(yàn)室,北京100084)

    1 Introduction

    Dye-sensitized solar cell(DSC)was first reported by Gr?tzel et al.in 1991.1It was considered as an alternative to the traditional silicon soar cell due to its lower productive cost and easy fabrication process.Up to now,much attention had been focused on both the efficiency2-5and stability6-11of DSCs.Conversion efficiency up 12%had been achieved up to now.12

    Photoresponse of sensitizers was a key element in improving performance of DSCs.To enhance the spectrum response over a wider wavelength range,multi-layer sensitized TiO2electrode with different dyes have been used since 1997.13These methods of fabricating multi-layer sensitized TiO2electrodes were always carried out through adsorbing different dyes onto the TiO2films layer by layer through dipping them in different dye solutions successively.14,15However,these methods suffered from competition adsorption or mismatch of energy level of different dye molecules.And excessive adsorption could cause the dye aggregation,which increased the electron quenching and charge recombination in DSCs.As a result,the light-capture efficiency of the cells could be enhanced,but the devices'conversion efficiency was not improved obviously.16-18

    To avoid the problems mentioned above,a secondary metal oxide layer was applied for two-layer or multi-layer sensitization of TiO2electrode to separate different dye layers.In this way,the second layer of dye was adsorbed on the metal oxide interlayer.After being sensitized with the first layer of dye,a secondary Al2O3layer was deposited on the sensitized TiO2film.Then the second layer of dye was adsorbed.19Through this method,a significant enhancement of conversion efficiency was achieved.20Besides the sensitizer,the interface of sensitized TiO2/electrolyte in DSCs is also a vital factor for performance of DSCs.21,22Several important reactions in DSCs occurred at this interface,such as the dye electron injection,charge transfer,charge recombination,and dye regeneration.Accordingly,interface modification was considered as a useful method of improving the performance of DSCs.23-29Many metal oxides,such as Al2O3,30,31MgO,32Nb2O5,33SiO2,34ZnO,35or ZrO2,36have been used to make the interface modification between TiO2film and dye.Furthermore,many other insulating materials were also found to be effective in blocking recombination and increasing the conversion efficiency of DSCs.Al2O3was an excellent modification material for TiO2photoanode as it could retard the charge recombination in DSCs obviously.37,38Durrant et al.39obtained a 30%efficiency enhancement using Al2O3modification of DSCs in 2002.In the previous work,40,41the modification with Al2O3after sensitization could improve the conversion efficiency and stability of DSCs by prohibiting the aggregation of N3 dyes and spacing the TiO2and the electrolyte.Furthermore,Al2O3also could adsorb the second layer of dye to form an alternating assembly structure by the interaction of oxygen in Al2O3and hydrogen in the carboxyl group in the dye molecule.40,41

    The previous studies about the multi-layer sensitizing mainly focused on the extended photoresponse.20However,the effects of Al2O3,which was used as the carrier layer,had not been studied systemically.To investigate the interface effect of Al2O3in the multi-layer sensitizing structure,this paper introduced an alternating structure with different dyes,which was N3/Al2O3/N749 assembled.The effects of Al2O3and the interface electron processes were discussed systemically.Furthermore,the electron process and internal resistance were analyzed and the mechanism of device based on the alternating assembly structure was simulated by establishing an equivalent circuit model.This structure could combine the advantages of broadening spectrum response of sensitizer and interface modification to retard the charge recombination.

    2 Experimental

    2.1 Materials

    Poly(ethylene oxide)(PEO,Mw=2×106,Aldrich),iodine(I2,Guangdong Xilong Chemicals,China,analytically pure),lithium iodide(LiI,Acros Organics,99%),4-tertbutylpyridine(TBP,Sigma,99%),aluminium isopropoxide(Al(OC3H7)3,Alfa Aesar,99%),3-methoxypropionitrile(MePN,Alfa Aesar,99%),cis-dithiocyanate-N,N'-bis(4,4'-dicarboxylate-2,2'-bipyridine)ruthenium(II)(N3,Solaronix,Switzerland).{(C4H9)4N}3·[Ru(Htctpy)(NCS)3](tctpy=4,4',4?-tricarboxy-2,2',6',2?-terpyridine)(N749,Solaronix,Switzerland).

    2.2 Preparation of the photoanode

    The TiO2colloid was prepared with a hydrothermal method,which has been well documented in the previous report.42To prepare porous TiO2film,transparent conductive F-doped SnO2(FTO)glass(12 Ω·□-1)was completely cleaned and then a thin compact TiO2film(about 8 nm in thickness)was deposited on the FTO by dip coating in order to improve ohmic contact and adhesion between the following porous TiO2layer and the conductive FTO glass.The doctor blade technique was then adopted to prepare the porous TiO2layer with the thickness of the porous layer being controlled by an adhesive tape.Afterwards,the film was thermo-treated at 450°C for 30 min.When cooled to 110°C,the TiO2electrode was sensitized by immersion in 0.3 mmol·L-1N3 absolute ethanol solution for 2 h and cleaned with absolute ethanol.

    Coating of Al2O3was performed as follows:the sensitized TiO2film was dipped into a solution of Al(OC3H7)3for 30 s,then hydrolyzed in air for 30 min to make produced isopropanol during the hydrolysis reaction volatilize.Then the TiO2film was sensitized with 0.3 mmol·L-1N749 absolute ethanol solution dye for 2 h,then the TiO2/N3/Al2O3/N749 structure was assembled.

    2.3 Preparation of the electrolyte

    The preparation procedure for the polymer gel electrolytes includes two steps.First,liquid electrolyte was prepared.Second,poly(ethylene oxide)(PEO)was slowly added into the liquid electrolyte and heated under strong stirring until the polymer gel electrolyte became homogeneous.The composition of the liquid electrolyte is as follows:0.1 mol·L-1LiI,0.1 mol·L-1I2,0.6 mol·L-11,2-dimethyl-3-propyl imidazolium iodide(DMPII),and 0.45 mol·L-1N-methyl-benzimidazole(NMBI).The solvent was 3-methoxypropionitrile(MePN);43the mass fraction(versus liquid electrolyte)for the PEO in the electrolyte was 10.0%.

    2.4 Fabrication of the DSCs

    A chemically platinized conductive glass was used as the counter electrode.When assembling the DSCs,the polymer gel electrolyte was sandwiched by a sensitized TiO2electrode and a counter electrode with two clips;the space between the two electrodes was controlled by an adhesive tape with a thickness of 30 μm.Finally,the DSCs were baked at 80 °C to ensure that the polymer could penetrate into the TiO2film.

    2.5 Characterization

    The UV-Vis reflectance absorption spectra were measured with a Hitachi U-3010 spectroscope.Photocurrent-voltage(IV)and dark current measurements were performed using a Keithley Model 4200-SCS semiconductor characterization system with real-time plotting and analysis with an active area of 0.25 cm2.EIS,IMVS,and IMPS were investigated by ZAHNER CIMPS electrochemical workstation,Germany.The incident photon-to-current conversion efficiency(IPCE)was measured by using a lab-made IPCE setup in Professor Meng's laboratory inInstituteof Physics,ChineseAcademyof Sciences.

