• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    水團(tuán)簇構(gòu)象穩(wěn)定性起源和本質(zhì)的密度泛函理論與量子分子動(dòng)力學(xué)研究

    2013-10-18 05:27:18王友娟趙東波榮春英劉述斌
    物理化學(xué)學(xué)報(bào) 2013年1期
    關(guān)鍵詞:化工學(xué)院湖南師范大學(xué)物理化學(xué)

    王友娟 趙東波 榮春英,* 劉述斌,2,*

    (1湖南師范大學(xué)化學(xué)化工學(xué)院,資源精細(xì)化與先進(jìn)材料湖南省高校重點(diǎn)實(shí)驗(yàn)室,化學(xué)生物學(xué)及中藥分析教育部重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)沙 410081; 2 Research Computing Center,University of North Carolina,Chapel Hill,North Carolina 27599-3420,U.S.A.)

    1 Introduction

    For a given polyatomic molecule,there often exist a few experimentally accessible conformations.As the number of atoms in a molecule increases,the total number of local minima skyrockets exponentially,thus impossible to enumerate them exhaustively.Natural questions to ask are which one is most stable,why,and what factor or factors dictate the relative stability of these local conformational minima.A convincing answer to these questions is not easy,even for the simplest molecules like ethane and hydrogen peroxide.1With the tools available it is now straightforward to identify which conformation has a lower energy,but to find out what factor or factors contribute to or dominate in its stability is controversial.2-6This is often where disagreements arise.From the physicochemical viewpoint,however,to have a definite and well-accepted answer is essential for our understanding.

    In this work,using the octamer water cluster as an example,we investigate the conformational stability of water clusters,trying to understand the nature and origin of their stability.To that end,we employ quantum molecular dynamics to generate a large number of conformations for octamer water clusters and then employ two energy partition schemes recently established from density functional theory(DFT)to pinpoint the principles governing the stability of these species.The key question we want to answer is which interaction or interactions determine the molecular stability.Water clusters are bound together through hydrogen bonds.It is generally believed that the nature of hydrogen bonding is predominantly electrostatic,even though quantum contributions through covalent bonding could also be important.Is it really true that the electrostatic interaction is the dominant factor in a water cluster?Do other effects such as steric and exchange-correlation contributions play a role as well?We will provide our answer to these questions in this study.

    2 Methodology and computational details

    From the theoretical point of view,using virial theorem,the energy difference ΔE between two stable isomers should satisfy7

    where T and V denote the kinetic and potential energies,respectively,of the system in concern.Eq.(1)suggests that the stability difference between two conformers is equal to either the entire kinetic energy difference or half of the total potential energy difference.These energy components are,however,not chemically meaningful.We often wish to obtain insights from such effects as steric,electrostatic,or quantum,which are missing in Eq.(1).More importantly,Eq.(1)does not work for density functional theory,7-9because a portion of the kinetic energy,Tc[ρ],has already been incorporated in the exchange-correlation energy Exc,making the DFT version of the viral theorem much more complicated.10-13

    In DFT,the total energy of a system comes from five different contributions:

    where Ts,Vne,J,Exc,and Vnnrepresent the non-interacting kinetic,nuclear-electron attraction,classical electron-electron repulsion,exchange-correlation,and nuclear-nuclear repulsion interactions,respectively.Since Vne,J,and Vnnare electrostatic in nature,these three components can be bundled together,yielding Ee[ρ]=Vne[ρ]+J[ρ]+Vnn.Therefore,the conventional approach to perform the decomposition for the total energy difference in DFT is the following,7-9

    where Eestands for the electrostatic energy components.

    Recently,we proposed an alternative scheme to perform energy difference partition in the framework of DFT,14

    where the total energy difference ΔE comes from the contribution of three independent effects,steric ΔEs,electrostatic ΔEe,and fermionic quantum ΔEq,which results from the exchange and correlation effects among electrons.It has been shown that the energy contribution from the steric effect can simply be expressed by the Weizs?cker kinetic energy,Es≡Tw,with

    where ρ(r)and ?ρ(r)are the total electron density and its gradient,respectively.Also,the fermionic quantum energy contribution due to the exchange-correlation effect(because electrons are fermions),Eq[ρ],is the sum of the conventional exchangecorrelation energy Exc[ρ],which includes a kinetic counterpart of the dynamic electron correlation,and the Pauli energy,15,16EPauli[ρ],which is the contribution to the kinetic energy from the antisymmetric requirement of the many-body wave function required by the Pauli Exclusion Principle.10,11,13It is known in the literature that the Pauli energy is the difference between the non-interacting kinetic energy Tsand the Weizs?cker kinetic energy Tw.17Therefore,

    The physical meaning of this new quantification of the steric contribution,Eq.(5),is based on the introduction of a new reference state,where electrons in atoms and molecules are assumed to behave like bosons.If the density of the hypothetical boson state is the same as that of the fermionic state,ρ(r),the total wave function of the hypothetical state will be(ρ(r)/N)1/2,where N is the number of electrons.The total kinetic energy of the hypothetical state,from which Weisskopf′s“kinetic energy pressure”14,18for the steric effect is calculated,is simply Eq.(5).

