• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    雙光子敏化Eu3+高效發(fā)光活細(xì)胞成像納米生物探針

    2012-12-11 09:34:52符小藝邵光勝韓榮成薛富民帆付立民張建平
    物理化學(xué)學(xué)報 2012年10期
    關(guān)鍵詞:小藝榮成敏化

    符小藝 邵光勝 韓榮成 馬 嚴(yán) 薛富民 楊 帆付立民 張建平 王 遠(yuǎn),*

    (1北京分子科學(xué)國家實(shí)驗(yàn)室,分子動態(tài)與穩(wěn)態(tài)國家重點(diǎn)實(shí)驗(yàn)室,北京大學(xué)化學(xué)與分子工程學(xué)院,北京100871; 2華南理工大學(xué)材料科學(xué)與工程學(xué)院,廣州510640;3中國人民大學(xué)化學(xué)系,北京100872)

    雙光子敏化Eu3+高效發(fā)光活細(xì)胞成像納米生物探針

    符小藝1,2,?邵光勝1,?韓榮成1,?馬 嚴(yán)1薛富民1楊 帆3付立民3張建平3王 遠(yuǎn)1,*

    (1北京分子科學(xué)國家實(shí)驗(yàn)室,分子動態(tài)與穩(wěn)態(tài)國家重點(diǎn)實(shí)驗(yàn)室,北京大學(xué)化學(xué)與分子工程學(xué)院,北京100871;2華南理工大學(xué)材料科學(xué)與工程學(xué)院,廣州510640;3中國人民大學(xué)化學(xué)系,北京100872)

    將Eu(tta)3dpbt(dpbt:2-(N,N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine;tta: thenoyltrifluoroacetonato)包埋在甲基丙烯酸甲酯-苯乙烯共聚物、正辛基三甲氧基硅及其水解縮合產(chǎn)物組成的雜化基質(zhì)中,制備了Eu(tta)3dpbt質(zhì)量分?jǐn)?shù)為40%的熒光納米粒子,其平均粒徑為45 nm.所制備的發(fā)光納米粒子在水中分散穩(wěn)定性高、光穩(wěn)定性好、細(xì)胞毒性低、長波敏化Eu3+發(fā)光性能優(yōu)良,適宜作為生物分析的發(fā)光標(biāo)記物.所制備的發(fā)光納米粒子的可見區(qū)激發(fā)峰位于415 nm,激發(fā)峰尾部延展至475 nm,其發(fā)光量子產(chǎn)率為0.31 (λex=415 nm,T=23°C),最大雙光子激發(fā)作用截面為5.0×105GM(λex=830 nm,1 GM=10-50cm4·s·photo-1· particle-1).以轉(zhuǎn)鐵蛋白修飾上述發(fā)光納米粒子表面制備的納米生物探針被成功應(yīng)用于活的HeLa腫瘤細(xì)胞的特異性標(biāo)記和雙光子激發(fā)Eu3+發(fā)光成像.

    發(fā)光;銪配合物;雙光子激發(fā);納米生物探針;細(xì)胞成像

    1 Introduction

    Bioprobes based on two-photon-sensitized(TPS)luminescence of Eu3+have been attracting intensive attention in the fields of material science and bioanalysis because of the anticipation that two-photon excitation bioimaging based on such probes will combine the advantages of high sensitivity,high signal-to-noise ratio,deep penetration,as well as low photodamage to living organism.1-5The superior luminescent properties of europium complexes are characterized by the narrow-line emission of Eu3+in the red-light region,with acceptable transparence for many biosamples,large Stokes shifts,and long luminescence lifetimes.3-5Remarkable progresses have been achieved in the design and synthesis of Eu3+complexes with excellent two-photon excitation(TPE)luminescence properties,4,6-17and several ones have been successfully applied in the multi-photon-excitation bio-imaging of cells.8,9,18In comparison with free Eu3+complex molecules,bionanoprobes prepared by encapsulating proper Eu3+complexes into water-dispersible and biocompatible nanoparticles possess the additional benefits of markedly enhanced luminescent brightness, chemical stability and photostability,as well as lower cytotoxicity.4,19,20The previously reported complex Eu(tta)3dpbt21(dpbt:2-(N,N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine;tta:thenoyltrifluoroacetonato,Scheme S1(see Supporting Information))is one of the most proper dyes for preparing bionanoprobes with desirable two-photon-sensitized Eu3+luminescence properties in view of its high molecular TPE action cross section(δ×Φ,82 GM at 808 nm,1 GM=10-50cm4·s· photon-1·molecule-1),and the excellent TPE luminescent properties of its molecular aggregates.22,23However,the attempts to prepare desired nanoprobes encapsulating Eu(tta)3dpbt or its derivatives16,24by conventional encapsulation methods such as microemulsion polymerization25or St?ber method26failed,due to the dissociation of the complexes and loss of their intrinsic luminescence properties during the encapsulation processes.