    3 Results and discussion

    3.1 Photoresponse

    Fig.1 showed the UV-Vis absorption spectra of N3,N749,and N3/Al2O3/N749 adsorbed onto TiO2films.The absorption peak of N3 was at about 530 nm,and that of N749 was at 620 nm.When the structure of N3/Al2O3/N749 was applied,a wide absorption peak from 530 to 620 nm could be observed.The results of UV-Vis absorption showed that the structure of N3/Al2O3/N749 combined the absorption spectra of N3 and N749.

    To further explore whether the broadened absorption of N3/Al2O3/N749 compared to the photoanode sensitized by the single dye injected into the conductive band of TiO2effectively,the IPCEs of devices based on TiO2/N3,TiO2/N749,and N3/Al2O3/N749 were tested.

    IPCE can be expressed by the following formula:44

    Fig.1 UV-Vis absorption spectra of N3,N749,and N3/Al2O3/N749 adsorbed onto TiO2films

    where LHE(λ)is the light-harvesting efficiency for photons of certain wavelength;φinjis the quantum yield for electron injected from the excited sensitizer to the conduction band of TiO2;and ηcis the electron collection efficiency.

    As shown in Fig.2,to compare the photoresponse range of N3,N749,and N3/Al2O3/N749 clearly,IPCEs of the three kinds of photoanodes were tested.The results revealed that compared to N3 individually,the IPCE spectrum of N3/Al2O3/N749 was widened in the range from 600 nm to over 700 nm and stronger in the range from 500 to 600 nm,which was corresponding to the results of absorption spectrum.It suggested that most of the electrons leading to the increased absorption of N3/Al2O3/N749 showed in Fig.1 were injected into the conductive band of TiO2.As a result,the short-circuit current density(Jsc)could be increased when using N3/Al2O3/N749 structure,then the conversion efficiency could be enhanced.

    3.2 Photovoltaic performance

    Fig.2 IPCE spectra of devices based on N3,N749,and N3/Al2O3/N749

    Fig.3 (a)Current density-voltage curves and(b)dark current curves of devices based on N3,N749,and N3/Al2O3/N749

    The photocurrent-voltage characteristics of DSCs based on N3,N749,and N3/Al2O3/N749 were tested under AM1.5,100 mW·cm-2.As shown in Fig.3(a)and Table 1,the Jscvalues of devices based on N3 and N749 were 10.95 and 7.97 mA·cm-2,respectively.The Jscvalue increased to 15.14 mA·cm-2when N3/Al2O3/N749 structure was applied.The increasing of Jsccould be explained that the two dyes in the N3/Al2O3/N749 increased the photoresponse range,and then more electrons were injected into the conductive band of TiO2.The increasing of Jsccorresponded to the results of UV-Vis adsorption and IPCE spectra.The open circuit voltage(Voc)of devices based on N3 and N749 were 0.635 and 0.620 V.The Vocof the device based on N3/Al2O3/N749 also increased to 0.690 V.The enhancement of Voccould be explained that as a carrier layer and modification material,besides absorbing more dyes,Al2O3could retard the charge recombination.The decreased recombination caused the enhancement of Voc.As a result,the device based on N3/Al2O3/N749 obtained a conversion efficiency of 5.75%,which was higher than the efficiency of device based on N3 or N749.As show in Fig.3(b),the dark current of device with N3/Al2O3/N749 was also lower than that of device based on N3 or N749.It showed that the back reaction was retarded,which confirmed the charge recombination decreasing caused by interface modification effects ofAl2O3.40

    3.3 Electron process and impedance analysis

    As shown in Fig.4,the electron transfer processes in DSC based on N3/Al2O3/N749 structure were illustrated.The electron in the lowest unoccupied molecular orbital(LUMO)of the first layer of dye(N3)is injected into the conductive band of TiO2.Besides,electrons in the LUMO of the second layer of dye(N749)also could be injected into the conductive band of TiO2with a quantum tunneling effect.As a result,more electrons could be produced and injected into TiO2than using N3 only,then enhance the photocurrent of the devices.Furthermore,Al2O3retarded the recombination between electrons in the conductive band of TiO2and I-/I-3in electrolyte,showing obvious interface modification effects.Thus the back reactions were reduced and dark current was decreased,which was shown in Fig.3(b).

    DSCs could be considered as a leaking capacitor in dark con-dition.45The resistance of the back reaction from TiO2to the I-3ions in the electrolyte could be analyzed through AC impedance technique under dark condition.The resistance at the interface of the sensitized TiO2/electrolyte was presented by the semicircle in intermediate frequency regime of the Nyquist plots.46The bigger the diameter of middle frequency semicircle was,the slighter the electron recombination at the sensitized TiO2/electrolyte interface was.Fig.5(a)showed the Nyquist plots of devices based on N3,N749 and N3/Al2O3/N749 at-0.8 V bias voltage in dark condition.Compared with N3 or N749 individually,the interface resistance of N3/Al2O3/N749 based DSC was much bigger,which meant that the charge recombination was obviously retarded.The decrease of recombination was mainly caused by the interlayer of Al2O3,which acted as a barrier layer besides a carrier layer of the second dye.

    Table 1 Parameters of DSCs based on N3,N749,and N3/Al2O3/N749

    Under illumination condition,the DSCs could be taken as diodes.47Resistance at the TiO2/dye/electrolyte interface was also presented by the middle frequency semicircle in the Nyquist plots.The smaller the diameter of middle frequency semicircle was,the faster the electron transfer at the sensitized TiO2/electrolyte interface was.As shown in Fig.5(b),the resistance at TiO2/dye/electrolyte interface of N3/Al2O3/N749 based DSC was similar with that based on N3 or N749 individually,showing that the charge transfer did not deteriorate with such a struc-ture.Thus the increased injection electron could enhance the Jsceffectively,which accorded with the results shown in Fig.3(a)and Table 1.

    Fig.4 Diagrammatic sketch of electron process in DSC based on N3/Al2O3/N749

    Fig.5 Nyquist plots under(a)dark and(b)illumination conditions;(c)simplified equivalent circuits of devices based on(i)N3 or N749,(ii)N3/Al2O3/N749(dark),and(iii)N3/Al2O3/N749(illumination)

    To interpret the mechanism of the dye/Al2O3structure theoretically,a series of equivalent circuits were built based on the EIS results.As shown in Fig.5(c),an equivalent circuit model was built to analyze the influence of N3/Al2O3/N749 on the interface resistance in DSCs.As a conventional sample,the model in Fig.5(c)could interpret the equivalent circuit.47The three semicircles in Nyquist plots represented the redox reaction at the platinum counter electrode(R1),the electron transfer at the TiO2/dye/electrolyte interface(R2),and carrier transport by ions within the electrolyte(Rd),Rdis the resistence part of Zwshowing in Fig.5(c).Rhwas the sheet resistance of FTO and the contact resistance between the FTO and TiO2.When it turned to N3/Al2O3/N749,models on the dark and illumination condition,new models were built to interpret the equivalent circuit.As seen in Fig.5(c),in dark condition,the electron process is only the recombination between electrons and I-/I-3in the electrolyte,which was seen as process(iv)in Fig.4.The Al2O3/N749 could be considered as a resistor in series to R2,which was R3shown in Fig.5(c).