    A few prominent features and properties of this novel quantification of steric contribution have been revealed.For instance,the integrand of Eq.(5)is non-negative everywhere,and thus repulsive in nature.It vanishes for the case of a homogeneous electron gas.It is extensive because it is homogeneous of degree one in density scaling,11,19,20so the larger the system,the larger the steric repulsion.If Bader′s atoms-in-molecules approach is adopted,the steric energy can be partitioned at the atomic and functional group levels as well.Its corresponding steric potential,steric charge,and steric force have been defined and evaluated.14,21Its relationship with information theory has been investigated.22,23This approach has been applied to a number of systems,such as conformational changes of small molecules,1,24,25SN2 reactions,26chained and branched alkanes,27and other systems.28-30Reasonably good trends and linear relationships between theoretical and experimental scales (by Taft)of the steric effect have recently been observed at both group and entire molecular levels.31

    In this work,we take the octamer water cluster,(H2O)8,as an example and investigate the conformational stability of water clusters,trying to understand the nature and origin of their stability and to address which interaction or interactions determine the molecular stability of these species.To that end,a large number of conformations for octamer water clusters are needed to perform the two energy partition schemes discussed above.To generate as many different local minima as possible,we employ the quantum molecular dynamics(QMD)approach,which has successfully been used for other purposes elsewhere.32In QMD simulations,which were performed with the NWChem package,33atomic nuclei are treated as Newtonian particles whose forces are obtained from the fully converged electronic structure calculation in the Born-Oppenheimer approximation.The simulation protocol is the following.We start the QMD simulations with a few structures from the literature.After an initial structure optimization of 120 steps,each structure is undergone QMD simulations under 300 K for 100 ps with a step size of 0.5 fs and the leapfrog integration algorithm.We employ a constant temperature ensemble using Berendsen′s thermostat with the temperature relaxation time set to be 2 fs.The cutoff radius for short range interactions is 2.8 nm.SHAKE is disabled and thus all bonding interactions are treated according to the force calculated from quantum mechanics.Trajectories are saved in every 50 femtoseconds.A shell script has been written to extract distinct conformations with a total of at least 0.8 nm derivations from the last selected local minimum.The initial structure was from the literature.34A total of 185 distinct isomers have been obtained from these processes.A few selected low-energy local minima from QMD simulations are shown in Scheme 1.For each structure extracted by the post-processing script,a full geometrical optimization is performed at the level of M062X/aug-cc-PVTZ theory35using the Gaussian 09 package36with tight SCF convergence and ultrafine integration grids.Energy partition analyses are ensued after the optimized structure is obtained at the same level of theory.Different approximate exchange-correlation functionals and basis sets were tested and no substantially different results were obtained(results not shown).

    3 Results and discussion

    Fig.1 shows three strong correlations obtained for these systems between the total energy difference ΔE of different octamer water clusters and their energy components.Our first observation is that all these two energy components,ΔExc,ΔEe,and ΔEs,are negative in sign,indicating that they are contributing positively to the molecular stability,because ΔE<0.In Figs.1(a)and 1(c),we find that the relative stability ΔE of the water cluster is proportional to the exchange-correlation energy difference ΔExcand to the steric effect difference ΔEs,with the correlation coefficient equal to 0.954 and 0.987,respectively.A less significant correlation between the relative stability and the total electrostatic interaction difference ΔEewith the correlation coefficient R2=0.767 was also observed.The positive slope in these three relationships suggests that these energy components all contribute positively to the relative stability.The less than unit slope in these correlations indicates that these energy components are larger in magnitude than the total energy difference itself.

    Scheme 1 A few low-energy structures obtained from QMD simulations in this study

    Fig.1 Three strong linear correlations between the total energy difference,ΔE,and three energy components,

    A few working principles about the relative stability of this molecular system can be obtained from Fig.1.Notice that in magnitude Eq>0,Es>0,Exc<0,Ee<0,and E<0.First,a strong linear correlation between ΔE and ΔEsin Fig.1(c)shows that the more stable a water octamer cluster,the smaller its steric repulsion,suggesting that for a lower energy cluster structure,its steric repulsion should be smaller.Since a smaller steric repulsion also implies smaller size,29this result suggests that more stable clusters are often compact and possess smaller sizes.This working principle of molecular stability can be called the minimum steric repulsion principle.Another principle is from Fig.1(a),where the exchange-correlation difference ΔExcis proportional to the relative stability ΔE,meaning that the more stable an isomer,the larger its exchange-correlation interaction.This result indicates that stable water clusters prefer to have strong exchange-correlation interactions.This can be called the maximum exchange-correlation interaction principle.For the relationship in Fig.1(b),the correlation is not as strong as the other two energy components,yet it still appears that the electrostatic interaction in a lower energy structure possesses a stronger electrostatic interaction.This latter point answers the question where or not the electrostatic interactions in water cluster is predominant.What we observe in this study is that the electrostatic interaction is indeed a strong,positive contribution to the stability of water clusters,but its correlation with the relative stability,ΔE,is not as strong as the steric repulsion ΔEsand the exchange-correlation interaction ΔExc.These results also provide inputs for other questions.For example,is the quantum effect(exchange-correlation interactions)important?The answer is certainly yes,as illustrated in Fig.1(a).In addition,Fig.1(c)adds another factor into the picture of our consideration,that is,the steric effect.This effect has not been previously taken into consideration,but our present results clearly showcased its relevance.Put together,our results in Fig.1 suggest that more stable structures of water clusters prefer to have smaller size and smaller steric repulsion,and at the same time,strong exchange-correlation and electrostatic interactions.

