• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      立體幾何中的平面問題——勾股定理的應(yīng)用

      2013-08-03 15:08:52張麗萍
      關(guān)鍵詞:木箱路程圓柱體

      張麗萍

      教師注重對(duì)學(xué)生抽象思維的培養(yǎng),需要從學(xué)生實(shí)際生活經(jīng)驗(yàn)出發(fā),將生活中的問題融入到數(shù)學(xué)模型當(dāng)中。同時(shí),教師要注重學(xué)生的實(shí)際動(dòng)手能力的培養(yǎng),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,讓學(xué)生在數(shù)學(xué)實(shí)踐過程中掌握新知識(shí)[1]。在教材中,很多題目都將數(shù)學(xué)知識(shí)應(yīng)用到實(shí)際生活中。從學(xué)生的角度來說,在求解直角三角形的問題時(shí),勾股定理可以快速、準(zhǔn)確地對(duì)生活中的問題進(jìn)行處理。另外,立體幾何中勾股定理問題也是考試中的重點(diǎn),其具體的命題形式也發(fā)生不斷的變化,所以,教師要讓學(xué)生從本質(zhì)上了解勾股定理,以不變應(yīng)萬(wàn)變。下面就對(duì)立體幾何中的平面問題進(jìn)行詳細(xì)和深入的闡述。

      一、勾股定理在包含問題中的應(yīng)用

      例1 如圖1所示,鐵棍長(zhǎng)80cm,放在長(zhǎng)80cm,寬60cm,高100cm的長(zhǎng)方形木箱中,是否可以放入?

      這一題并不陌生,在長(zhǎng)方形木箱中連接兩條線段,并運(yùn)用兩次勾股定理,求出長(zhǎng)方形的對(duì)角線長(zhǎng)度80cm。因此,長(zhǎng)80cm的鐵棍可以放入長(zhǎng)方形木箱中。

      圖1 長(zhǎng)方形木箱示意圖

      二、勾股定理在最短距離中的應(yīng)用

      例2 如圖2所示,圓柱體高8cm,底面積半徑r=3cm。圓柱體底面上的A點(diǎn)向上底面與A點(diǎn)對(duì)應(yīng)的B點(diǎn)移動(dòng),沿著圓柱體側(cè)面移動(dòng)的最短路程是多少?

      分析:這道題將勾股定理方面的知識(shí)融入到物體移動(dòng)問題當(dāng)中。在這道題當(dāng)中,很多學(xué)生容易將A點(diǎn)與B點(diǎn)進(jìn)行連接,然后運(yùn)用勾股定理計(jì)算出AB兩點(diǎn)之間的距離,即,并得出最短路程是10厘米的結(jié)論。如果認(rèn)真想一想,我們?nèi)菀装l(fā)現(xiàn),這種算法中包含很多疑點(diǎn)。

      圖2 圓柱體示意圖

      解析:這一類題目的關(guān)鍵主要分為三部分:第一步閱讀:可以從題目中獲取以下信息:(1)圓柱體的高度為8cm,底面半徑為3cm;(2)物體沿著圓柱體的側(cè)面向B點(diǎn)移動(dòng);(3)A,B兩點(diǎn)之間的最短路程是多少。第二步深入:物體移動(dòng)只能在圓柱體外側(cè)移動(dòng),不能在圓柱體內(nèi)部進(jìn)行移動(dòng),所以上述直接連接AB兩點(diǎn)的做法是錯(cuò)誤的[2]。圓柱體的側(cè)面是曲面,所以要將圓柱體的側(cè)面進(jìn)行展開,并連接AB兩點(diǎn),兩點(diǎn)之間的連線就是AB兩點(diǎn)之間的最短路程。第三步計(jì)算:根據(jù)勾股定理計(jì)算出AB兩點(diǎn)之間的最短路程。通過對(duì)這道題的分析,可以衍生出下一道題。

      圖3 圓柱體展開示意圖

      例3 如圖4所示,長(zhǎng)方形木箱,長(zhǎng)是26cm、寬是20cm、高12cm,A點(diǎn)處一物體,其從A點(diǎn)向與A點(diǎn)對(duì)應(yīng)的B點(diǎn)移動(dòng),問A點(diǎn)到B點(diǎn)的最短路程是多少?