    Table 2 showed the calculated values of EIS results of devic-es based on N3,N749,and N3/Al2O3/N749.In dark condition,the interface resistances of TiO2/N3/electrolyte,TiO2/N749/electrolyte,and TiO2/N3/Al2O3/N749/electrolyte were 16.1,12.4,and 23.6 Ω,respectively.The value of latter one was almost the sum of the former two,corresponding to the model of series in Fig.5(c)in dark condition.Furthermore,the interface capacitance value of TiO2/N3/Al2O3/N749 was 607.2 μF,similar to that of TiO2/N3(552.8 μF).It indicated that the second layer of Al2O3/N749 in N3/Al2O3/N749 structure did not influence the interface capacitance.It further confirmed that the equivalent circuit model of dark condition in Fig.5(c)was reasonable.

    Table 2 Calculated values of EIS results of devices based on N3,N749,and N3/Al2O3/N749

    On the illumination condition,there were mainly three processes in DSCs,electron injection from N3 to conductive band of TiO2,electron injection from N749 to conductive band of TiO2,and electron jumping from N749 to N3(an imaginary process,hardly happened as the LUMO energy levels of the two dyes were similar),which were seen in the processes(i),(ii),and(iii)in Fig.4,respectively.The process(i)represented R2and CPE2,and the process(ii)could be considered as a diode in parallel to R2and CPE2,representing R5and CPE4in Fig.5(c).At the same time,the process(iii)could be considered as a diode in series to R2and CPE2,representing R4and CPE3in Fig.5(c).

    As shown in Table 2,in illumination condition,the interface resistances of TiO2/N3/electrolyte,TiO2/N749/electrolyte,and TiO2/N3/Al2O3/N749/electrolyte were 13.8,12.2,and 13.8 Ω,respectively.Based on the model in illumination condition,the apparent resistance value(Rapp)of TiO2/N3/Al2O3/N749/electrolyte could be calculated as follow:

    Because the LUMO energy levels of N3 and N749 were similar,so the resistance(R5)and capacitance(CPE4)values of process(iii)were rather large.As a result,the value of Rappcould be approximately equal to R6based on equation(2),which was 12.2 Ω,similar to the measured value(13.8 Ω).Similarly,the value of the apparent capacitance(CPEapp)could be calculated as follow:

    As a result,the calculated value of CPEappwas 611.2 μF,approximate to the measured value(593.9 μF).

    Based on the discussion above,it was shown that reasonable equivalent circuit models were built to explain the effect of N3/Al2O3/N749 structure in DSCs.The error was considered coming from the defect in such a multi-layer structure.

    Besides influence on the interface resistance,N3/Al2O3/N749 structure also influenced the fill factor of devices.Series resistance(Rs)was well-known as a key factor that affected the FF of a device.Rsis mainly composed of the resistance of the conductive glass,the resistance of the electron transport within TiO2and the bulk resistance of the electrolyte.The following five equations revealed the relationship between FF and the Rs.47,48In equation(4),Rchrepresented the characteristic resistance of the solar cell.In equation(5),rsrepresented the normalized series resistance.In equation(6),νocwas defined as normalized Voc,k is Boltzman constant,and T is the temperature in Kelvin.41In equation(7),F(xiàn)F0was denoted as the idealized fill factor.

    Based on the results of Table 2,set n=1,T=300 K,and it was known that the elementary charge q=1.6×10-19C,the Boltzmann's constant k=1.38×10-23J·K-1,after calculating of the equations above,the results were shown in Table 3.Compared to the measured values,the relative errors of calculated FF of devices based on N3,N749,and N3/Al2O3/N749 were only 3.46%,6.41%,and 2.56%,respectively.From equation(7),it was indicated that the idealized fill factor of device based on N3/Al2O3/N749 structure was larger than that of device based on N3 or N749 because enhancement of Vocfrom the retarding of chargerecombination shown in the EIS results.However,the measured results showed a smaller FF of device based on the N3/Al2O3/N749 structure.It could be explained that with the N3/Al2O3/N749 structure,the light harvesting was obviously increased,then Jscenhanced compared to that with N3 or N749 individually.From equation(4),value of Rchdecreased with the increase of Jsc.Besides,the value of Rsincreased caused by the interlayer of Al2O3.Then from equation(5),the value of rsincreased.Thus from equation(8),the value of FF decreased reasonably.And the calculated and measured value confirmed the explanation.

    Table 3 Calculated values and measured results of fill factors ofdevices based on N3,N749,and N3/Al2O3/N749

    Bode plots of devices based on N3,N749,and N3/Al2O3/N749 were shown in Fig.6.The three peaks in the phase of the spectrum were associated with three transient processes in the DSC.The middle-frequency peak(in the 10-100 Hz range)was determined by the lifetime of the electrons in TiO2,which is shown as following equation:49

    As shown in Fig.6,the minimum frequency of device using N3/Al2O3/N749 alternating structure was smaller than that using only one kind of dye.As a result,from equation(9),the lifetime of electrons in the TiO2was enhanced by using such an alternating structure.It was caused by the retarding of charge recombination from the interface modification ofAl2O3.

    The Vocof DSCs can be expressed by following equation:50

    where R is the molar gas constant,F(xiàn) is the Faraday constant,β is the reaction order for I-3and electrons,A is the electrode area,I is the incident photon flux,n0is the concentration of accessible electronic states in the conduction band,kband krare the kinetic constants of the back reaction and the recombination,respectively.[I-3]and[D+]are concentrations of triodide and oxidized dye,respectively.It could be considered that fminwas the same as the back reaction constant(kb).44The values of Vocincreased with the decreasing of back reaction,which was same as fmin.This result accorded with equation(10),indicating that the enhancement was caused by the increasing of electron lifetime in TiO2due to strengthened retarding effect of charge recombination applying the alternating structure of N3/Al2O3/N749.

    Fig.6 Bode plots of devices based on N3,N749,and N3/Al2O3/N749

    To explore the influence of N3/Al2O3/N749 alternating structure on the electron diffusion and lifetime in photoanode,IMVS and IMPS of devices based on N3,N749,and N3/Al2O3/N749 were tested.IMVS experiment used the same intensity perturbation but measured the periodic modulation of the photovoltage,giving the information of electron lifetime under open-circuit conditions.51As shown in Fig.7(a),compared to devices using only one kind of dye,the electron lifetime in photoanode of device based on N3/Al2O3/N749 alternating structure was longer,which accorded with the results of EIS test.It could be explained that as an interface modification material,the interlayer of Al2O3retarded the charge recombination effectively,then the electrons in the conductive band of TiO2was difficult to react with redox couple in electrolyte.IMPS measured the periodic photocurrent response of device to a small sinusoidal perturbation of the light intensity superimposed on a larger steady background level,providing information about the dynamics of charge transport and back reaction under short circuit conditions.45As shown in Fig.7(b),compared to devices using only one kind of dye,the electron diffusion coefficient(Dn)of device based on N3/Al2O3/N749 alternating structure obviously increased,which indicated that this structure was beneficial to electron transportation in photoanode of DSCs.This result was also accorded with the value of Jsc.It could be due to the increased electron injection and decreased electron quenching and recombination caused by the interface modification effects.The effective diffusion coefficient of electrons,Deff,determined by the equation(11):52

    where nfreeis the density of free conduction band electrons,ntotalis the total density of free and trapped electrons,and D0is the standard electron diffusion coefficient.As shown in the results of IPCE spectra,the electron injected into the conductive band of TiO2increased obviously compared to that using N3 or N749 individually.Using equation(11),it could explain why the electron diffusion coefficient increased using the N3/Al2O3/N749 alternating structure.

