• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mpro-C蛋白三維結(jié)構(gòu)域交換的機(jī)理:來(lái)自分子模擬的線索

    2012-12-11 09:12:22黃永棋劉志榮
    物理化學(xué)學(xué)報(bào) 2012年10期
    關(guān)鍵詞:北京大學(xué)機(jī)理二聚體

    黃永棋 康 雪 夏 斌,5 劉志榮,*

    (1北京大學(xué)化學(xué)與分子工程學(xué)院,北京100871;2北京大學(xué)分子動(dòng)態(tài)與穩(wěn)態(tài)結(jié)構(gòu)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,北京100871;3北京大學(xué)定量生物學(xué)中心,北京100871;4北京核磁共振中心,北京100871; 5北京大學(xué)生命科學(xué)學(xué)院,北京100871)

    Mpro-C蛋白三維結(jié)構(gòu)域交換的機(jī)理:來(lái)自分子模擬的線索

    黃永棋1,2,3康 雪1,4夏 斌1,4,5劉志榮1,2,3,*

    (1北京大學(xué)化學(xué)與分子工程學(xué)院,北京100871;2北京大學(xué)分子動(dòng)態(tài)與穩(wěn)態(tài)結(jié)構(gòu)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,北京100871;3北京大學(xué)定量生物學(xué)中心,北京100871;4北京核磁共振中心,北京100871;5北京大學(xué)生命科學(xué)學(xué)院,北京100871)

    SARS冠狀病毒主蛋白酶(Mpro)在病毒的蛋白酶切過(guò)程中發(fā)揮著重要作用.Mpro的晶體結(jié)構(gòu)顯示它存在兩種形式的二聚體:一種是發(fā)生三維結(jié)構(gòu)域交換的形式,另一種是非交換的形式.Mpro的C端結(jié)構(gòu)域(Mpro-C)單獨(dú)表達(dá)時(shí)也能形成與全長(zhǎng)Mpro類似的三維結(jié)構(gòu)域交換二聚體.三維結(jié)構(gòu)域交換通常發(fā)生在蛋白質(zhì)的表面,但Mpro-C的結(jié)構(gòu)域交換卻發(fā)生在疏水核心.在本文中,我們利用分子動(dòng)力學(xué)模擬及三維結(jié)構(gòu)域交換預(yù)測(cè)算法研究了Mpro-C中被高度埋藏的核心螺旋片段發(fā)生交換的機(jī)理.我們發(fā)現(xiàn)基于結(jié)構(gòu)與基于序列的已有算法都不能正確預(yù)言出Mpro-C和Mpro中發(fā)生結(jié)構(gòu)域交換的鉸鏈區(qū)位置.分子模擬結(jié)果表明Mpro-C中的交換片段在天然態(tài)下埋藏得很好,但在變性單體中則會(huì)被釋放并暴露在外面.因此,在完全或部分解折疊狀態(tài)下交換片段的打開(kāi)有助于促進(jìn)單體間的相互作用及結(jié)構(gòu)域交換二聚體的形成.

    SARS冠狀病毒;主蛋白酶;分子模擬;結(jié)構(gòu)域交換;蛋白質(zhì)-蛋白質(zhì)相互作用;蛋白質(zhì)解折疊

    1 Introduction

    Three-dimensional(3D)domain swapping is one of the mechanisms by which protein complexes are formed.In a 3D domain swapping process,protein monomers exchange identical domains or structural elements during oligomerization.1Great efforts have been devoted to understanding the structural features and biological functions of 3D domain swapping. There is evidence that 3D domain swapping mediates amyloid fibril formation.2-5Furthermore,3D domain swapping is a mechanism underlying the evolution of protein complexes6-8and promotes signal transduction within large protein complexes.9,10

    Analyses of the structures of domain-swapped complexes show that there is no general features(including size,sequence,and secondary structure)of the exchanged regions.11However,in most experimental observations of domainswapped oligomers,the swapped regions locate to the surface of protein 3D structures,i.e.,the swapped regions are not wrapped by other structural elements,11-13suggesting that native topology is a general determinant of 3D domain swapping.14Topology-based methods have achieved some success in reproducing the 3D domain-swapped structures or locating the hinge loop regions based on monomer structures,14-18further supporting the role of structural topology in 3D domain swapping.The swapping of surface regions may be promoted by the local unfolding of proteins,whereby the swapped regions are released and are able to form extensive intermolecular interactions between monomers.12,19

    SARS coronavirus main protease(Mpro)is a key enzyme involved in the extensive proteolytic processing of the virus? polyproteins and is an attractive target for anti-SARS drug design.Crystal structures of Mproreveal that the enzyme contains two domains(an N-terminal domain and a C-terminal domain) and exists as a homodimer in which a domain-swapped form20and a non-swapped form21have been observed.The isolated C-terminal domain(Mpro-C)alone also forms a domainswapped structure(Fig.1A)identical to that formed by the full-length protein.22Unlike previously observed 3D domainswapped structures,Mprois unique in that the swapped region (T201?N214,α1-helix)locates to the core rather than the surface of a folded domain.To date,the swapping mechanism of Mprohas not been solved.

    In this work,we used molecular dynamics(MD)simulations and 3D domain-swapping predictions to investigate how a highly buried core helix in a helix bundle structure of Mpro-C is swapped.

    2 Materials and methods

    A series of MD simulations were performed on the Mpro-C monomer and the 3D domain-swapped dimer.Initial conformations for the simulations were taken from the solution structure of Mpro-C monomer(PDB 2K7X)22and the crystal structure of Mpro-C dimer(PDB 3EBN).22The duration of the simulations was 50 ns at 298 K and 100 ns at 498 K for both monomer and dimer.

    Fig.1 (A)Structure of domain-swapped Mpro-C dimer(PDB 3EBN),to clearly show the swapped core helix,one chain is shown by a cyan ribbon and the other by an orange surface.(B)H-Predictor prediction for Mpro-C,red stars indicate the predicted hinge loop regions; green dots indicate the experimentally observed hinge loop regions.