    Shown in Fig.2 are two strong correlations between energy components.The first one is between the electrostatic interaction energy difference ΔEeand the total noninteracting kinetic energy difference ΔTswith the correlation coefficient equal to 0.976,and the other is between the Fermionic quantum energy difference ΔEqand the steric energy difference ΔEswith R2=0.999.The second correlation has already been discovered elsewhere,24-28whereas the first one is peculiar only to this system.The two relationships are converse correlations,each with a negative slope,meaning that(i)the non-interacting kinetic energy difference ΔTsand the Fermionic quantum energy difference ΔEqare both positive quantities,contributing negatively to the molecular stability,and(ii)the two energy components involved are canceling one another because ΔEeand ΔEsare negative values.

    With the fitted formulas from Fig.2,we have

    Together with Eqs.(3)and(4),there result

    Eq.(8)shows that ΔEeis the dominant contributor to ΔE<0 because the second quantity in this equation is positive(since ΔEs<0),whereas in Eq.(7)the contribution comes from both terms,with the governing contributor from ΔExcbut the remnant of ΔEe/ΔTsalso contributing positively to ΔE.The correlation coefficients for Eqs.(7)and(8)are found to be 0.96 and 0.77,respectively.These equations provide us with two different approaches to find out which energy component is the dictating factor in governing the relative molecular stability.

    Fig.2 Strong linear correlations(a)between total electrostatic energy difference ΔE eand the kinetic energy difference ΔT s,and(b)between Fermionic quantum energy difference ΔE qand the steric repulsion ΔE s

    Fig.3 Correlations between the calculated relative stability of water clusters and the two fitted models using two-variable least-square fitting from the energy decomposition schemes in density functional theory

    Given the strong correlations in Fig.2,another way to simplify Eqs.(3)and(4)is to use two of the three quantities in Fig.1,which are found to be positively proportional to the relative stability ΔE,to perform least-square fittings.Fig.3 shows the twovariable fitting results in this manner.Using ΔEeplus ΔExcor ΔEs,much better fits can be obtained,with all quantities contributing positively to ΔE and R2equal to or better than 0.99.In Fig.3(a),the fitted formula is

    where we find that the dominant contribution is from the exchange-correlation interaction with the latter possessing a larger coefficient,whereas in Fig.3(b),

    where we see that the electrostatic terms possesses a larger coefficient than the steric repulsion term and thus ΔEeis the dominant contributor.These results are consistent with what we found in Eqs.(7)and(8),where ΔExcand ΔEewere shown to play dominant roles in the two energy partition schemes,respectively.

    Put together,our present results unambiguously show that there exist clear working principles governing the relative stability for such molecular systems as water clusters.Three energy components,electrostatic,steric,and exchange-correlation,are found to all contribute positively to the molecular stability,with the correlation coefficient of the last two correlations better than 0.95.These relationships demonstrate that a more stable structure possesses less steric repulsion,and stronger Fermionic and exchange-correlation interactions.We also found that there exist strong correlations between energy components,such as ΔEevs ΔTs,and ΔEsvs ΔEq.These relationships enable us to simplify the two energy partition schemes in Eqs.(3)and(4)and to obtain either Eqs.(7)and(8)or Eqs.(9)and(10),where ΔEeand ΔExcare found to be the dominant contributor,respectively.

    Our current results also shed new light on how to account for the origin of molecular stability for systems like water clusters.Same as other systems,1the relative stability of an isomer comes from the net contribution from all energetic effects involved.These effects,including electrostatic,steric,kinetic,exchange-correlation,and Fermionic quantum interactions,have different values for different isomers and they follow different trends in the conformation space.Some effects contribute positively to the molecular stability,while others do so negatively,canceling contributions from other interactions.One of the main results in this work is the finding that exchange-correlation interaction and steric repulsion are strongly correlated to the relative stability of water clusters,whereas for the electrostatic interaction,a less strong correlation has been observed.Even though in Eqs.(8)and(10),the electrostatic interaction is dominant,Fig.1(b)shows that its correlation with molecular stability is weaker than the exchange-correlation interaction or steric repulsion.Using Eq.(7)or(9),where ΔExcis dominant,much stronger correlation with relative molecular stability can be obtained.

    4 Conclusions

    To summarize,in this work,we employ quantum molecular dynamics to obtain a large number of distinct structures for the octamer water cluster and then perform energy partition studies using two approaches from density functional theory to identify working principles governing the relative molecular stability for these water clusters.We find that the exchange-correlation interaction and steric repulsion are two strong indicators of their relative conformation stability.We also identify strong correlations between energy components.It appears that a more stable structure possesses a smaller size and less steric repulsion,and at the meantime it has stronger electrostatic and exchange-correlation interactions.Two strong linear correlations using two different quantities are subsequently proposed to account for their relative stability,each with the correlation coefficient larger than 0.99.This work should shed new light to our fundamental understanding about the origin and nature of molecular stability for systems like water clusters as well as other similar molecular complexes formed through intermolecular interactions.

    Finally,we mention in passing that our present approach is different from others scheme in performing energy decomposition analysis,such as the one by Morokuma,37where its focus is on the total interaction energy.In our case,we consider the total energy of the system instead.Also,what we have obtained in this work is only for the octamer.Are our conclusions applicable to other sizes of the water cluster as well?How sensitive are they to the choice of basis sets or density functionals?More interestingly,even though our approach is different from the other energy partition scheme(by Morokuma and others)in the literature,is there any correlation from the terms obtained these different approaches applied to the same systems?More systematic studies are in progress.These and other questions will be addressed elsewhere.