    Recently,we reported a co-precipitation-assembly method for preparing nanospheres encapsulating 10%(w)of Eu(tta)3dpbt (EuLNPs)which exhibited fine TPE Eu3+luminescence properties with a maximal δ×Φ value for the nanospheres of 1.2×105GM at 825 nm.Bionanoprobes using EuLNPs as the luminescent marker have been successfully applied in the TPE cell-selective-imaging of live cancer cells.20We believe that the two-photon excitation imaging quality based on nanoprobes encapsulating Eu(tta)3dpbt could be further improved by increasing the particles?TPE action cross section,which could be realized by augmenting the Eu(tta)3dpbt content of the nanospheres.However,with the previously reported experimental conditions,the preparation of nanospheres containing more than 15%(w)of Eu(tta)3dpbt produced a large amount of precipitates.

    Herein we report the preparation and luminescent properties of new hybrid nanospheres with high Eu(tta)3dpbt loading (40%(w))and excellent dispersion-stability in water(EuPHS) which were prepared by a co-precipitation-condensation method.27,28The two-photon-sensitized Eu3+luminescence properties of EuPHS were measured.And the tumor cell targeting behavior of transferrin-modified EuPHS(Tf-EuPHS)was observed using a non-invasive two-photon excited(TPE)luminescence imaging.Receptor-mediated tumor cell targeting behavior of Tf-EuPHS was performed in vitro by inhibition with NaN3and 2-deoxy-D-glucose.In addition,the biocompatibility of EuPHS was also evaluated with cytotoxicity tests.

    2 Materials and methods

    2.1 Materials

    Eu(tta)3dpbt was synthesized according to the method reported previously.21Octyltrimethoxysilane(OTS,97%)was purchased from Alfa Aesar.Poly(styrene-co-methyl methacrylate) (P(ST-co-MMA),40%styrene,Mw~100000-150000)was purchased from Aldrich.Transferrin(>98%)purchased from Sigma,cetyltrimethyl ammonium bromide(≥99%)obtained from Acros Organics,and tris(hydroxymethyl)aminomethane from Amresco were used without further purification.Other chemicals ofAR grade were used as received.

    2.2 Preparation of EuPHS

    A colloidal solution of EuPHS was prepared by a co-precipitation-condensation method.27,28In a typical experiment,2.5 mL of acetone solution containing OTS(1.5×10-3mol·L-1), P(ST-co-MMA)(0.16 g·L-1),and Eu(tta)3dpbt(1.3×10-4mol· L-1)was dropwise added into an aqueous solution of cetyltrimethylammonium bromide(CTAB)(7.0 mL,1.4×10-3mol· L-1)under stirring at room temperature.The mixture was further stirred for about 15 min to produce a yellow colloidal solution.To remove large particles,the as-prepared colloidal solution was centrifuged at 10000 g.The supernate was then treated by centrifuging at 40000 g,and the obtained precipitation was re-dispersed in water of 8 mL to produce a colloidal solution of EuPHS.This process was repeated to remove most of CTAB and produce a stable colloid solution of EuPHS(about 52.5 mg·L-1,corresponding to a yield of EuPHS of 30%(w), see Supporting Information for details)with an average diameter of 45 nm as measured by transmission electron microscopy (TEM).A colloidal solution of nanoparticles(EuHS)was also prepared by the aforementioned processes except for the addition of P(ST-co-MMA).