    Simulations were performed using the GROMACS 4.5.1 program23,24and the OPLS-AA/L force field.25Water molecules were modeled by the SPC/E representation.26Each of the starting conformations was placed in the center of a cubic water box with a distance of at least 1.0 nm from the box edge.Peri-odic boundary conditions were used and Na+ions were added to neutralize the net charges.The long-range electrostatic interactions were treated with the particle mesh Ewald method.27The bond lengths were fixed by using the LINCS algorism,28and a time step of 2 fs was used.After relaxation by 1000 steps of the steepest-descent energy minimization,each system was equilibrated at 298 K by 100 ps under an NVT ensemble and further equilibrated for 200 ps at constant pressure(1×105Pa). Production simulations were performed at constant temperature(298 or 498 K)and pressure(1×105Pa).Coordinates were saved every 5 ps.V-rescale29and Parrinello-Rahman30were used to couple the system to the simulation temperature and pressure with coupling constants of 0.1 and 2.0 ps,respectively.

    We monitored the contacts between the two chains in the domain-swapped dimer to investigate the intermolecular interactions during simulations.An intermolecular contact was considered to be formed between two residues(one contributed by each chain)when the distance between any two non-H atom pairs was≤0.45 nm.Secondary structure analysis was assigned using the DSSP program.31Molecular graphics images were created using the VMD program.32

    3 Results

    3.1 Hinge loop prediction

    The hinge loop is the region linking the swapped domain and the main domain.Because of the special role of the hinge loop playing in a swapping process,much effort has been devoted to the development of methods for locating the hinge loop regions based on monomeric structures and/or sequences. Two different methods were used here to predict the location of the hinge loop or the probability of domain swapping in Mproand Mpro-C.The first method was H-Predictor,14which is based on the 3D structure of a protein and calculates the effective unfolding temperature for each residue using a simple contactbased potential for enthalpy and a graph theory-based estimation for entropy.Residues with the lowest effective unfolding temperature will have the highest probability of being in the hinge region.Fig.1B shows the results for Mpro-C predicted by H-Predictor.The predicted hinge loop regions are the C-terminal loop(ca 276-281)for Mpro-C(Fig.1B)or the loop linking the C-terminal and N-terminal domains(ca 186-193)for Mpro(data not shown).Neither of the predicted hinge loops coincides with the hinge loop determined experimentally(ca 214-226).The second method is 3dswap-pred.33Unlike H-Predictor,3dswap-pred predicts the probability of domain swapping based on protein sequences using the random forest approach.3dswap-pred succeeded in predicting Mproto be a domain-swapped protein but incorrectly predicted Mpro-C to be a non-domain-swapped protein.3dswap-pred does not provide the location of the possible hinge loop.The discrepancy between predictions and the experimental results suggests that the domain swapping in Mpro-C is not conventional.

    3.2 Flexibility of the domain-swapped dimer

    The dynamic nature of domain-swapped complexes has been observed in previous simulations.34-37For Mpro-C,the simulated backbone root mean square fluctuation(RMSF)at 298 K shows that its structural flexibility is increased in the transition from monomer to domain-swapped dimer(Fig.2A).The increased flexibility of the domain-swapped dimer is consistent with experimental B-factors(Fig.2B).It is noted that the hinge loop does not locate to the region with the highest flexibility. This may be the reason why the structure-based method H-Predictor failed to correctly locate the hinge loop in Mpro-C.The flexibility of the domain-swapped dimer can also be revealed by investigating intermolecular contacts in the open interface. The open interface in the Mpro-C dimer is mainly formed between the two hinge loops and between the two main domains. During simulations,contacts between the two hinge loops (Fig.2C)and between the two main domains(Fig.2D)fluctuated to a certain extent,indicating the dynamic feature of the open interfaces.

    3.3 Compacting of the unfolded monomer and dimer

    The unfolding of a protein(fully or partially)and opening of the swapped region has been proposed as a mechanism for domain swapping in several proteins.12,19Unlike previously studied proteins,the swapped region of Mpro-C locates to the core of a folded structure and is wrapped by four other helices (Fig.1A).It is currently unclear whether the swapped region of Mpro-C is released and exposed in the unfolded state.To address the structural properties of unfolded Mpro-C,we performed simulations at 498 K.Simulation trajectories indicate that the unfolding process initiates from the C-terminal helix, which is consistent with the experimental observation that the C-terminal helix exhibits the lowest stability and unfolds in the presence of 2.5 mol·L-1urea.38Figs.3A and 3B indicate that the Mpro-C monomer unfolds within about 40 ns.The unfolded monomer retains a compact structure and the average radius of gyration of the unfolded conformations(40-100 ns)is only (0.13±0.06)nm greater than the native folded state(Fig.3C).

    Unfolding of the Mpro-C dimer takes longer than that of the monomer and the CαRMSD does not reach a plateau within 100 ns of simulation(Fig.3D).The partially unfolded dimer is also compact as revealed by intermolecular contacts between the two monomers(Fig.3E)and the radius of gyration (Fig.3F).Extensive intermolecular contacts and a decrease in the radius of gyration indicate that the partially unfolded dimer forms a united molten structure rather than being two individual components.

    3.4 Opening of the swapped helix in the unfolded monomer

    Although the unfolded Mpro-C monomer is compact,solvent accessible surface area(SASA)indicates that the swapped region is released and exposed in the unfolded state.In the native state,SASA of the swapped region is 4.75 nm2,while in the unfolded state(40-100 ns),SASA increases to(10.57±2.04)nm2. Dividing SASA into hydrophobic and hydrophilic,we find that a great part of the increased SASA is hydrophobic,from 2.11 nm2in the native state to(7.00±1.48)nm2in the unfolded state (Fig.4A).Hydrophilic SASA only increases moderately (Fig.4B).Snapshots of simulations clearly show that the swapped region is exposed in the unfolded state(Fig.4C).Our results indicate that regions with the lowest stability may not possess the highest propensity of being swapped and regions that are highly buried but exposed in the unfolded state may also be swapped.Therefore,more factors are needed to be considered to further improve the hinge loop prediction methods.