    (2)Pophristic,V.;Goodman,L.Nature 2001,411,565.doi:10.1038/35079036

    (3)Bickelhaupt,F.M.;Baerends,E.J.An gew.Chem.Int.Edit.2003,42,4183.

    (4)Weinhold,F.Angew.Ch em.Int.E dit.2003,42,4188.

    (5)Mo,Y.R.Nat.Chem.2010,2,666.doi:10.1038/nchem.721

    (6)Mo,Y.;Gao,J.Accounts Chem.R es.2007,40,113.doi:10.1021/ar068073w

    (7)Parr,R.G.;Yang,W.Density Functional Theory of Atoms Molecules;Oxford University Press:New York,1989.

    (8)Geerlings,P.;De Proft,F.;Langenaeker,W.Chem.Rev.2003,103,1793.doi:10.1021/cr990029p

    (9)Liu,S.B.Acta P hys.-Chim.Sin.2009,25,590.[劉述斌.物理化學(xué)學(xué)報(bào),2009,25,590.]doi:10.3866/PKU.WHXB20090332

    (10)Levy,M.;Perdew,J.P.Ph ys.Rev.A 1985,32,2010.doi:10.1103/PhysRevA.32.2010

    (11)Liu,S.B.;Parr,R.G.P hys.R ev.A 1996,53,2211.doi:10.1103/PhysRevA.53.2211

    (12)Liu,S.B.;Nagy,A.;Parr,R.G.Phys.Rev.A 1999,59,1131.doi:10.1103/PhysRevA.59.1131

    (13)Liu,S.B.;Morrison,R.C.;Parr,R.G.J.Ch em.Phys.2006,125,174109.doi:10.1063/1.2378769

    (14)Liu,S.B.J.Chem.Ph ys.2007,126,244103.doi:10.1063/1.2747247

    (15)March,N.H.Phys.L ett.A 1986,113,476.doi:10.1016/0375-9601(86)90123-4

    (16)Holas,A.;March,N.H.Phys.R ev.A 1991,44,5521.doi:10.1103/PhysRevA.44.5521

    (17)von Weizs?cker,C.F.Z.Phys.1935,96,431.doi:10.1007/BF01337700

    (18)Weisskopf,V.F.Science 1975,187,605.doi:10.1126/science.187.4177.605

    (19)Liu,S.B.Phys.R ev.A 1996,54,4863.doi:10.1103/PhysRevA.54.4863

    (20)Liu,S.B.;Parr,R.G.P hys.Rev.A 1997,55,1792.doi:10.1103/PhysRevA.55.1792

    (21)Tsirelson,V.G.;Stash,A.I.;Liu,S.B.J.Chem.P hys.2010,133,114110.doi:10.1063/1.3492377

    (22)Liu,S.B.J.Chem.P hys.2007,126,191107.doi:10.1063/1.2741244

    (23)Esquivel,R.O.;Liu,S.B.;Angulo,J.C.;Dehesa,J.S.;Antolín,J.;Molina-Espíritu,M.J.Phys.Chem.A 2011,115,4406.doi:10.1021/jp1095272

    (24)Liu,S.B.;Govind,N.J.Phys.Chem.A 2008,112,6690.doi:10.1021/jp800376a

    (25)Liu,S.B.;Govind,N.;Pedersen,L.G.J.Chem.Phys.2008,129,094104.doi:10.1063/1.2976767

    (26)Liu,S.B.;Hu,H.;Pedersen,L.G.J.Phys.Chem.A 2010,114,5913.doi:10.1021/jp101329f

    (27)Ess,D.H.;Liu,S.B.;De Proft,F.J.Phys.Chem.A 2010,114,12952.doi:10.1021/jp108577g

    (28)Huang,Y.;Zhong,A.G.;Yang,Q.;Liu,S.B.J.Chem.P hys.2011,134,084103.doi:10.1063/1.3555760

    (29)Zhao,D.B.;Rong,C.Y.;Jenkins,S.;Kirk,S.R.;Yin,D.L.;Liu,S.B.Acta Phys.-Chim.Sin.2013,29,43.[趙東波,榮春英,蘇 曼,蘇 文,尹篤林,劉述斌.物理化學(xué)學(xué)報(bào),2013,29,43.]doi:10.3866/PKU.WHXB201211121

    (30)Tsirelson,V.G.;Stash,A.I.;Karasiev,V.V.;Liu,S.B.Comp.T heor.Chem.2013,1006,92.doi:10.1016/j.comptc.2012.11.015

    (31)Torrent-Sucarrat,M.;Liu,S.B.;De Proft,F.J.Ph ys.Ch em.A 2009,113,3698.doi:10.1021/jp8096583

    (32)Liu,S.B.J.Chem.Sci.2005,117,477;Zhong,A.G.;Rong,C.Y.;Liu,S.B.J.Phys.Chem.A 2007,111,3132.doi:10.1007/BF02708352

    (33)Valiev,M.;Bylaska,E.J.;Govind,N.;Kowalski,K.;Straatsma,T.P.;Van Dam,H.J.J.;Wang,D.;Nieplocha,J.;Apra,E.;Windus,T.L.;de Jong,W.Comput.Phys.Commun.2010,181,1477.

    (34)Maeda,S.;Ohno,K.J.P hys.Chem.A 2007,111,4527.doi:10.1021/jp070606a

    (35)Zhao,Y.;Truhlar,D.G.T h eor.Ch em.A cc.2008,120,215.doi:10.1007/s00214-007-0310-x

    (36)Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;et al.Gaussian 09,Revision C.01;Gaussian,Inc.:Wallingford,CT,2009.