    To weigh the electron transport and recombination properties,charge collection efficiency(ηcc)derived from IMPS and IMVS measurements was apparently considered as meaningful parameter.In sensitized solar cells,ηcccan be calculated by the following equation:53

    where τcis the electron collection time and τdis the electron lifetime.Fig.7(c)showed that the dependence of the charge collection efficiency on the different light intensity.Compared to devices using only one kind of dye,the charge collection efficiency of device based on N3/Al2O3/N749 alternating structure obviously increased,which indicated that this structure was beneficial to charge collection in photoanode of DSCs.According to the following equation:54

    where ηlhis the light capture efficiency,ηinjis the electron injection efficiency,ηccis in direct proportion to Jscof the sensitized solar cells,I0is the idea photocurrent.As shown in Fig.7(c),the result of charge collection efficiency also accorded with the results of I-V curve shown in Fig.3(a).

    4 Conclusions

    In summary,N3/Al2O3/N749 alternating structure widening the photoresponse was introduced and the interface electron processes were discussed.The widened photoresponse increased the Jscof DSCs.Besides,the interlayer of Al2O3retarded the charge recombination obviously,which caused the increase of Vocand decrease of dark current.Thus the conversion efficiency was enhanced.The device based on N3/Al2O3/N749 obtained a 5.75%conversion efficiency,which was higher than that based on N3 or N749,which was 4.22%and 3.09%,respectively.The results of EIS showed that the N3/Al2O3/N749 structure increased the interface resistance in dark condition,indicating that the charge recombination was retarded.To analyze the electron process in DSC based on N3/Al2O3/N749 alternating structure,a series of equivalent circuit models were built based on the EIS results.It could explain the process of electron and the change of parameters of DSCs reasonably.The results of IMVS and IMPS test indicated that the N3/Al2O3/N749 alternating structure increased the electron life time and diffusion coefficient,enhancing the electron transportation.Thus the N3/Al2O3/N749 alternating structure enhanced the photoresponse and remained the interface modification effects at the same time,improving the performance of DSCs effectively.

    (1) O'Regan,B.;Gr?tzel,M.Nature 1991,353,737.doi:10.1038/353737a0

    (2) Kuang,D.B;Klein,C.;Ito,S.;Moser,J.;Baker,R.;Zakeeruddin,S.;Gr?tzel,M.Adv.Funct.Mater.2007,17,154.

    (3) Hu,L.H.;Dai,S.Y.;Weng,J.;Xiao,S.F.;Sui,Y.F.;Huang,Y.;Chen,S.H.;Kong,F(xiàn).T.;Pan,X.;Liang,L.Y.;Wang,K.J.J.Phys.Chem.B 2007,111,358.doi:10.1021/jp065541a

    (4) Hara,K.;Sugihara,H.;Tachibana,Y.;Islam,A.;Yanagida,M.;Sayama,K.;Arakawa,H.Langmuir 2001,17,5992.doi:10.1021/la010343q

    (5) Jung,H.S.;Lee,J.K.;Nastasi,M.;Lee,S.W.;Kim,J.Y.;Park,J.S.;Hong,K.S.Langmuir 2005,21,10332.doi:10.1021/la051807d

    (6) Nakade,S.;Kanzaki,T.;Kambe,S.;Wada,Y.;Yanagida,S.Langmuir 2005,21,11414.doi:10.1021/la051483t

    (7) Sommeling,P.M.;Sp?th,M.;Smit,H.J.P.;Bakker,N.J.;Kroon,J.M.J.Photochem.Photobiol.A:Chem.2004,164,137.doi:10.1016/j.jphotochem.2003.12.017

    (8) Gr?tzel,M.C.R.Chimie.2006,9,578.

    (9) Figgemeier,E.;Hagfeldt,A.Int.J.Photoenergy 2004,6,127.doi:10.1155/S1110662X04000169

    (10) Meng,Q.B.;Takahashi,K.;Zhang,X.T.;Sutanto,I.;Rao,T.N.;Sato,O.;Fujishima,A.Langmuir 2003,19,3572.doi:10.1021/la026832n

    (11) Sathiya Priya,A.R.;Subramania,A.;Jung,Y.S.;Kim,K.J.Langmuir 2008,24,9816.doi:10.1021/la801375s

    (12) Gr?tzel,M.Accounts Chem.Res.2009,42,1788.doi:10.1021/ar900141y

    (13)Fang,J.H.;Mao,H.F.;Wu,J.W;Zhang,X.Y;Lu,Z.H.Appl.Surf.Sci.1997,119,237.doi:10.1016/S0169-4332(97)00195-5

    (14)Fang,J.H.;Su,L.Y.;Wu,J.W.;Shen,Y.C.;Lu,Z.H.New J.Chem.1997,21,1303.

    (15) Perera,V.;Pitigala,P.;Jayaweera,P.;Bandaranayake,K.;Tennakone,K.J.Phys.Chem.B 2003,107,13758.doi:10.1021/jp0348979

    (16) Kuang,D.B.;Walter,P.;Nüesch,F(xiàn).;Kim,S.;Ko,J.;Comte,P.;Zakeeruddin,S.M.;Gr?tzel,M.Langmuir 2007,23,10906.doi:10.1021/la702411n

    (17) Cid,J.;Yum,J.;Jang,S.;Nazeeruddin,M.K.;Ferrero,E.M.;Palomares,E.;Ko,J.;Gr?tzel,M.;Torres,T.Angew.Chem.Int.Edit.2007,46,8358.