    Fig.2 Comparison of the flexibility between the monomer and the domain-swapped dimer of Mpro-C(A)simulated backbone RMSF and(B)experimental B-factor for the monomer and the dimer,the monomer is indicated by a black line and the two chains in the dimer are indicated by red and blue lines.(C)Number of contacts between the hinge loops and(D)number of contacts between the main domains in the dimer during simulations

    Fig.3 Unfolding simulations of Mpro-C(A-C)monomer and(D-F)domain-swapped dimer(A)CαRMSD relative to the native monomer structure;(B)percentage of residues in the α-helical structure;(C)radius of gyration of all protein atoms;(D)CαRMSD relative to native dimer structure;(E)number of contacts between the two monomers;(F)radius of gyration of all protein atoms.Three simulation trajectories are shown.

    Fig.4 SASAof the swapped helix during unfolding simulations of the monomer(A)hydrophobic SASA,(B)hydrophilic SASA,three simulation trajectories are shown;(C)representative unfolded conformations of the Mpro-C monomer in one trajectory.The swapped region is shown in red.

    4 Discussion

    As a mechanism for forming protein complexes,3D domain swapping has been observed in about 10%of structural classification of protein(SCOP)fold types and 5%of SCOP families.13Extensive distribution of 3D domain swapping in the protein structure space indicates that 3D domain swapping plays important biological functions.To clarify how 3D domainswapped structures are formed,many studies have been conducted to investigate the mechanism of 3D domain swapping. A general picture has been obtained for some proteins,whereby the swapping process starts from the fully or partially unfolded state.12,19,39The unfolding of a protein and the opening of the swapped region promote interactions between the swapped region of one monomer and the main domain of another monomer,and thus increase the probability of forming 3D domain-swapping complexes.It is expected that mutations which destabilize a monomer will increase the population of the domain-swapped form,e.g.,cyanovirin-N.40

    The opening of swapped regions in the unfolded state has been observed in several proteins,e.g.,p13suc1,41ribonuclease A,42GB1,43FIS,44and SH3 domain.15However,simulations with GB1 showed that unfolding may be not necessary in the swapping process,and that the conformational changes of monomers are tightly coupled to the swapping process.45NMR measurements of the isolated EC1 domain of type II cadherin-8 identified monomers with exposed swapped regions, and it was proposed that swapping of the EC1 domain of cadherin-8 proceeds via a selected-fit mechanism.46However,later studies by Sivasankar et al.,47suggested that cadherin dimerization proceeds via an induced fit mechanism.We noted that the GB1 domain and the EC1 domain of cadherin-8 share one common structural feature that the swapped region is exposed at the surface even in the folded monomer.This enables monomers to form intermolecular interactions between the swapped region of one monomer and the main domain of the other monomer,and then to undergo subsequent conformational changes to form the final domain-swapped dimer.

    In contrast to the GB1 and EC1 domains of cadherin-8,the swapped regions of Mpro-C and Mprolocate to the core of a folded structure.Weak interactions that form during encounters between two folded monomers may not enable the folded structures to deform and release the swapped regions.Recently, Kang et al.38studied the swapping kinetics and thermodynamics of Mpro-C and found that unfolding of the C-terminal α5-helix is required for Mpro-C to form domain-swapped dimer.It is proposed that unfolding of the C-terminal helix converts Mpro-C into an active state,which promotes Mpro-C to form an intermediate dimer.The N-terminal α1-helices are exchanged in the intermediate dimer.Exposure of the α1-helix in the unfolded monomer may facilitate α1-helix from one Mpro-C monomer to form extensive hydrophobic interactions with the other Mpro-C monomer and so promote the formation of domainswapped dimer.

    5 Conclusions

    By using 3D domain-swapping predictions and molecular dynamics simulations,we studied the swapping mechanism of Mpro-C and Mpro.We found that both structure-based and sequence-based methods failed to predict the hinge loop location in Mpro-C and Mpro.We then performed extensive molecular dynamics simulations to investigate the structural properties of the unfolded monomer and the domain-swapped dimer.We found that although the swapped region was buried in the native state,it was exposed in the unfolded monomer.Our results suggest that exposure of the swapped region in the unfolded state may promote interactions between monomers and the formation of domain-swapped structures in Mpro-C and Mpro.

    (1) Bennett,M.J.;Schlunegger,M.P.;Eisenberg,D.Protein Sci. 1995,4,2455.doi:10.1002/pro.v4:12

    (2) Nelson,R.;Eisenberg,D.Curr.Opin.Struct.Biol.2006,16, 260.doi:10.1016/j.sbi.2006.03.007

    (3) Liu,C.;Sawaya,M.R.;Eisenberg,D.Nat.Struct.Mol.Biol. 2011,18,49.doi:10.1038/nsmb.1948

    (4) ?erovnik,E.;Stoka,V.;Mirti?,A.;Gun?ar,G.;Grdadolnik,J.; Staniforth,R.A.;Turk,D.;Turk,V.FEBS J.2011,278,2263. doi:10.1111/j.1742-4658.2011.08149.x

    (5) Bennett,M.J.;Sawaya,M.R.;Eisenberg,D.Structure 2006, 14,811.doi:10.1016/j.str.2006.03.011

    (6) Bergdoll,M.;Eltis,L.D.;Cameron,A.D.;Dumas,P.;Bolin,J. T.Protein Sci.1998,7,1661.doi:10.1002/pro.v7:8

    (7) D?Alessio,G.Prog.Biophys.Mol.Biol.1999,72,271.doi: 10.1016/S0079-6107(99)00009-7

    (8) Hadjithomas,M.;Moudrianakis,E.N.Proc.Natl.Acad.Sci.U. S.A.2011,108,13462.doi:10.1073/pnas.1108649108 (9)Schymkowitz,J.W.H.;Rousseau,F.;Wilkinson,H.R.; Friedler,A.;Itzhaki,L.S.Nat.Struct.Biol.2001,8,888.doi: 10.1038/nsb1001-888

    (10) Shi,Q.;Maruthamuthu,V.;Li,F.;Leckband,D.Biophys.J. 2010,99,95.doi:10.1016/j.bpj.2010.03.062

    (11) Liu,Y.S.;Eisenberg,D.Protein Sci.2002,11,1285.doi: 10.1110/ps.0201402

    (12) Gronenborn,A.M.Curr.Opin.Struct.Biol.2009,19,39.doi: 10.1016/j.sbi.2008.12.002

    (13) Huang,Y.;Cao,H.;Liu,Z.Proteins 2012,doi:10.1002/ prot.24055.