    2.3 Preparation of bionanoprobes

    The obtained colloidal solution of EuPHS(5 mL)was mixed with a solution of transferrin(0.2 mg in 0.2 mL water),and the mixture was incubated at 25°C for 2 h in a thermomix shaker shaking at 300 r·min-1.After being separated by centrifuging (40000 g,5 min)and washed with Tris-HCl buffer(10 mmol· L-1,pH 7.8)twice,the resulting EuPHS modified with transferrin(Tf-EuPHS)were dispersed in 5 mL of Tris-HCl buffer to obtain a colloid solution which was stored at 4°C for use.

    2.4 Cytotoxicity test

    The cytotoxicity measurements were performed using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide)assay.Briefly,HeLa cells were trypsinized and resuspended in Dulbecco?s modified Eagle?s medium(DMEM)containing 10%(V/V)fetal bovine serum(FBS)and 80 U·mL-1gentamycin sulfate.The cells were seeded at a density of 0.2-1.0 million cells per well in a 96-well plate.After 24 h of incubation at 37°C in 5%CO2,the cells were washed 3 times with phosphate buffered solution(PBS,pH 7.4).Colloidal solutions of EuPHS or Tf-EuPHS with different concentrations (100 μL)were added to the wells.After 20 h of incubation at 37°C in 5%CO2,a solution of MTT(20 μL,5.0 mg·mL-1) was added to each well.After 4 h of incubation at 37°C in 5% CO2,the medium was discarded,and the intracellular precipitate of formazan was collected by dimethylsulfoxide(DMSO) (100 μL).The absorbance at 570 nm was measured on a Bio-Rad Model 550 microplate reader.Each data point was collected by averaging the absorbance values of six wells,and the untreated cells were used as controls.Statistical significance was assessed by the two-sample Student?s t-test using SPSS 13.0;P values(level of significance)(<0.01)were considered statistically significant.

    2.5 Cellular uptake

    The effects of NaN3and 2-deoxy-D-glucose on the cellular uptake of Tf-EuPHS were examined.The cells were pre-incubated in PBS buffer solution and supplemented with 10 mmol· L-1NaN3and 50 mmol·L-12-deoxy-D-glucose for 30 min at 37°C followed by incubation in a solution of Tf-EuPHS.

    2.6 Cell culture and imaging

    HeLa cells were propagated in Dulbecco?s modified Eagle?s medium(DMEM)supplemented with 10%(V/V)fetal bovine serum and 80 U·mL-1gentamycin sulfate.Then the cultured cells were trypsinized and re-suspended in this DMEM at a concentration of about 7.5×105mL-1.The cell suspension(100 μL)was transferred to a confocal dish(35 mm).After incubation for 24 h at 37°C in 5%CO2,the cells were carefully rinsed with PBS solution(pH 7.4).Then a colloidal solution of Tf-EuPHS(100 μL,0.2 mg·mL-1)was added.After 3 h incubation at 37°C in 5%CO2,the dish was rinsed three times with PBS solution(pH 7.4)and then 1 mL of fresh serum-free medium was added.The plates were incubated for another 10 min at 37°C and then directly imaged on an upright confocal microscope(Leica TCS SP5)equipped with a femtosecond Ti:sapphire laser and a 20×water immersion objective(Carl Zeiss). The two-photon-excitation luminescence images were taken upon femtosecond 800 nm irradiation(δ×Φ800nm=2.5×105GM) with an average laser power of 10 mW,and integration of Eu3+luminescence in the spectral range from 590 to 620 nm.For comparison,all of the confocal images were taken at the same setting.Transmitted light differential interference contrast (DIC)images were taken on the same instrument.