    (18)Liu,B.Q.;Zhao,X.P.;Luo,W.Dyes and Pigments 2008,76,327.doi:10.1016/j.dyepig.2006.09.004

    (19) Clifford,J.N.;Palomares,E.;Nazeeruddin,M,K.;Thampi,R.;Gr?tzel,M.;Durrant,J.R.J.Am.Chem.Soc.2004,126,5670.doi:10.1021/ja049705h

    (20) Choi,H.;Kim,S.;Kang,S.O.;Ko,J.;Kang,M.S.;Clifford,J.N.;Forneli,A.;Palomares,E.;Nazeeruddin,K.;Gr?tzel,M.Angew.Chem.Int.Edit.2008,120,8383.doi:10.1002/ange.v120:43

    (21)Bandaranayake,K.M.P.;Senevirathna,M.K.I.;Weligamuwa,P.;Tennakone,K.Coord.Chem.Rev.2004,248,1277.doi:10.1016/j.ccr.2004.03.024

    (22)Diamant,Y.;Chen,S.G.;Melamed,O.;Zaban,A.J.Phys.Chem.B 2003,107,1977.doi:10.1021/jp027827v

    (23)Gao,R.;Wang,L.D.;Ma,B.B.;Zhan,C.;Qiu,Y.Langmuir 2010,26,2460.doi:10.1021/la902688a

    (24)Gao,R.;Ma,B.B.;Wang,L.D.;Shi,Y.T.;Dong,H.P.;Qiu,Y.Acta Phys.-Chim.Sin.2011,27,413.[高 瑞,馬蓓蓓,王立鐸,史彥濤,董豪鵬,邱 勇.物理化學(xué)學(xué)報(bào),2011,27,413.]doi:10.3866/PKU.WHXB20110234

    (25) Lao,C.F.;Chu,Z.Z.;Zou,D.C.Acta Phys.-Chim.Sin.2011,27,419.[勞春峰,初增澤,鄒德春.物理化學(xué)學(xué)報(bào),2011,27,419.]doi:10.3866/PKU.WHXB20110209

    (26)Gao,R.;Wang,L.;Geng,Y.;Ma,B.;Zhu,Y.;Dong,H.;Qiu,Y.Phys.Chem.Chem.Phys.2011,13,10635.

    (27)Chen,D.P.;Zhang,X.D.;Wei,C.C.;Liu,C.C.;Zhao,Y.Acta Phys.-Chim.Sin.2011,27,425.[陳東坡,張曉丹,魏長春,劉彩池,趙 穎.物理化學(xué)學(xué)報(bào),2011,27,425.]doi:10.3866/PKU.WHXB20110222

    (28)Gao,R.;Wang,L.;Geng,Y.;Ma,B.;Zhu,Y.;Dong,H.;Qiu,Y.J.Phys.Chem.C 2011,115,17986.doi:10.1021/jp204466h

    (29)Gao,R.;Niu,G.D.;Wang,L.;Geng,Y.;Ma,B.;Zhu,Y.;Dong,H.;Qiu,Y.Phys.Chem.Chem.Phys.2012,14,5973.

    (30)O'Regan,B.C.;Scully,S.;Mayer,A.C.J.Phys.Chem.B 2005,109,4616.doi:10.1021/jp0468049

    (31)Alarcon,H.;Boschloo,G.;Mendoza,P.;Solis,J.L.;Hagfeldt,A.J.Phys.Chem.B 2005,109,18483.doi:10.1021/jp0513521(32)Wu,S.J.;Han,H.W.;Tai,Q.D.;Zhang,J.;Xu,S.;Zhou,C.H.;Yang,Y.;Hu,H.;Chen,B.L.;Sebo,B.;Zhao,X.Z.Nanotechnology 2008,19,215704.doi:10.1088/0957-4484/19/21/215704

    (33)Chen,S.G.;Chappel,S.;Diamant,Y.;Zaban,A.Chem.Mater.2001,13,4629.doi:10.1021/cm010343b

    (34) Palomares,E.;Clifford,J.N.;Haque,S.A.;Lutz,T.;Durrant,J.R.J.Am.Chem.Soc.2003,125,475.doi:10.1021/ja027945w

    (35) Wang,P.;Wang,L.D.;Li,B.;Qiu,Y.Chin.Phys.Lett.2005,22,2708.doi:10.1088/0256-307X/22/10/069

    (36) Menzies,D.B.;Cervini,R.;Cheng,Y.B.;Simon,G.P.;Spiccia,L.J.Sol-Gel Sci.Technol.2004,32,363.doi:10.1007/s10971-004-5818-0

    (37) Liu,Z.Y.;Pan,K.;Liu,M.;Wang,M.J.;Lu,Q.;Li,J.H.;Bai,Y.B.;Li,T.J.Electrochim.Acta 2005,50,2583.doi:10.1016/j.electacta.2004.11.003

    (38) Zhang,X.Y.;Sutanto,I.;Taguchi,T.;Tokuhiro,K.;Meng,Q.B.;Rao,T.N.;Fujishima,A.;Watanabe,H.;Nakamori,T.;Uragami,M.Sol.Energy Mater.Sol.Cells 2003,80,315.doi:10.1016/j.solmat.2003.08.006

    (39) Palomares,E.;Clifford,J.N.;Haque,S.A.;Lutz,T.;Durrant,J.R.Chem.Commun.2002,1464.

    (40)Luo,F(xiàn).;Wang,L.D.;Ma,B.B.;Qiu,Y.J.Photochem.Photobiol.A:Chem.2008,197,375.doi:10.1016/j.jphotochem.2008.02.011

    (41) Ma,B.B.;Gao,R.;Wang,L.D.;Luo,F(xiàn).;Zhan,C.;Li,J.L.;Qiu,Y.J.Photochem.Photobiol.A:Chem.2009,202,33.doi:10.1016/j.jphotochem.2008.11.004

    (42) Burnside,S.D.;Shklover,V.;Barbé,C.;Comte,P.;Arendse,F(xiàn).;Brooks,K.;Gr?tzel,M.Chem.Mater.1998,10,2419.doi:10.1021/cm980702b

    (43) Huo,Z.P.;Dai,S.Y.;Wang,K.J.;Kong,F(xiàn).T.;Zhang,C.N.;Pan,X.;Fang,X.Q.Sol.Energy Mater.Sol.Cells 2007,91,1959.doi:10.1016/j.solmat.2007.08.003

    (44) Gr?tzel,M.Inorg.Chem.2005,44,6841.doi:10.1021/ic0508371

    (45) Bisquert,J.J.Phys.Chem.B 2002,106,325.doi:10.1021/jp011941g

    (46)Wang,Q.;Moser,J.;Gr?tzel,M.J.Phys.Chem.B 2005,109,14945.doi:10.1021/jp052768h

    (47)Qin,D.;Zhang,Y.D.;Huang,S.Q.;Luo,Y.H.;Li,D.M.;Meng,Q.B.Electrochim.Acta 2011,56,8680.doi:10.1016/j.electacta.2011.07.065

    (48) Green,M.A.Solar Cells;Prentice-Hall:Englewood,NJ,1982;Vol.96,pp 85-86.