    (14) Ding,F.;Prutzman,K.C.;Campbell,S.L.;Dokholyan,N.V. Structure 2006,14,5.doi:10.1016/j.str.2005.09.008

    (15) Yang,S.C.;Cho,S.S.;Levy,Y.;Cheung,M.S.;Levine,H.; Wolynes,P.G.;Onuchic,J.N.Proc.Natl.Acad.Sci.U.S.A. 2004,101,13786.doi:10.1073/pnas.0403724101

    (16) Chen,Y.W.;Dokholyan,N.V.J.Mol.Biol.2005,354,473.doi: 10.1016/j.jmb.2005.09.075

    (17) Chahine,J.;Cheung,M.S.Biophys.J.2005,89,2693.doi: 10.1529/biophysj.105.062679

    (18) Song,G.;Jernigan,R.L.Proteins 2006,63,197.doi:10.1002/ prot.20836

    (19) Rousseau,F.;Schymkowitz,J.W.H.;Itzhaki,L.S.Structure 2003,11,243.doi:10.1016/S0969-2126(03)00029-7

    (20) Zhang,S.;Zhong,N.;Xue,F.;Kang,X.;Ren,X.;Chen,J.;Jin, C.;Lou,Z.;Xia,B.Protein Cell 2010,1,371.doi:10.1007/ s13238-010-0044-8

    (21)Yang,H.;Yang,M.;Ding,Y.;Liu,Y.;Lou,Z.;Zhou,Z.;Sun, L.;Mo,L.;Ye,S.;Pang,H.;Gao,G.F.;Anand,K.;Bartlam, M.;Hilgenfeld,R.;Rao,Z.Proc.Natl.Acad.Sci.U.S.A.2003, 100,13190.doi:10.1073/pnas.1835675100

    (22) Zhong,N.;Zhang,S.N.;Xue,F.;Kang,X.;Zou,P.;Chen,J.X.; Liang,C.;Rao,Z.H.;Jin,C.W.;Lou,Z.Y.;Xia,B.Protein Sci. 2009,18,839.

    (23) Berendsen,H.J.C.;van der Spoel,D.;van Drunen,R.Comp. Phys.Commun.1995,91,43.doi:10.1016/0010-4655(95) 00042-E

    (24) Hess,B.;Kutzner,C.;Spoel,D.v.d.;Lindahl,E.J.Chem. Theory Comput.2008,4,435.doi:10.1021/ct700301q

    (25) Kaminski,G.A.;Friesner,R.A.;Tirado-Rives,J.;Jorgensen,W. L.J.Phys.Chem.B 2001,105,6474.doi:10.1021/jp003919d

    (26) Berendsen,H.J.C.;Grigera,J.R.;Straatsma,T.P.J.Phys. Chem.1987,91,6269.doi:10.1021/j100308a038

    (27) Darden,T.;York,D.;Pedersen,L.J.Chem.Phys.1993,98, 10089.doi:10.1063/1.464397

    (28) Hess,B.;Bekker,H.;Berendsen,H.J.C.;Fraaije,J.G.E.M. J.Comput.Chem.1997,18,1463.doi:10.1002/(ISSN) 1096-987X

    (29) Bussi,G.;Donadio,D.;Parrinello,M.J.Chem.Phys.2007, 126,014101.doi:10.1063/1.2408420

    (30) Parrinello,M.;Rahman,A.J.Appl.Phys.1981,52,7182.doi: 10.1063/1.328693

    (31) Kabsch,W.;Sander,C.Biopolymers 1983,22,2577.doi: 10.1002/(ISSN)1097-0282

    (32) Humphrey,W.;Dalke,A.;Schulten,K.J.Mol.Graph.1996,14, 33.doi:10.1016/0263-7855(96)00018-5

    (33)Shameer,K.;Pugalenthi,G.;Kandaswamy,K.K.;Sowdhamini, R.Protein Pept.Lett.2011,18,1010.doi:10.2174/ 092986611796378729

    (34) Merlino,A.;Vitagliano,L.;Ceruso,M.A.;Mazzarella,L. Biophys.J.2004,86,2383.doi:10.1016/S0006-3495(04) 74295-2

    (35) Kundu,S.;Jernigan,R.L.Biophys.J.2004,86,3846.doi: 10.1529/biophysj.103.034736

    (36) Merlino,A.;Ceruso,M.A.;Vitagliano,L.;Mazzarella,L. Biophys.J.2005,88,2003.doi:10.1529/biophysj.104.048611

    (37) Cailliez,F.;Lavery,R.Biophys.J.2006,91,3964.doi:10.1529/ biophysj.106.087213

    (38) Kang,X.;Zhong,N.;Zou,P.;Zhang,S.;Jin,C.;Xia,B.Proc. Natl.Acad.Sci.U.S.A.2012,109,14900.doi:10.1073/ pnas.1205241109.

    (39) Liu,L.;Byeon,I.J.;Bahar,I.;Gronenborn,A.M.J.Am.Chem. Soc.2012,134,4229.doi:10.1021/ja210118w

    (40) Barrientos,L.G.;Louis,J.M.;Botos,I.;Mori,T.;Han,Z.; O?Keefe,B.R.;Boyd,M.R.;Wlodawer,A.;Gronenborn,A.M. Structure 2002,10,673.doi:10.1016/S0969-2126(02)00758-X

    (41) Rousseau,F.;Schymkowitz,J.W.;Wilkinson,H.R.;Itzhaki,L. S.J.Biol.Chem.2004,279,8368.

    (42) Esposito,L.;Daggett,V.Biochemistry 2005,44,3358.doi: 10.1021/bi0488350

    (43) Byeon,I.J.L.;Louis,J.M.;Gronenborn,A.M.J.Mol.Biol. 2004,340,615.doi:10.1016/j.jmb.2004.04.069

    (44)Topping,T.B.;Hoch,D.A.;Gloss,L.M.J.Mol.Biol.2004, 335,1065.doi:10.1016/j.jmb.2003.11.013

    (45) Malevanets,A.;Sirota,F.L.;Wodak,S.J.J.Mol.Biol.2008, 382,223.doi:10.1016/j.jmb.2008.06.025

    (46) Miloushev,V.Z.;Bahna,F.;Ciatto,C.;Ahlsen,G.;Honig,B.; Shapiro,L.;Palmer,A.G.Structure 2008,16,1195.doi: 10.1016/j.str.2008.05.009

    (47) Sivasankar,S.;Zhang,Y.;Nelson,W.J.;Chu,S.Structure 2009, 17,1075.doi:10.1016/j.str.2009.06.012

    August 13,2012;Revised:September 7,2012;Published on Web:September 7,2012.