      分析:很多學(xué)生不知道如何下手,AB之間距離何時(shí)最短?這一道題與上一道題類似,所以可以仿照上一道題進(jìn)行分析和計(jì)算。

      因此,A點(diǎn)物體沿著圓柱體外側(cè)向B點(diǎn)移動(dòng),最短路程為

      圖4 長(zhǎng)方形木箱示意圖

      第一步閱讀:從題目可以獲得以下信息:(1)長(zhǎng)方形木箱的長(zhǎng)為26cm、寬為20cm、高為12cm;(2)需要求得AB兩點(diǎn)之間的最短路程,不僅要找出題目中所含的隱藏信息,還要對(duì)其進(jìn)行進(jìn)一步分析:題目中隱含物體沿著長(zhǎng)方形木箱的表面運(yùn)動(dòng);第二步分析:物體不在長(zhǎng)方形內(nèi)部運(yùn)動(dòng),所以直接連接AB兩點(diǎn)之后,運(yùn)用兩次勾股定理計(jì)算出AB兩點(diǎn)之間的路程是不對(duì)的,必須將長(zhǎng)方體展開。長(zhǎng)方體展開方式的選擇,直接決定計(jì)算的準(zhǔn)確性。學(xué)生通過抽象思維,并進(jìn)行實(shí)際操作,可以發(fā)現(xiàn)長(zhǎng)方形展開方法有三種,如圖5所示。第三步計(jì)算:利用勾股定理計(jì)算。

      所示圖形(1)是將長(zhǎng)方體木箱沿著前面和上面展開,其中AH=AE+EH=12+20=32cm,HB=26厘米,所以

      圖(2)是將長(zhǎng)方體木箱的前面和右面的兩個(gè)面進(jìn)行展開,此時(shí),AC=AG+GC=43厘米,CB=12厘米,所以

      圖(3)是將長(zhǎng)方體木箱中的左面和上面兩個(gè)面展開,其中AB

      三、勾股定理在生活中的應(yīng)用

      例4 如圖6,學(xué)校操場(chǎng)為長(zhǎng)方形,部分學(xué)生為了尋找“捷徑”而避開轉(zhuǎn)角,在操場(chǎng)內(nèi)踩出一條“路”。問學(xué)生少走多少步(假設(shè)2步為1m)。

      圖6 操場(chǎng)示意圖

      分析:學(xué)生需要將“捷徑”的路長(zhǎng)和原來走的路程求出,就可以算出學(xué)生至少少走多少步路。

      解:學(xué)生原來走過的路為6m+8m=14m。假設(shè)學(xué)生原來走“捷徑”的路長(zhǎng)為xm,則,所以學(xué)生至少少走4m,而1m=2步,所以學(xué)生至少少走8步路。

      分析:學(xué)生在立體幾何計(jì)算中遇到走“捷徑”的問題時(shí)候,應(yīng)該以此題為樣板,進(jìn)行合理計(jì)算。另外,老師在考查勾股定理知識(shí)的時(shí)候,要將生活中的實(shí)際問題融入到數(shù)學(xué)計(jì)算中,諸如,小草微微笑,請(qǐng)你多走幾步路。

      四、勾股定理在網(wǎng)格中的應(yīng)用

      例5 圖7中的虛線網(wǎng)格就是所謂的正三角形網(wǎng)格,其中每個(gè)三角形都是邊長(zhǎng)為1的正三角形,也叫單位正三角形。

      (1)通過觀察直接計(jì)算出正三角形的高和面積。

      (2)圖7中的平行四邊形ABCD至少含有多少個(gè)正三角形?平行四邊形ABCD的面積是多少?