    (49) Kern,R.;Sastrawan,R.;Ferber,J.;Stangl,R.;Luther,J.Electrochim.Acta 2002,47,4213.doi:10.1016/S0013-4686(02)00444-9

    (50)Lee,K.;Park,S.W.;Ko,M.J.;Kim,K.;Park,N.G.Nature Materials 2009,8,665.doi:10.1038/nmat2475

    (51) Schlichth?rl,G.;Huang,S.Y.;Sprague,J.;Frank,A.J.J.Phys.Chem.B 1997,101,8141.doi:10.1021/jp9714126

    (52) Dloczik,L.;Ileperuma,O.;Lauermann,I.;Peter,L.M.;Ponomarev,E.A.;Redmond,G.;Shaw,N.J.;Uhlendorf,I.J.Phys.Chem.B 1997,101,10281.doi:10.1021/jp972466i

    (53) Hagfeldt,A.;Boschloo,G.;Sun,L.C.;Kloo,L.;Pettersson,H.Chem.Rev.2010,110,6595.doi:10.1021/cr900356p

    (54) Zhu,K.;Neale,N.R.;Miedaner,A.;Frank,A.J.Nano Lett.2007,7,69.doi:10.1021/nl062000o

    猜你喜歡
    敏化物理化學(xué)學(xué)報(bào)
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    冠心病穴位敏化現(xiàn)象與規(guī)律探討
    近5年敏化態(tài)與非敏化態(tài)關(guān)元穴臨床主治規(guī)律的文獻(xiàn)計(jì)量學(xué)分析
    致敬學(xué)報(bào)40年
    Chemical Concepts from Density Functional Theory
    耦聯(lián)劑輔助吸附法制備CuInS2量子點(diǎn)敏化太陽電池
    5種天然染料敏化太陽電池的性能研究
    學(xué)報(bào)簡介
    學(xué)報(bào)簡介
    天天躁日日躁夜夜躁夜夜| 夜夜骑夜夜射夜夜干| 人人澡人人妻人| 精品一区在线观看国产| 一级毛片电影观看| 最新在线观看一区二区三区 | 色网站视频免费| 亚洲欧美激情在线| 老司机影院成人| 亚洲一区中文字幕在线| 国产精品嫩草影院av在线观看| 一边摸一边抽搐一进一出视频| 精品国产国语对白av| 在线观看国产h片| 我要看黄色一级片免费的| 亚洲国产最新在线播放| 国产片特级美女逼逼视频| 性色av一级| 欧美成人精品欧美一级黄| 99久久人妻综合| 国产在线一区二区三区精| 精品国产一区二区三区四区第35| 男人添女人高潮全过程视频| 午夜福利一区二区在线看| 日韩制服丝袜自拍偷拍| av在线app专区| 国产免费又黄又爽又色| 亚洲精品一二三| 精品国产一区二区三区久久久樱花| 久久久久久久久久久久大奶| 美女大奶头黄色视频| 久久人妻熟女aⅴ| 午夜福利网站1000一区二区三区| 欧美激情 高清一区二区三区| 伊人久久大香线蕉亚洲五| 麻豆精品久久久久久蜜桃| 亚洲精品在线美女| 国产爽快片一区二区三区| 精品一区二区三卡| 国产成人一区二区在线| 久久久久久人人人人人| 青春草亚洲视频在线观看| 综合色丁香网| 久久国产亚洲av麻豆专区| 久久人人爽人人片av| 丝袜喷水一区| 亚洲中文av在线| 久久精品亚洲av国产电影网| 亚洲av福利一区| 国产高清国产精品国产三级| 最近手机中文字幕大全| 欧美 日韩 精品 国产| 国产乱人偷精品视频| 午夜福利视频在线观看免费| 高清在线视频一区二区三区| 飞空精品影院首页| 亚洲国产精品国产精品| 80岁老熟妇乱子伦牲交| 亚洲中文av在线| 日韩一本色道免费dvd| 99热国产这里只有精品6| 久久久久视频综合| 久久综合国产亚洲精品| 2021少妇久久久久久久久久久| 国产亚洲一区二区精品| 波多野结衣av一区二区av| 午夜福利,免费看| 亚洲七黄色美女视频| 日本一区二区免费在线视频| 男女国产视频网站| 午夜福利视频精品| 久久久久网色| 天天躁夜夜躁狠狠躁躁| 午夜91福利影院| 国产精品亚洲av一区麻豆 | 国产精品一二三区在线看| 久久久精品免费免费高清| 精品国产乱码久久久久久男人| 91国产中文字幕| 日日撸夜夜添| 中文字幕高清在线视频| 亚洲精品第二区| 午夜免费观看性视频| 99精国产麻豆久久婷婷| 黄片无遮挡物在线观看| 久久久久精品国产欧美久久久 | 色网站视频免费| 国产精品偷伦视频观看了| 国产男女内射视频| 久久 成人 亚洲| 亚洲欧美精品综合一区二区三区| h视频一区二区三区| 国产精品久久久久成人av| 久久久久精品久久久久真实原创| 久久久久精品久久久久真实原创| 久久久久精品国产欧美久久久 | 综合色丁香网| 天美传媒精品一区二区| 亚洲av电影在线观看一区二区三区| 美国免费a级毛片| 国产亚洲av高清不卡| 亚洲婷婷狠狠爱综合网| 大香蕉久久网| 久久久国产精品麻豆| 欧美在线一区亚洲| 90打野战视频偷拍视频| 侵犯人妻中文字幕一二三四区| 免费看av在线观看网站| 在线观看免费视频网站a站| 国产一区二区激情短视频 | 性色av一级| 一区福利在线观看| videosex国产| 男女免费视频国产| 99热全是精品| 97人妻天天添夜夜摸| 免费日韩欧美在线观看| 悠悠久久av| 大香蕉久久网| 别揉我奶头~嗯~啊~动态视频 | 国产成人午夜福利电影在线观看| 成人午夜精彩视频在线观看| 在线天堂最新版资源| 亚洲欧美成人综合另类久久久| 亚洲情色 制服丝袜| 久热爱精品视频在线9| 自线自在国产av| 国产毛片在线视频| 成年美女黄网站色视频大全免费| 性高湖久久久久久久久免费观看| 亚洲国产精品国产精品| 熟女av电影| 五月开心婷婷网| av在线观看视频网站免费| 丰满乱子伦码专区| 五月天丁香电影| 国产乱人偷精品视频| 夫妻性生交免费视频一级片| 中文欧美无线码| 国产精品秋霞免费鲁丝片| 一二三四中文在线观看免费高清| 欧美亚洲日本最大视频资源| 赤兔流量卡办理| 久久国产精品大桥未久av| 91国产中文字幕| 亚洲综合色网址| 男女边吃奶边做爰视频| 午夜91福利影院| 女的被弄到高潮叫床怎么办| 蜜桃在线观看..