    (37)Kitaura,K.;Morokuma,K.Int.J.Quantum Chem.1976,10,325.

    猜你喜歡
    化工學(xué)院湖南師范大學(xué)物理化學(xué)
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    國(guó)家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    湖南師范大學(xué)作品
    大眾文藝(2021年8期)2021-05-27 14:05:54
    【鏈接】國(guó)家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    湖南師范大學(xué)美術(shù)作品
    大眾文藝(2020年11期)2020-06-28 11:26:50
    湖南師范大學(xué)作品
    大眾文藝(2019年16期)2019-08-24 07:54:00
    湖南師范大學(xué)作品欣賞
    大眾文藝(2019年10期)2019-06-05 05:55:32
    Chemical Concepts from Density Functional Theory
    美女大奶头黄色视频| 成人国语在线视频| 两个人免费观看高清视频| 久久人人97超碰香蕉20202| 欧美日韩av久久| 久久人人爽av亚洲精品天堂| 大片电影免费在线观看免费| 国产精品人妻久久久影院| 亚洲精品久久久久久婷婷小说| 欧美人与善性xxx| 巨乳人妻的诱惑在线观看| 久久人人97超碰香蕉20202| 国产精品久久久久久精品古装| 亚洲综合精品二区| 大片免费播放器 马上看| av一本久久久久| 国产麻豆69| 91aial.com中文字幕在线观看| 久久久久久久久久久久大奶| 亚洲成人av在线免费| 深夜精品福利| 国产毛片在线视频| 宅男免费午夜| 精品人妻在线不人妻| 一个人免费看片子| 亚洲精品国产av蜜桃| 亚洲国产欧美网| 丝袜美足系列| 国产成人免费无遮挡视频| 校园人妻丝袜中文字幕| 91精品国产国语对白视频| 中文字幕av电影在线播放| 国产精品女同一区二区软件| 成人18禁高潮啪啪吃奶动态图| 18禁裸乳无遮挡动漫免费视频| 一级毛片 在线播放| 国产精品秋霞免费鲁丝片| 老鸭窝网址在线观看| 免费观看av网站的网址| 国产成人午夜福利电影在线观看| 久久精品熟女亚洲av麻豆精品| 欧美日韩av久久| 不卡av一区二区三区| 亚洲国产精品一区三区| 国产精品免费大片| 777米奇影视久久| 国产一区亚洲一区在线观看| 少妇人妻 视频| 亚洲一级一片aⅴ在线观看| 久久精品久久久久久噜噜老黄| 天天躁夜夜躁狠狠久久av| 一级毛片黄色毛片免费观看视频| 深夜精品福利| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 爱豆传媒免费全集在线观看| 亚洲精品自拍成人| 亚洲在久久综合| 久久国产精品男人的天堂亚洲| 亚洲国产欧美日韩在线播放| 色播在线永久视频| 黑人猛操日本美女一级片| 免费久久久久久久精品成人欧美视频| 国产一级毛片在线| 黄片无遮挡物在线观看| 国产精品嫩草影院av在线观看| 成年女人毛片免费观看观看9 | a级毛片黄视频| 亚洲精品av麻豆狂野| 久久久久久久精品精品| 久久久精品94久久精品| 国产欧美日韩综合在线一区二区| 永久免费av网站大全| 伦理电影大哥的女人| 宅男免费午夜| 久久亚洲国产成人精品v| 久久久a久久爽久久v久久| 婷婷色av中文字幕| 午夜福利影视在线免费观看| 日日爽夜夜爽网站| 丰满迷人的少妇在线观看| 成人国产av品久久久| 老司机影院毛片| 亚洲国产毛片av蜜桃av| 黄色视频在线播放观看不卡| 精品第一国产精品| 精品一区二区三区四区五区乱码 | 久久久久久久久久人人人人人人| 女人被躁到高潮嗷嗷叫费观| 午夜福利视频精品| 黄片播放在线免费| 国产激情久久老熟女| 亚洲精品乱久久久久久| 69精品国产乱码久久久| 母亲3免费完整高清在线观看 | 狠狠婷婷综合久久久久久88av| 岛国毛片在线播放| 一区二区日韩欧美中文字幕| 久久久久久久大尺度免费视频| 少妇 在线观看| 一本大道久久a久久精品| 久久人人爽av亚洲精品天堂| 国产男女内射视频| 成人国产av品久久久| 国产女主播在线喷水免费视频网站| 你懂的网址亚洲精品在线观看| 免费在线观看视频国产中文字幕亚洲 | 9色porny在线观看| 免费观看a级毛片全部| 亚洲av国产av综合av卡| 男的添女的下面高潮视频| 国产有黄有色有爽视频| 亚洲在久久综合| 亚洲视频免费观看视频| 日本欧美视频一区| 在线观看人妻少妇| 国产精品嫩草影院av在线观看| 久久国内精品自在自线图片| 久久 成人 亚洲| 中文字幕最新亚洲高清| 又大又黄又爽视频免费| 人人妻人人澡人人看| 五月伊人婷婷丁香| 免费高清在线观看视频在线观看| 国产精品 国内视频| 精品国产一区二区三区久久久樱花| 久久亚洲国产成人精品v| 考比视频在线观看| 日韩电影二区| 国产乱人偷精品视频| 欧美成人精品欧美一级黄| 日韩制服丝袜自拍偷拍| 亚洲国产成人一精品久久久| 97在线人人人人妻| 青春草视频在线免费观看| 亚洲,欧美精品.