      (3)求出圖7中中位線AC的長(zhǎng)度,可以作輔助線。

      (4)求出圖7中四邊形EFGH的面積。

      圖7 網(wǎng)格計(jì)算示意圖

      分析:學(xué)生要將網(wǎng)格的形式弄清楚,并研究圖形和網(wǎng)格之間的關(guān)系,每個(gè)圖形中包含多少網(wǎng)格,進(jìn)而借助網(wǎng)格知識(shí)來了解圖形的相關(guān)性質(zhì)[3]。

      (2)由圖7可直接得出平行四邊形ABCD面積中,包含24個(gè)單位正三角形,所以其面積為

      (3)過A作AK⊥BC于點(diǎn)K(如圖7所示),則在直角三角形ACK中,故(4)過點(diǎn) G、H、E、F 作矩形 MNPQ(如圖 7)。因?yàn)?,所以四邊形MNPQ的面積=;三角形

      五、勾股定理在實(shí)際問題中的應(yīng)用

      例6 如圖8所示,在一次航海活動(dòng)中,甲從港口A點(diǎn)出發(fā),沿東偏北30°方向走了50 3,三角形,所以四邊形EFGH的面積=8■ m到達(dá)B點(diǎn),然后再沿北偏西30°方向走了50m到達(dá)目的地C點(diǎn)。

      (1)求A、C兩點(diǎn)之間的距離。

      (2)確定目的地C在營(yíng)地A的什么方向。

      圖8 實(shí)際問題示意圖

      分析:把航海問題轉(zhuǎn)化為立體幾何中的勾股定理問題進(jìn)行求解。

      解:(1)過B點(diǎn)作BE//AD,如圖8所示

      (2)在直角三角形ABC中,

      即點(diǎn)C在點(diǎn)A的北偏東30°的方向

      結(jié)論:本題為航海實(shí)際問題,學(xué)生從已知條件出發(fā)得出△ABC是直角三角形的結(jié)論,并運(yùn)用勾股定理知識(shí)求解。

      六、結(jié)論

      在立體幾何中的平面問題——勾股定理的應(yīng)用中,學(xué)生必須做到以下幾點(diǎn)。

      1.學(xué)生要認(rèn)真分析題目,找出題目中隱含的意思,明白立體幾何內(nèi)部中存在的問題,諸如放入鐵棍問題和動(dòng)點(diǎn)移動(dòng)問題。

      2.學(xué)生在處理表面問題的時(shí)候,要多動(dòng)手、多動(dòng)腦,將所給的立體幾何圖形(長(zhǎng)方形、正方形和圓柱形)按照要求展開,使得移動(dòng)點(diǎn)的移動(dòng)路程呈現(xiàn)直線段,這樣才能保證兩點(diǎn)之間的路程最短。

      3.學(xué)生面對(duì)的展開圖形包含幾種,必須對(duì)幾種展開形式進(jìn)行比較,找出兩點(diǎn)之間的最短路程,以此得出符合題目要求的結(jié)論。

      4.學(xué)生在處理立體幾何中勾股定理問題時(shí),要善于構(gòu)建直角三角形,正確處理勾股定理的應(yīng)用問題。

      [1]馮有兵.幾道立體幾何題的探究與思考[J].中學(xué)數(shù)學(xué)研究,2012,(2):40-42

      [2]儲(chǔ)祥紅.立體幾何中的平面問題——勾股定理的應(yīng)用[J].數(shù)學(xué)學(xué)習(xí)與研究,2012,(3):92

      [3]馬隨芝.巧解妙用勾股定理[J].中學(xué)生數(shù)理化(教與學(xué)),2012,(2):88

      猜你喜歡
      木箱路程圓柱體
      求最短路程勿忘勾股定理
      多走的路程
      一只木箱
      多種方法求路程
      走的路程短
      阿香婆婆的棗木箱
      找出圓柱體
      皮箱與木箱
      圓柱體上的最短路徑
      觀察力
      安多县| 木兰县| 洛扎县| 博爱县| 红安县| 左云县| 龙里县| 康保县| 呈贡县| 梧州市| 远安县| 怀柔区| 临武县| 阿拉善右旗| 中西区| 临朐县| 贞丰县| 南丹县| 南皮县| 贞丰县| 乐至县| 龙泉市| 如东县| 英超| 古丈县| 镇坪县| 霍邱县| 桃源县| 闸北区| 鄂托克旗| 江北区| 会宁县| 克什克腾旗| 峨眉山市| 界首市| 盐亭县| 宣汉县| 曲周县| 贺兰县| 邳州市| 通海县|