| 交换朋友夫妻互换小说| 爱豆传媒免费全集在线观看| 好男人视频免费观看在线| 久久久久久人人人人人| 国产伦理片在线播放av一区| 满18在线观看网站| 99热国产这里只有精品6| 天美传媒精品一区二区| 麻豆精品久久久久久蜜桃| 日韩电影二区| 女性生殖器流出的白浆| 在线观看免费日韩欧美大片| 男女国产视频网站| 少妇人妻精品综合一区二区| 亚洲欧美色中文字幕在线| 看十八女毛片水多多多| 国产精品免费大片| www.自偷自拍.com| 国产黄色免费在线视频| av国产久精品久网站免费入址| 国产淫语在线视频| 两性夫妻黄色片| 咕卡用的链子| 男女床上黄色一级片免费看| 国产男人的电影天堂91| 亚洲精品国产av蜜桃| 精品国产露脸久久av麻豆| 免费久久久久久久精品成人欧美视频| 超碰97精品在线观看| 色网站视频免费| 激情五月婷婷亚洲| 人人妻,人人澡人人爽秒播 | 纵有疾风起免费观看全集完整版| 日日爽夜夜爽网站| 亚洲精品久久成人aⅴ小说| 国产精品成人在线| 中文乱码字字幕精品一区二区三区| 国产伦理片在线播放av一区| 午夜激情久久久久久久| 999久久久国产精品视频| 国产免费福利视频在线观看| 最近中文字幕高清免费大全6| 一个人免费看片子| 日本午夜av视频| 中文字幕精品免费在线观看视频| 精品人妻熟女毛片av久久网站| 日韩中文字幕视频在线看片| 中文字幕制服av| 精品免费久久久久久久清纯 | 成年人午夜在线观看视频| 欧美精品高潮呻吟av久久| 色94色欧美一区二区| 久久人妻熟女aⅴ| 19禁男女啪啪无遮挡网站| 欧美变态另类bdsm刘玥| 午夜福利免费观看在线| 亚洲色图 男人天堂 中文字幕| 欧美国产精品一级二级三级| 在线 av 中文字幕| 天天影视国产精品| 中文字幕人妻丝袜制服| 久久久精品国产亚洲av高清涩受| 久久青草综合色| 99久久综合免费| 九色亚洲精品在线播放| 午夜福利视频在线观看免费| av.在线天堂| 一本色道久久久久久精品综合| 亚洲欧美清纯卡通| 午夜福利视频在线观看免费| 中文字幕人妻丝袜制服| 2018国产大陆天天弄谢| 欧美日韩av久久| 日韩一区二区视频免费看| 男女边摸边吃奶| 欧美精品av麻豆av| 亚洲欧美激情在线| 在线精品无人区一区二区三| 日本午夜av视频| 中文字幕高清在线视频| 日日啪夜夜爽| 大话2 男鬼变身卡| 国产精品三级大全| 激情视频va一区二区三区| 香蕉丝袜av| 综合色丁香网| 亚洲欧美成人精品一区二区| 亚洲国产中文字幕在线视频| av在线老鸭窝| 亚洲国产av影院在线观看| 国产精品免费视频内射| 国产高清不卡午夜福利| 久久99热这里只频精品6学生| 精品亚洲成a人片在线观看| 成年美女黄网站色视频大全免费| 久久久久视频综合| www.熟女人妻精品国产| 街头女战士在线观看网站| 欧美少妇被猛烈插入视频| 色婷婷久久久亚洲欧美| 国产精品国产av在线观看| 99香蕉大伊视频| 老司机深夜福利视频在线观看 | 久久ye,这里只有精品| 国产精品国产三级国产专区5o| 久久av网站| 国产黄频视频在线观看| 午夜久久久在线观看| 国产精品一区二区精品视频观看| 赤兔流量卡办理| 午夜av观看不卡| 亚洲国产欧美网| 国产又爽黄色视频| 色精品久久人妻99蜜桃| 久久青草综合色| 伊人久久国产一区二区| 国产精品av久久久久免费| 精品久久蜜臀av无| 欧美日韩av久久| 欧美激情 高清一区二区三区| 波多野结衣一区麻豆| 99久久综合免费| 国产精品久久久av美女十八| 色精品久久人妻99蜜桃| 色视频在线一区二区三区| 天天影视国产精品| 人人妻人人澡人人看| 久久人人爽人人片av| 亚洲国产精品一区二区三区在线| 日韩欧美精品免费久久| 成人亚洲精品一区在线观看| 青青草视频在线视频观看| 精品一品国产午夜福利视频| 午夜激情久久久久久久| 国产又爽黄色视频| 国产一区亚洲一区在线观看| 91成人精品电影| av福利片在线| 激情视频va一区二区三区| 男的添女的下面高潮视频| 亚洲欧美一区二区三区久久| 午夜福利免费观看在线| 久久韩国三级中文字幕| 女人久久www免费人成看片| 丰满迷人的少妇在线观看| 午夜福利乱码中文字幕| 成人三级做爰电影| 久久国产精品男人的天堂亚洲| 一区二区av电影网| 久久久久久人妻| 制服诱惑二区| 欧美亚洲日本最大视频资源| 又大又爽又粗| 亚洲欧美日韩另类电影网站| 亚洲av国产av综合av卡| 秋霞在线观看毛片| 交换朋友夫妻互换小说| 下体分泌物呈黄色| 中文天堂在线官网| 国产 精品1| 亚洲欧美一区二区三区黑人| 国产精品熟女久久久久浪| 午夜福利免费观看在线| 午夜日韩欧美国产| 波野结衣二区三区在线| 9191精品国产免费久久| 亚洲人成77777在线视频| 日韩成人av中文字幕在线观看| 蜜桃在线观看..| 国产精品三级大全| 成人午夜精彩视频在线观看| 激情五月婷婷亚洲| avwww免费| xxx大片免费视频| 国产在线一区二区三区精| 精品国产乱码久久久久久小说| 免费看av在线观看网站| 亚洲美女黄色视频免费看| 久热爱精品视频在线9| 永久免费av网站大全| 一区二区三区乱码不卡18| 午夜福利免费观看在线| 卡戴珊不雅视频在线播放| 日韩,欧美,国产一区二区三区| 丰满迷人的少妇在线观看| 午夜免费男女啪啪视频观看| av天堂久久9| 一区福利在线观看| 男女高潮啪啪啪动态图| 午夜免费男女啪啪视频观看| 久久久久人妻精品一区果冻| 亚洲,欧美精品.| 亚洲精品国产色婷婷电影| 久久精品aⅴ一区二区三区四区| 亚洲精品乱久久久久久| 巨乳人妻的诱惑在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲少妇的诱惑av| 亚洲av男天堂| 一个人免费看片子| 成人三级做爰电影| 久久久精品免费免费高清| 国产精品免费大片| 国产精品久久久人人做人人爽| 国产男女内射视频| 午夜免费男女啪啪视频观看| 精品第一国产精品| 捣出白浆h1v1| 亚洲精品av麻豆狂野| 国产欧美亚洲国产| 91精品国产国语对白视频| 看免费成人av毛片| 久久 成人 亚洲| av有码第一页| 王馨瑶露胸无遮挡在线观看| 99精国产麻豆久久婷婷| 免费在线观看视频国产中文字幕亚洲 | 精品亚洲成国产av| 可以免费在线观看a视频的电影网站 | av福利片在线| 黑人巨大精品欧美一区二区蜜桃| 99久久精品国产亚洲精品| 国产乱人偷精品视频| 国产成人91sexporn| 97在线人人人人妻| 国产一区亚洲一区在线观看| 久久婷婷青草| 欧美另类一区| 黄片小视频在线播放| 在线观看国产h片| 久久亚洲国产成人精品v| 精品第一国产精品| 黄色视频不卡| 国产99久久九九免费精品| 久久鲁丝午夜福利片| 欧美精品av麻豆av| 亚洲在久久综合| av在线播放精品| 成人免费观看视频高清| 日韩免费高清中文字幕av| 色94色欧美一区二区| 99久久99久久久精品蜜桃| 欧美日韩综合久久久久久| 婷婷色综合www| 国产免费福利视频在线观看| 亚洲欧美精品综合一区二区三区| 国产黄频视频在线观看| 狠狠精品人妻久久久久久综合| 日韩伦理黄色片| 国产深夜福利视频在线观看| 一本—道久久a久久精品蜜桃钙片| 国产成人系列免费观看| 国产精品 欧美亚洲| 1024香蕉在线观看| 国产av国产精品国产| 岛国毛片在线播放| av电影中文网址| 精品国产乱码久久久久久男人| 亚洲四区av| 国产福利在线免费观看视频| 国产亚洲av高清不卡| 黄片无遮挡物在线观看| www.