| a级片在线免费高清观看视频| 久久久久精品人妻al黑| 午夜福利网站1000一区二区三区| 天堂中文最新版在线下载| 国产精品无大码| 国产激情久久老熟女| xxxhd国产人妻xxx| 女性被躁到高潮视频| 色婷婷久久久亚洲欧美| 午夜福利影视在线免费观看| 免费在线观看视频国产中文字幕亚洲 | 丝袜在线中文字幕| 九色亚洲精品在线播放| 最近2019中文字幕mv第一页| 一级毛片我不卡| 中文字幕av电影在线播放| 久久人人爽av亚洲精品天堂| 国产视频首页在线观看| 亚洲一级一片aⅴ在线观看| 中国三级夫妇交换| 成人毛片a级毛片在线播放| 人人妻人人澡人人爽人人夜夜| 波野结衣二区三区在线| 精品酒店卫生间| 欧美激情极品国产一区二区三区| 国产伦理片在线播放av一区| 午夜福利,免费看| 亚洲在久久综合| 久久av网站| 在线精品无人区一区二区三| 中文字幕人妻丝袜一区二区 | 中文字幕av电影在线播放| 人人妻人人添人人爽欧美一区卜| 久久热在线av| 丰满乱子伦码专区| 一边亲一边摸免费视频| 桃花免费在线播放| 性少妇av在线| 午夜av观看不卡| 国产精品国产三级专区第一集| 一级片免费观看大全| 男女啪啪激烈高潮av片| 国产极品天堂在线| 永久免费av网站大全| 熟女电影av网| 国产成人精品福利久久| 色94色欧美一区二区| av.在线天堂| 欧美激情高清一区二区三区 | 晚上一个人看的免费电影| 激情视频va一区二区三区| 免费看av在线观看网站| 国产精品嫩草影院av在线观看| 亚洲欧美中文字幕日韩二区| 亚洲精品日本国产第一区| 亚洲国产色片| 亚洲五月色婷婷综合| 国产一级毛片在线| 乱人伦中国视频| 亚洲国产精品国产精品| 99久久人妻综合| 国产亚洲av片在线观看秒播厂| 老熟女久久久| 国产淫语在线视频| 新久久久久国产一级毛片| av在线app专区| 日本91视频免费播放| 精品国产一区二区三区四区第35| 日韩一区二区视频免费看| 亚洲,欧美精品.| 黄色配什么色好看| 久久狼人影院| 18禁国产床啪视频网站| 亚洲在久久综合| 国产男女超爽视频在线观看| 国产女主播在线喷水免费视频网站| 欧美日韩成人在线一区二区| 国产一区二区三区av在线| 1024视频免费在线观看| av网站免费在线观看视频| 亚洲精品日韩在线中文字幕| 亚洲美女黄色视频免费看| 久久精品国产自在天天线| 成人国产av品久久久| 十八禁网站网址无遮挡| 欧美在线黄色| 80岁老熟妇乱子伦牲交| 在现免费观看毛片| 宅男免费午夜| 久久久久久人妻| 一级a爱视频在线免费观看| 日本色播在线视频| 有码 亚洲区| 国产精品欧美亚洲77777| 日韩av在线免费看完整版不卡| 在线看a的网站| 亚洲美女视频黄频| 97在线视频观看| 久久青草综合色| 欧美国产精品va在线观看不卡| 亚洲欧美精品综合一区二区三区 | 女的被弄到高潮叫床怎么办| 飞空精品影院首页| 免费黄频网站在线观看国产| 日本欧美视频一区| 亚洲国产日韩一区二区| 欧美日本中文国产一区发布| 黄色 视频免费看| 久久国产精品男人的天堂亚洲| 国产欧美亚洲国产| 性高湖久久久久久久久免费观看| 精品福利永久在线观看| 国产精品无大码| 亚洲成国产人片在线观看| 国产成人av激情在线播放| 免费在线观看完整版高清| 亚洲国产毛片av蜜桃av| 丝袜喷水一区| 极品少妇高潮喷水抽搐| 少妇精品久久久久久久| 纯流量卡能插随身wifi吗| 国产在线一区二区三区精| 熟妇人妻不卡中文字幕| 精品亚洲成a人片在线观看| kizo精华| 亚洲中文av在线| 天天躁夜夜躁狠狠久久av| 99热国产这里只有精品6| 国产亚洲午夜精品一区二区久久| 精品一区在线观看国产| 我要看黄色一级片免费的| 中国国产av一级| 日韩大片免费观看网站| 国产成人av激情在线播放| 亚洲四区av| 三上悠亚av全集在线观看| 国产精品国产av在线观看| 看非洲黑人一级黄片| 午夜av观看不卡| 国产激情久久老熟女| 9191精品国产免费久久| 在线观看www视频免费| 免费少妇av软件| 建设人人有责人人尽责人人享有的| 十八禁高潮呻吟视频| videos熟女内射| 欧美激情 高清一区二区三区| 