    Mechanism of 3D Domain Swapping for Mpro-C:Clues from Molecular Simulations

    HUANG Yong-Qi1,2,3KANG Xue1,4XIA Bin1,4,5LIU Zhi-Rong1,2,3,*
    (1College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P.R.China;2Beijing National Laboratory for Molecular Sciences,State Key Laboratory for Structural Chemistry of Unstable and Stable Species,Peking University, Beijing 100871,P.R.China; 3Center for Quantitative Biology,Peking University,Beijing 100871,P.R.China;4Beijing Nuclear Magnetic Resonance Center,Peking University,Beijing 100871,P.R.China; 5School of Life Sciences,Peking University,Beijing 100871,P.R.China)

    SARS coronavirus main protease(Mpro)is a key enzyme involved in the extensive proteolytic processing of the virus?polyproteins.The crystal structure of Mproreveals that the enzyme exists in two differenthomo-dimericforms:a three-dimensional(3D)domain-swapped form;and a non-3D domain-swapped form.The isolated C-terminal domain(Mpro-C)also forms a 3D domain-swapped structure similar to the full-length protein.Unlike conventional 3D domain-swapped structures,in which the swapped regions are located on the surface,Mpro-C swaps a helix at the core of a folded domain.In this work,we used molecular dynamics simulations and 3D domain-swapping predictions to investigate how a highly buried core helix in the helix bundle structure of Mpro-C can be swapped.We found that both structure-and sequence-based methods failed to predict the location of the hinge loop in Mpro-C and Mpro.Extensive molecular dynamics simulations were performed to investigate the structural properties of the unfolded monomer and the 3D domain-swapped dimer of Mpro-C.We found that,although the swapped region was buried in the native state,it was exposed in the unfolded monomer.Our results suggest that the opening of the swapped region in the fully or partially unfolded state may promote interactions between monomers and the formation of domain-swapped dimers.

    SARS coronavirus;Main protease;Molecular simulation;Domain swapping; Protein-protein interaction; Protein unfolding

    10.3866/PKU.WHXB201209072

    ?Corresponding author.Email:LiuZhiRong@pku.edu.cn;Tel:+86-10-62752541;Fax:+86-10-62759595.

    The project was supported by the National Key Basic Research Program of China(973)(2009CB918500,2003CB514104)and National Natural Science Foundation of China(20973016,11021463,31170682).

    國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃項(xiàng)目(973)(2009CB918500,2003CB514104)和國(guó)家自然科學(xué)基金(20973016,11021463,31170682)資助