自偷自拍.com| 国产精品人妻久久久影院| 日韩精品免费视频一区二区三区| 久久影院123| 亚洲在久久综合| 国产成人免费无遮挡视频| 亚洲av电影在线进入| 咕卡用的链子| 欧美精品一区二区大全| 丰满饥渴人妻一区二区三| av免费观看日本| 亚洲图色成人| av又黄又爽大尺度在线免费看| 成年动漫av网址| 男女国产视频网站| 久久鲁丝午夜福利片| 精品卡一卡二卡四卡免费| 肉色欧美久久久久久久蜜桃| 久久久久国产精品人妻一区二区| 国产精品成人在线| 老熟女久久久| 一边亲一边摸免费视频| 亚洲,欧美精品.| 日日爽夜夜爽网站| 狠狠婷婷综合久久久久久88av| 国产精品久久久久久精品电影小说| 亚洲精品视频女| 亚洲精品中文字幕在线视频| 色婷婷av一区二区三区视频| 男女无遮挡免费网站观看| 久久ye,这里只有精品| 不卡视频在线观看欧美| 好男人视频免费观看在线| 亚洲七黄色美女视频| 久久久久国产精品人妻一区二区| 观看av在线不卡| av在线app专区| 亚洲精品国产一区二区精华液| 宅男免费午夜| 国产免费视频播放在线视频| 亚洲欧美一区二区三区黑人| 国产精品一二三区在线看| 99热国产这里只有精品6| 亚洲成人免费av在线播放| 国产亚洲午夜精品一区二区久久| 久久久久精品人妻al黑| 亚洲精品国产av成人精品| 伊人亚洲综合成人网| 热re99久久精品国产66热6| 少妇人妻 视频| 午夜福利视频在线观看免费| 国产亚洲最大av| 亚洲在久久综合| 国产成人系列免费观看| 免费久久久久久久精品成人欧美视频| 欧美人与善性xxx| 国产1区2区3区精品| 免费观看人在逋| 亚洲欧美精品综合一区二区三区| 99精品久久久久人妻精品| 国产亚洲精品第一综合不卡| www.熟女人妻精品国产| 五月开心婷婷网| 热99国产精品久久久久久7| 男女边摸边吃奶| 18禁动态无遮挡网站| 爱豆传媒免费全集在线观看| 黄片小视频在线播放| 大片免费播放器 马上看| 最近最新中文字幕大全免费视频 | 免费在线观看完整版高清| 一二三四中文在线观看免费高清| 男女免费视频国产| 亚洲精品国产区一区二| 日韩大片免费观看网站| 熟女av电影| 亚洲婷婷狠狠爱综合网| 久久久亚洲精品成人影院| 欧美日韩亚洲高清精品| 亚洲国产欧美在线一区| 99国产精品免费福利视频| 王馨瑶露胸无遮挡在线观看| 久久久亚洲精品成人影院| 国产乱来视频区| av在线观看视频网站免费| 建设人人有责人人尽责人人享有的| 1024视频免费在线观看| 9色porny在线观看| 另类精品久久| 久久精品亚洲av国产电影网| 一级黄片播放器| 男女边摸边吃奶| 韩国av在线不卡| av免费观看日本| 伊人久久国产一区二区| 日本wwww免费看| 亚洲精品一区蜜桃| 精品一区二区免费观看| 黑人巨大精品欧美一区二区蜜桃| 超色免费av| 欧美 日韩 精品 国产| 亚洲伊人久久精品综合| 精品亚洲成国产av| 国产成人啪精品午夜网站| 国产不卡av网站在线观看| 国产视频首页在线观看| 午夜免费男女啪啪视频观看| 91老司机精品| 黄色一级大片看看| 啦啦啦在线免费观看视频4| 亚洲av电影在线进入| 男男h啪啪无遮挡| 一级毛片黄色毛片免费观看视频| 老司机影院成人| 天天操日日干夜夜撸| 国产亚洲av高清不卡| 最新的欧美精品一区二区| 999精品在线视频| 国产一区二区三区av在线| 欧美亚洲日本最大视频资源| 国产 一区精品| 999精品在线视频| 99热国产这里只有精品6| 亚洲美女搞黄在线观看| 国产成人91sexporn| 丁香六月天网| 大码成人一级视频| 精品国产一区二区三区四区第35| 免费久久久久久久精品成人欧美视频| 久久毛片免费看一区二区三区| 欧美另类一区| 尾随美女入室| 看免费av毛片| 五月开心婷婷网| 高清欧美精品videossex| 亚洲av欧美aⅴ国产| 最近的中文字幕免费完整| 免费观看a级毛片全部| videos熟女内射| 亚洲综合色网址| 亚洲,欧美精品.| 亚洲成人手机| 国产成人精品久久二区二区91 | 麻豆精品久久久久久蜜桃| 一级片免费观看大全| 最近2019中文字幕mv第一页| 亚洲精品久久久久久婷婷小说| 麻豆乱淫一区二区| 国产爽快片一区二区三区| 免费在线观看黄色视频的| 国产乱人偷精品视频| 国产精品人妻久久久影院| 午夜福利一区二区在线看| 黄片播放在线免费| 日韩熟女老妇一区二区性免费视频| 99九九在线精品视频| 国产伦人伦偷精品视频| 欧美精品亚洲一区二区| 国产黄频视频在线观看| 国产欧美日韩一区二区三区在线| 亚洲欧洲国产日韩| 国产日韩欧美亚洲二区| 成年女人毛片免费观看观看9 | 久久99热这里只频精品6学生| 色94色欧美一区二区| 亚洲欧美清纯卡通| 美女大奶头黄色视频| 日韩一区二区三区影片| 亚洲天堂av无毛| 国产爽快片一区二区三区| 国产精品人妻久久久影院| 国产成人午夜福利电影在线观看| 国产av国产精品国产| 黄频高清免费视频| 亚洲精品成人av观看孕妇| 操出白浆在线播放| 久久国产精品男人的天堂亚洲| 欧美久久黑人一区二区| 国产在线视频一区二区| 欧美精品一区二区大全| 菩萨蛮人人尽说江南好唐韦庄| 国产野战对白在线观看| 亚洲av福利一区| 宅男免费午夜| 美女福利国产在线| 免费观看av网站的网址| 少妇 在线观看| 别揉我奶头~嗯~啊~动态视频 | 国产精品三级大全| 男女床上黄色一级片免费看| 丝袜美足系列| 满18在线观看网站| 久久久精品区二区三区| 日本wwww免费看| 国产精品香港三级国产av潘金莲 | 91精品国产国语对白视频| 狠狠婷婷综合久久久久久88av| 最近的中文字幕免费完整| 美女主播在线视频| 91成人精品电影| 久久久精品94久久精品| 日本黄色日本黄色录像| 夜夜骑夜夜射夜夜干|