电影成人av| 99热网站在线观看| 国产片内射在线| 欧美精品国产亚洲| xxx大片免费视频| 午夜久久久在线观看| 一级片'在线观看视频| 国产精品免费大片| 美女xxoo啪啪120秒动态图| av免费在线看不卡| 成人手机av| 亚洲av中文av极速乱| 18在线观看网站| 在线观看免费日韩欧美大片| 只有这里有精品99| 电影成人av| 午夜福利网站1000一区二区三区| 你懂的网址亚洲精品在线观看| 国产av精品麻豆| 亚洲中文av在线| 久久99一区二区三区| 欧美激情高清一区二区三区 | 人妻人人澡人人爽人人| 日韩 亚洲 欧美在线| 亚洲精品久久成人aⅴ小说| 中文字幕人妻丝袜制服| 精品福利永久在线观看| 亚洲熟女精品中文字幕| 女人精品久久久久毛片| 亚洲色图综合在线观看| 久久久久国产精品人妻一区二区| 午夜免费观看性视频| 久久精品国产亚洲av高清一级| 亚洲欧美成人综合另类久久久| 精品第一国产精品| 嫩草影院入口| 天天躁夜夜躁狠狠躁躁| 不卡视频在线观看欧美| 免费高清在线观看日韩| 亚洲精品久久久久久婷婷小说| 各种免费的搞黄视频| 国产av国产精品国产| 国产精品久久久久久精品古装| 老司机影院毛片| 亚洲成国产人片在线观看| 国产精品国产三级国产专区5o| 久久久久国产网址| 极品人妻少妇av视频| 亚洲综合精品二区| 午夜福利乱码中文字幕| 成年美女黄网站色视频大全免费| 久久久精品国产亚洲av高清涩受| 免费观看无遮挡的男女| 18禁观看日本| 亚洲在久久综合| 男人操女人黄网站| 观看美女的网站| 日韩一区二区三区影片| 成人午夜精彩视频在线观看| 熟女电影av网| 日本wwww免费看| 午夜日韩欧美国产| 中文字幕亚洲精品专区| 午夜福利一区二区在线看| av网站免费在线观看视频| 亚洲熟女精品中文字幕| 桃花免费在线播放| 色婷婷久久久亚洲欧美| 欧美av亚洲av综合av国产av | 在线免费观看不下载黄p国产| 亚洲人成网站在线观看播放| 欧美人与性动交α欧美软件| 亚洲精品国产色婷婷电影| 久久午夜综合久久蜜桃| 日韩 亚洲 欧美在线| 欧美精品高潮呻吟av久久| 看免费成人av毛片| 男女下面插进去视频免费观看| 国产精品秋霞免费鲁丝片| 青春草亚洲视频在线观看| 丝袜脚勾引网站| 亚洲国产毛片av蜜桃av| 女人久久www免费人成看片| 91aial.com中文字幕在线观看| 91久久精品国产一区二区三区| 好男人视频免费观看在线| 欧美日韩亚洲高清精品| 人妻 亚洲 视频| 国产成人精品无人区| 亚洲成国产人片在线观看| videossex国产| 精品亚洲乱码少妇综合久久| 在线天堂中文资源库| 精品福利永久在线观看| 一级,二级,三级黄色视频| 日本猛色少妇xxxxx猛交久久| 美国免费a级毛片| 免费看av在线观看网站| 秋霞伦理黄片| 你懂的网址亚洲精品在线观看| 两性夫妻黄色片| 日韩不卡一区二区三区视频在线| 在线观看美女被高潮喷水网站| 老司机亚洲免费影院| 国产精品一二三区在线看| 成人午夜精彩视频在线观看| 日本-黄色视频高清免费观看| 天天操日日干夜夜撸| 国产麻豆69| 免费观看无遮挡的男女| 亚洲精品在线美女| 欧美黄色片欧美黄色片| 电影成人av| 2018国产大陆天天弄谢| 婷婷色综合www| 欧美成人午夜精品| 人妻 亚洲 视频| a级毛片在线看网站| 精品午夜福利在线看| 国产一区二区 视频在线| 精品国产国语对白av| 久久久久久人妻| 亚洲精品美女久久av网站| 久久99精品国语久久久| 亚洲欧洲精品一区二区精品久久久 | 精品一区二区三区四区五区乱码 | 亚洲av中文av极速乱| 一级毛片电影观看| 黄色视频在线播放观看不卡| 亚洲国产看品久久| 久久久亚洲精品成人影院| 欧美精品国产亚洲| 国语对白做爰xxxⅹ性视频网站| 伊人久久大香线蕉亚洲五| 久久国产精品大桥未久av| 美女国产视频在线观看| 天天躁日日躁夜夜躁夜夜| 高清在线视频一区二区三区| 久久久久久久久久久免费av| 日本wwww免费看| 91精品伊人久久大香线蕉| 999精品在线视频| 99re6热这里在线精品视频| 日本午夜av视频| 久久国产亚洲av麻豆专区| 久久精品国产亚洲av天美| 女人久久www免费人成看片| 成人国产麻豆网| 久久韩国三级中文字幕| 久久精品国产亚洲av天美| 午夜福利在线免费观看网站| 亚洲国产av影院在线观看| 丰满少妇做爰视频| 丁香六月天网| 欧美激情高清一区二区三区 | 少妇人妻 视频| 亚洲三区欧美一区| av女优亚洲男人天堂| 天天躁夜夜躁狠狠躁躁| 国产午夜精品一二区理论片| 亚洲av成人精品一二三区| 久久久久国产精品人妻一区二区| 久久久国产精品麻豆| av网站在线播放免费| 亚洲精品一区蜜桃| 69精品国产乱码久久久| 