    O641

    猜你喜歡
    北京大學(xué)機(jī)理二聚體
    隔熱纖維材料的隔熱機(jī)理及其應(yīng)用
    北京大學(xué)首都發(fā)展新年論壇(2021)舉行
    就任北京大學(xué)校長(zhǎng)之演說(shuō)
    煤層氣吸附-解吸機(jī)理再認(rèn)識(shí)
    霧霾機(jī)理之問(wèn)
    Le r?le de la lecture dans la formation desétudiants de langues vivantes
    La solitude
    D-二聚體和BNP與ACS近期不良心血管事件發(fā)生的關(guān)聯(lián)性
    聯(lián)合檢測(cè)D-二聚體和CA153在乳腺癌診治中的臨床意義
    兩種試劑D-二聚體檢測(cè)值與纖維蛋白降解產(chǎn)物值的相關(guān)性研究
    婷婷色av中文字幕| 国产精品人妻久久久影院| 一个人免费在线观看电影| 麻豆成人午夜福利视频| 秋霞伦理黄片| 22中文网久久字幕| 99在线人妻在线中文字幕| 18禁裸乳无遮挡免费网站照片| 中文字幕制服av| 欧美高清成人免费视频www| 日本免费在线观看一区| 亚洲精品色激情综合| 一夜夜www| 最近2019中文字幕mv第一页| 国产精品野战在线观看| 日日啪夜夜撸| 免费大片18禁| 国产单亲对白刺激| 成人高潮视频无遮挡免费网站| 国产极品天堂在线| 日韩强制内射视频| 99久国产av精品国产电影| 国产精品永久免费网站| 大香蕉久久网| 国产伦精品一区二区三区视频9| 深爱激情五月婷婷| 国产一级毛片在线| 麻豆一二三区av精品| 大话2 男鬼变身卡| 色综合站精品国产| 建设人人有责人人尽责人人享有的 | 亚洲天堂国产精品一区在线| 全区人妻精品视频| 我的女老师完整版在线观看| 国产亚洲精品久久久com| 尤物成人国产欧美一区二区三区| 日本免费在线观看一区| 国产黄a三级三级三级人| 国产高清视频在线观看网站| 综合色丁香网| 亚洲av不卡在线观看| 欧美高清成人免费视频www| 欧美日韩在线观看h| av播播在线观看一区| 青春草国产在线视频| 国产成人免费观看mmmm| 黄色配什么色好看| 一级黄片播放器| 男女下面进入的视频免费午夜| 久久草成人影院| 一区二区三区乱码不卡18| 国产一区二区亚洲精品在线观看| 免费播放大片免费观看视频在线观看 | 午夜福利在线在线| 网址你懂的国产日韩在线| 国产精品一区二区三区四区免费观看| 乱码一卡2卡4卡精品| 大香蕉97超碰在线| a级毛片免费高清观看在线播放| 少妇丰满av| 人妻夜夜爽99麻豆av| 久久人人爽人人片av| 精品久久久久久电影网 | 亚洲怡红院男人天堂| 国产av在哪里看| 国产乱人视频| 国产极品精品免费视频能看的| 国产精品蜜桃在线观看| 一个人观看的视频www高清免费观看| 免费av毛片视频| 汤姆久久久久久久影院中文字幕 | 99久国产av精品国产电影| 国产精品女同一区二区软件| 精华霜和精华液先用哪个| 欧美高清成人免费视频www| 建设人人有责人人尽责人人享有的 | 老司机福利观看| 国产乱来视频区| 久久久久久久午夜电影| 欧美日韩精品成人综合77777| 国产免费一级a男人的天堂| 亚洲色图av天堂| 联通29元200g的流量卡| 人人妻人人看人人澡| 亚洲人与动物交配视频| 男人和女人高潮做爰伦理| 视频中文字幕在线观看| 青春草亚洲视频在线观看| 亚洲av成人av| 亚洲精品乱久久久久久| 爱豆传媒免费全集在线观看| av免费在线看不卡| 自拍偷自拍亚洲精品老妇| 精品国产露脸久久av麻豆 | 美女cb高潮喷水在线观看| 亚洲av一区综合| 久久久久久久午夜电影| 欧美精品国产亚洲| 91av网一区二区| 日韩精品青青久久久久久| 国产精品乱码一区二三区的特点| 小蜜桃在线观看免费完整版高清| 国产又黄又爽又无遮挡在线| 午夜福利成人在线免费观看| 国产精品一二三区在线看| 男人的好看免费观看在线视频| 能在线免费看毛片的网站| 国产麻豆成人av免费视频| 成人亚洲精品av一区二区| 国产在视频线在精品| 国产伦精品一区二区三区四那| 午夜精品国产一区二区电影 | 国产在视频线精品| 狠狠狠狠99中文字幕| 观看美女的网站| 91精品伊人久久大香线蕉| 床上黄色一级片| 色噜噜av男人的天堂激情| 91aial.com中文字幕在线观看| 日韩欧美 国产精品| 在线观看66精品国产| 内射极品少妇av片p| 精品国内亚洲2022精品成人| 日本一本二区三区精品| 午夜精品国产一区二区电影 | 欧美一级a爱片免费观看看| 真实男女啪啪啪动态图| 亚洲四区av| 免费搜索国产男女视频| 两个人视频免费观看高清| 校园人妻丝袜中文字幕| 国产视频首页在线观看| 国产成人精品婷婷| 边亲边吃奶的免费视频| 亚洲真实伦在线观看| 国产av码专区亚洲av| 三级经典国产精品| 尤物成人国产欧美一区二区三区| 国产精品久久电影中文字幕| 免费看日本二区| 18禁动态无遮挡网站| 女的被弄到高潮叫床怎么办| videos熟女内射| 亚洲国产欧洲综合997久久,| 色噜噜av男人的天堂激情| 国产av在哪里看| 波多野结衣高清无吗| 日本免费在线观看一区| 亚洲av二区三区四区| 在线播放无遮挡| 欧美潮喷喷水| 免费人成在线观看视频色| 青春草视频在线免费观看| 美女被艹到高潮喷水动态| 亚洲无线观看免费| 久久久久久久久中文| 久久久久免费精品人妻一区二区| 成人午夜精彩视频在线观看| 国产免费又黄又爽又色| 内地一区二区视频在线| 精品99又大又爽又粗少妇毛片| 99热6这里只有精品| 超碰97精品在线观看| 久久精品久久久久久久性| 亚洲国产色片| 成年免费大片在线观看| 在线免费十八禁| 欧美zozozo另类| 69人妻影院| 视频中文字幕在线观看| 1024手机看黄色片| 久久久久性生活片| 一卡2卡三卡四卡精品乱码亚洲| 国产免费又黄又爽又色| 一级爰片在线观看| av专区在线播放| 久久精品熟女亚洲av麻豆精品 | 久久精品夜夜夜夜夜久久蜜豆| 在线观看一区二区三区| 日日撸夜夜添| 日韩欧美三级三区| 五月玫瑰六月丁香| 高清av免费在线| 亚洲av男天堂| 日本五十路高清| 亚洲真实伦在线观看| 久久精品夜夜夜夜夜久久蜜豆| 在线免费观看的www视频| 深爱激情五月婷婷| 亚洲精品影视一区二区三区av| 成人av在线播放网站| 99久国产av精品| 久久精品国产99精品国产亚洲性色| 直男gayav资源| 99久久成人亚洲精品观看| videos熟女内射| 欧美潮喷喷水| 两性午夜刺激爽爽歪歪视频在线观看| 黄色一级大片看看| 天堂中文最新版在线下载 | 日韩制服骚丝袜av| 99热网站在线观看| 成人特级av手机在线观看| 嫩草影院新地址| 久久久国产成人免费| 国产精品蜜桃在线观看| 成人美女网站在线观看视频| 精品久久久久久久人妻蜜臀av| 精品少妇黑人巨大在线播放 | 亚洲av一区综合| 国产精品久久视频播放| 国产精品熟女久久久久浪| 成人性生交大片免费视频hd| 如何舔出高潮| 亚洲av成人精品一区久久| 久久久久久久久久成人| 成年女人看的毛片在线观看| 精品人妻偷拍中文字幕| 精华霜和精华液先用哪个| 97在线视频观看| 成人午夜高清在线视频| 午夜免费激情av| 女人被狂操c到高潮| 熟女人妻精品中文字幕| 久久久久性生活片| 国产精品永久免费网站| 亚洲丝袜综合中文字幕| 色5月婷婷丁香| 成人亚洲欧美一区二区av| 国产精品99久久久久久久久| 免费观看在线日韩| 国产老妇女一区| 国产亚洲5aaaaa淫片| www.色视频.com| 国产亚洲91精品色在线| 91久久精品国产一区二区成人| 男人的好看免费观看在线视频| 欧美成人a在线观看| 一区二区三区乱码不卡18| 亚洲欧美中文字幕日韩二区| 亚洲一区高清亚洲精品| 精品人妻一区二区三区麻豆| 小蜜桃在线观看免费完整版高清| 国产一区二区三区av在线| 在线观看一区二区三区| 免费av毛片视频| 激情 狠狠 欧美| 综合色丁香网| 亚洲国产精品成人久久小说| 亚洲精品乱码久久久v下载方式| 可以在线观看毛片的网站| 国产成人freesex在线| 成人毛片a级毛片在线播放| 欧美日本亚洲视频在线播放| 免费播放大片免费观看视频在线观看 | av在线亚洲专区| 国产亚洲精品av在线| 黄色日韩在线| 两个人的视频大全免费| 久久久久久久久久黄片| 国产黄片视频在线免费观看| 午夜激情福利司机影院| 国产成人精品一,二区| 老司机影院毛片| 亚洲av日韩在线播放| 成人三级黄色视频| 亚洲精品色激情综合| 校园人妻丝袜中文字幕| 久久久国产成人免费| 免费黄网站久久成人精品| 97超碰精品成人国产| 成人亚洲欧美一区二区av| 国产午夜精品久久久久久一区二区三区| 最近最新中文字幕免费大全7| 亚洲av一区综合| 亚洲国产色片| 国产av一区在线观看免费| 国产精品99久久久久久久久| 永久网站在线| 国产午夜精品久久久久久一区二区三区| 激情 狠狠 欧美| 丰满少妇做爰视频| 中文字幕亚洲精品专区| 国产精品人妻久久久久久| 国产探花极品一区二区| 久久精品91蜜桃| 久久亚洲精品不卡| 综合色丁香网| 人妻少妇偷人精品九色| 又爽又黄a免费视频| 天堂av国产一区二区熟女人妻| 日韩,欧美,国产一区二区三区 | 一级二级三级毛片免费看| 男女视频在线观看网站免费| 狂野欧美白嫩少妇大欣赏| 免费看日本二区| 高清视频免费观看一区二区 | 秋霞伦理黄片| 国产毛片a区久久久久| 精品一区二区三区人妻视频| 精品一区二区免费观看| 综合色av麻豆| 一本一本综合久久| 亚洲精品乱码久久久v下载方式| 午夜视频国产福利| .国产精品久久| 精华霜和精华液先用哪个| av视频在线观看入口| 色视频www国产| 国产亚洲av片在线观看秒播厂 | 在现免费观看毛片| 国产91av在线免费观看| 91精品一卡2卡3卡4卡| 1000部很黄的大片| 亚洲av成人精品一二三区| 69人妻影院| 男人狂女人下面高潮的视频| 午夜视频国产福利| 国产免费一级a男人的天堂| 国产精品,欧美在线| 18禁在线播放成人免费| 男插女下体视频免费在线播放| 韩国高清视频一区二区三区| 成人午夜精彩视频在线观看| 国产成人精品久久久久久| 国产精品一及| 日韩欧美精品免费久久| 精品久久久久久久久久久久久| 欧美不卡视频在线免费观看| 哪个播放器可以免费观看大片| 色综合站精品国产| 2021少妇久久久久久久久久久| av在线老鸭窝| av天堂中文字幕网| 日本色播在线视频| 久久人人爽人人爽人人片va| 69av精品久久久久久| 又黄又爽又刺激的免费视频.| 内射极品少妇av片p| 久久精品91蜜桃| 国产三级在线视频| 色综合站精品国产| 春色校园在线视频观看| 久久久久久久亚洲中文字幕| 午夜福利在线观看免费完整高清在| 日韩三级伦理在线观看| 一级毛片我不卡| 黄色欧美视频在线观看| 1000部很黄的大片| 亚洲伊人久久精品综合 | 国产精品久久久久久av不卡| 晚上一个人看的免费电影| 日韩国内少妇激情av| 国产午夜精品久久久久久一区二区三区| 色综合站精品国产| 免费一级毛片在线播放高清视频| 色综合色国产| 免费播放大片免费观看视频在线观看 | 亚洲乱码一区二区免费版| 高清av免费在线| 日本欧美国产在线视频| 老女人水多毛片| 亚洲成人av在线免费| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产黄色视频一区二区在线观看 | 婷婷色综合大香蕉| 亚洲国产欧洲综合997久久,| 午夜亚洲福利在线播放| 日韩亚洲欧美综合| 丝袜喷水一区| 色网站视频免费| 少妇的逼好多水| 乱系列少妇在线播放| 久久亚洲国产成人精品v| 精品人妻视频免费看| 亚洲婷婷狠狠爱综合网| 国产精品久久电影中文字幕| 欧美+日韩+精品| av在线观看视频网站免费| 视频中文字幕在线观看| 欧美成人免费av一区二区三区| 久久久久国产网址| 久久99热这里只有精品18| 亚洲综合精品二区| 国产成人a区在线观看| 全区人妻精品视频| av免费在线看不卡| 嫩草影院新地址| 建设人人有责人人尽责人人享有的 | 高清av免费在线| 亚洲人与动物交配视频| 伦精品一区二区三区| 蜜臀久久99精品久久宅男| 男女边吃奶边做爰视频| 老司机影院成人| 亚洲人成网站在线观看播放| 国产爱豆传媒在线观看| 国产精品日韩av在线免费观看| 建设人人有责人人尽责人人享有的 | 国产精品国产三级国产av玫瑰| 六月丁香七月| 国产乱人偷精品视频| 亚洲国产高清在线一区二区三| 黑人高潮一二区| 国产人妻一区二区三区在| 欧美高清成人免费视频www| 亚洲欧美精品专区久久| 国产精品精品国产色婷婷| 内地一区二区视频在线| av福利片在线观看| 日韩中字成人| av卡一久久| 丝袜喷水一区| 国产精品久久久久久久电影| av国产免费在线观看| 国产高清有码在线观看视频| 亚洲人成网站高清观看| 亚洲精品日韩在线中文字幕| 国产免费视频播放在线视频 | 韩国高清视频一区二区三区| 99视频精品全部免费 在线| 男女边吃奶边做爰视频| 国产亚洲一区二区精品| 精品酒店卫生间| 国产av不卡久久| 亚洲欧美清纯卡通| 中文在线观看免费www的网站| 亚洲成人av在线免费| 亚洲av成人av| 亚洲一区高清亚洲精品| 国产老妇女一区| 国产黄a三级三级三级人| 啦啦啦啦在线视频资源| 成人毛片60女人毛片免费| 女人十人毛片免费观看3o分钟| 啦啦啦韩国在线观看视频| 国产三级在线视频| 97热精品久久久久久| 青春草视频在线免费观看| 亚洲成人中文字幕在线播放| 99久久精品国产国产毛片| 国产午夜精品论理片| 日韩欧美三级三区| 国产精品国产三级国产专区5o | 国产精品,欧美在线| 51国产日韩欧美| 搞女人的毛片| 久久精品夜夜夜夜夜久久蜜豆| 国产人妻一区二区三区在| 欧美激情国产日韩精品一区| 久久久久久久久久黄片| 免费看av在线观看网站| 国产免费福利视频在线观看| 少妇裸体淫交视频免费看高清| 国产日韩欧美在线精品| 亚洲国产精品sss在线观看| 久久国内精品自在自线图片| 麻豆成人av视频| 久久久久久久久大av| 最近的中文字幕免费完整| 免费av不卡在线播放| 久久久久久国产a免费观看| 麻豆成人午夜福利视频| 免费看av在线观看网站| 黄色日韩在线| 青青草视频在线视频观看| 成人一区二区视频在线观看| av免费观看日本| 在现免费观看毛片| 亚洲av.av天堂| 乱系列少妇在线播放| 九九在线视频观看精品| 亚洲欧洲日产国产| 国产91av在线免费观看| 欧美性猛交╳xxx乱大交人| 国产又黄又爽又无遮挡在线| 亚洲成人精品中文字幕电影| 最近手机中文字幕大全| 免费无遮挡裸体视频| 女人十人毛片免费观看3o分钟| av黄色大香蕉| 亚洲精品久久久久久婷婷小说 | 国产黄色视频一区二区在线观看 | 岛国在线免费视频观看| 小蜜桃在线观看免费完整版高清| 草草在线视频免费看| a级毛色黄片| 国产免费福利视频在线观看| 日韩av在线大香蕉| 欧美+日韩+精品| 我要看日韩黄色一级片| 欧美97在线视频| 亚洲怡红院男人天堂| 美女高潮的动态| 我的老师免费观看完整版| 日日摸夜夜添夜夜爱| 精品久久久久久久人妻蜜臀av| 免费av毛片视频| 女人被狂操c到高潮| 国产高潮美女av| 好男人视频免费观看在线| 中国美白少妇内射xxxbb| av又黄又爽大尺度在线免费看 | 97超碰精品成人国产| 亚洲国产欧美人成| 国产成人a区在线观看| 亚洲国产精品专区欧美| 精品99又大又爽又粗少妇毛片| 国产精品福利在线免费观看| 国产真实乱freesex| 欧美最新免费一区二区三区| 午夜亚洲福利在线播放| 成人欧美大片| 免费不卡的大黄色大毛片视频在线观看 | 亚洲最大成人中文| 高清日韩中文字幕在线| 色视频www国产| 人人妻人人澡欧美一区二区| 免费黄色在线免费观看| 永久网站在线| 插阴视频在线观看视频| 白带黄色成豆腐渣| 日本免费a在线| 国产激情偷乱视频一区二区| 日韩欧美三级三区| 国产精品永久免费网站| 亚洲精品成人久久久久久| 婷婷色av中文字幕| 少妇人妻一区二区三区视频| 国产人妻一区二区三区在| 三级经典国产精品| 欧美一区二区亚洲| 看片在线看免费视频| 色吧在线观看| 老司机福利观看| av在线观看视频网站免费| 亚洲欧美中文字幕日韩二区| 插逼视频在线观看| 亚洲精品国产av成人精品| 国产成人精品久久久久久| 男人的好看免费观看在线视频| 黄色日韩在线| 一二三四中文在线观看免费高清| 国产伦在线观看视频一区| 久久精品综合一区二区三区| 国产欧美日韩精品一区二区| 99久久中文字幕三级久久日本| 欧美区成人在线视频| 青青草视频在线视频观看| 麻豆一二三区av精品| 亚洲av福利一区| 国产精品麻豆人妻色哟哟久久 | 男女啪啪激烈高潮av片| 2021少妇久久久久久久久久久| 日本黄色视频三级网站网址| 亚洲婷婷狠狠爱综合网| 伦理电影大哥的女人| 一个人免费在线观看电影| 中文资源天堂在线| 91久久精品国产一区二区三区| 国产伦精品一区二区三区四那| 99在线人妻在线中文字幕| 99热精品在线国产| 中文精品一卡2卡3卡4更新| 最近最新中文字幕大全电影3| 久久99热这里只有精品18| 九九爱精品视频在线观看| 免费观看人在逋| 国产伦在线观看视频一区| 噜噜噜噜噜久久久久久91| 免费一级毛片在线播放高清视频| 免费电影在线观看免费观看| 久久久久久久久久久丰满| 亚洲精品乱久久久久久| 天堂网av新在线| 亚洲av成人av| 成人午夜精彩视频在线观看| 麻豆国产97在线/欧美| 国产激情偷乱视频一区二区| 成年女人永久免费观看视频| 可以在线观看毛片的网站| 亚洲欧洲日产国产| 亚洲成av人片在线播放无| 观看美女的网站| 日本熟妇午夜| 天天躁日日操中文字幕| 99视频精品全部免费 在线| 日本一二三区视频观看| 人妻夜夜爽99麻豆av| 国产精品久久久久久精品电影小说 | 亚洲国产精品久久男人天堂| 欧美bdsm另类| 一卡2卡三卡四卡精品乱码亚洲| 最新中文字幕久久久久| 国产91av在线免费观看| 99久久精品热视频| 真实男女啪啪啪动态图| 欧美精品国产亚洲| 日韩一区二区视频免费看| 久久久久久大精品| 看黄色毛片网站| 超碰av人人做人人爽久久| 欧美激情国产日韩精品一区| 女人十人毛片免费观看3o分钟| 国产精品一区二区在线观看99 | 国产高清国产精品国产三级 | 国产成人freesex在线| 一个人免费在线观看电影| 伦理电影大哥的女人| 性色avwww在线观看| 三级国产精品欧美在线观看| 成人性生交大片免费视频hd| 婷婷色麻豆天堂久久 | 久久久午夜欧美精品| 免费看av在线观看网站|