亚洲欧美一区二区三区国产| 免费观看在线日韩| 国产免费视频播放在线视频| 少妇的逼水好多| 成年女人毛片免费观看观看9 | 五月天丁香电影| 久久久国产精品麻豆| 国产成人av激情在线播放| 国产精品香港三级国产av潘金莲 | 国产毛片在线视频| 视频区图区小说| 我的亚洲天堂| 国产xxxxx性猛交| av免费观看日本| 免费黄色在线免费观看| 日韩熟女老妇一区二区性免费视频| 精品第一国产精品| 欧美变态另类bdsm刘玥| 精品午夜福利在线看| 久久久久久人妻| 中文欧美无线码| 侵犯人妻中文字幕一二三四区| 在线看a的网站| 免费在线观看视频国产中文字幕亚洲 | 久久精品久久精品一区二区三区| 日韩一区二区视频免费看| 可以免费在线观看a视频的电影网站 | 亚洲,一卡二卡三卡| 日韩在线高清观看一区二区三区| av网站在线播放免费| 亚洲av在线观看美女高潮| 五月伊人婷婷丁香| 国产日韩欧美视频二区| 中文天堂在线官网| 99久久精品国产国产毛片| 90打野战视频偷拍视频| 精品第一国产精品| 两个人免费观看高清视频| 777米奇影视久久| 91成人精品电影| 亚洲av成人精品一二三区| 美女视频免费永久观看网站| 久久久亚洲精品成人影院| 丝袜脚勾引网站| 成人毛片a级毛片在线播放| 精品国产国语对白av| 捣出白浆h1v1| 9色porny在线观看| 赤兔流量卡办理| 欧美中文综合在线视频| 国产野战对白在线观看| 美女国产视频在线观看| 久久精品国产鲁丝片午夜精品| 日本wwww免费看| 国产爽快片一区二区三区| 男人操女人黄网站| 999精品在线视频| 91精品三级在线观看| 日本猛色少妇xxxxx猛交久久| 久久久国产欧美日韩av| 精品一区二区三区四区五区乱码 | 边亲边吃奶的免费视频| 欧美 亚洲 国产 日韩一| 国产av码专区亚洲av| 热re99久久国产66热| 伦理电影大哥的女人| 国产高清国产精品国产三级| tube8黄色片| 国产欧美日韩综合在线一区二区| 激情视频va一区二区三区| 午夜福利在线免费观看网站| 美女福利国产在线| 看十八女毛片水多多多| 91精品国产国语对白视频| 久久久精品免费免费高清| 日本vs欧美在线观看视频| 三上悠亚av全集在线观看| 街头女战士在线观看网站| 人妻系列 视频| 大香蕉久久网| 丰满迷人的少妇在线观看| 深夜精品福利| 亚洲情色 制服丝袜| 国产精品不卡视频一区二区| 国产精品 欧美亚洲| 午夜福利一区二区在线看| 国产人伦9x9x在线观看 | 有码 亚洲区| 一区福利在线观看| 国产精品欧美亚洲77777| 久久这里有精品视频免费| 欧美国产精品一级二级三级| 人妻 亚洲 视频| 国产精品一区二区在线不卡| 亚洲第一青青草原| 天堂8中文在线网| 亚洲精品一二三| 国产综合精华液| 欧美+日韩+精品| 久久99热这里只频精品6学生| 黄片小视频在线播放| 国产精品女同一区二区软件| 欧美+日韩+精品| 天美传媒精品一区二区| 人人妻人人爽人人添夜夜欢视频| 国产成人av激情在线播放| 高清视频免费观看一区二区| 久久99热这里只频精品6学生| 亚洲在久久综合| 热re99久久国产66热| 亚洲中文av在线| 色播在线永久视频| 精品国产一区二区三区久久久樱花| 美国免费a级毛片| 国产av精品麻豆| 久久久久网色| 天天躁夜夜躁狠狠久久av| 精品少妇一区二区三区视频日本电影 | 老司机影院成人| 日韩一本色道免费dvd| 欧美成人午夜精品| 波多野结衣一区麻豆| 国产爽快片一区二区三区| 桃花免费在线播放| av在线老鸭窝| 午夜激情久久久久久久| 日韩欧美一区视频在线观看| 免费av中文字幕在线| 高清视频免费观看一区二区| 啦啦啦中文免费视频观看日本| 久久久久久久久久久免费av| 亚洲国产最新在线播放| 中文字幕人妻丝袜制服| 国产精品嫩草影院av在线观看| 亚洲精品aⅴ在线观看| 亚洲精品成人av观看孕妇| 免费人妻精品一区二区三区视频| 国产亚洲一区二区精品| 99香蕉大伊视频| 女人高潮潮喷娇喘18禁视频| av片东京热男人的天堂| 天天影视国产精品| 亚洲精品国产一区二区精华液| 国产精品国产av在线观看| 综合色丁香网| 看十八女毛片水多多多| 日韩欧美精品免费久久| 亚洲国产精品一区二区三区在线| 水蜜桃什么品种好| 18在线观看网站| 三上悠亚av全集在线观看| 99久久中文字幕三级久久日本| 免费少妇av软件| 一级毛片电影观看| 国产伦理片在线播放av一区| 在线观看免费高清a一片| 香蕉丝袜av| 免费黄色在线免费观看| 69精品国产乱码久久久| 新久久久久国产一级毛片| 一边亲一边摸免费视频| 国产精品二区激情视频| 大片免费播放器 马上看| 日本-黄色视频高清免费观看| 黄色视频在线播放观看不卡| 国产熟女午夜一区二区三区| 曰老女人黄片|