    2.7 Characterizations

    Transmission electron microscopy(TEM)and high-resolution transmission electron microscopy(HRTEM)images were taken on a transmission electron microscope(JEM 2000FX,Hitachi,Japan)and a field emission microscope(Tecnai F30, FEI,Netherlands),respectively.Energy dispersive X-ray spectroscopy(EDX)measurements and elemental mapping were carried out on a field emission transmission microscope(Tecnai G2F20 U-TWIN,Netherlands)with energy dispersive X-ray spectroscope(EDX,EPMA-1600,Shimadzu,Japan). UV-Vis absorption and photoluminescence measurements were carried out on an absorption spectrometer(CARY 1E,Varian, German)and a fluorescence spectrophotometer(F-4500,Hitachi,Japan).The photoluminescence decay kinetics of EuPHS colloidal nanoparticles was measured by FLS920(Edinburgh Instruments,German).Luminescence quantum yield(Φ)of the prepared nanoparticles was determined according to the method described by Demas and Grosby,29using DCM(4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran)in npropanol(Φ=0.57±0.02)as the reference.The photobleaching experiments were carried out on a fluorescence spectrophotometer using a 150 W xenon lamp as an excitation source.Colloidal solutions of the nanoparticles were continuously irradiated, and the emission intensity was recorded at 8 s intervals.The measurements of TPE action cross sections on the colloidal solution of EuPHS were conducted according to the method reported previously,22using Rhodamine B(RhB)as a standard with known two-photo-absorption cross sections.

    3 Results and discussion

    3.1 Preparation and characterization of EuPHS

    A colloidal solution of luminescent nanoparticles encapsulating Eu(tta)3dpbt was prepared by adding dropwise of an acetone solution containing P(ST-co-MMA),OTS,and Eu(tta)3dpbt to an aqueous solution of CTAB under stirring.The prepared colloidal solution was centrifuged to get a precipitate of Eu-PHS which was re-dispersed in water or a Tris-HCl buffer solution(10 mmol·L-1,pH 7.8)to form colloidal solutions.The finally obtained colloidal solutions were very stable and no precipitate was observed after standing for months(see Experimental Section).The prepared EuPHS were composed of 40% (w)of Eu(tta)3dpbt,10%(w)of OTS,35%(w)of poly(octylsi-loxane),and 15%(w)of P(ST-co-MMA)as estimated from the results of elemental analysis,gas chromatography,and inductively coupled plasma atomic emission spectroscopy (ICP-AES)(see Supporting Information for details).The Eu(tta)3dpbt content of EuPHS is 4 times as high as that in the previously reported EuLNPs nanospheres.20

    Fig.1 Representative TEM image(a)and the size distribution(b) of EuPHS(N=334)The inset shows a higher resolution image of one of EuPHS.

    Fig.1 shows the TEM,HRTEM images(inset),and the size distribution of EuPHS which are spherical and 45 nm in diameter.EDX measurements on individual EuPHS revealed that they were composed of C,Si,Eu,and S(Fig.S1(see Supporting Information)).Elemental mapping conducted by EDX in a scanning transmission electron microscope(STEM)indicated that the C and Eu distributions among the nanospheres were homogeneous,while Si was enriched in the surface layer of the nanoparticles(Fig.2).These results suggest that Eu(tta)3dpbt molecules or small molecular aggregates are well dispersed in the matrix of the encapsulation materials,and hydrolysis products of octyltrimethoxysilane(poly(octylsiloxane))are enriched in the surfaces of the nanoshperes.

    Since the precipitation of P(ST-co-MMA)in the solution was a quick process,while the hydrolysis of OTS in the given conditions was a slow one,we believe that the formation process of the EuPHS consists of two steps.When the acetone solution was added into the aqueous solution of CTAB,nanoparticles of the hydrophobic polymer P(ST-co-MMA)containing hydrophobic Eu(tta)3dpbt and OTS quickly formed by precipitation.Then the hydrolysis of OTS around the surfaces of the preformed nanoparticles occurred,which was accompanied by a condensation reaction of the hydrolysis products to form poly(octylsiloxane)shells covered on the cores.As measured by gas chromatography and ICP-AES(see Supporting Information for details),the molar ratio of OTS to the hydrolyzed OTS in EuPHS was about 1:4.Therefore,it is reasonable to deduce that the cores of EuPHS nanoparticles are mainly composed of P(ST-co-MMA),Eu(tta)3dpbt,and OTS.It was found that OTS played a key role in the formation of the spherical nanoparticles.The nanoparticles prepared in the absence of OTS were random in shape as shown in their TEM images(Fig.S2(see Supporting Information)).

    3.2 Luminescence properties of EuPHS

    Fig.3 shows the excitation and luminescence spectra of Eu(tta)3dpbt in toluene and in EuPHS nanospheres dispersed in an aqueous solution.The excitation peak(λem=614 nm)of Eu(tta)3dpbt in toluene,related to the sensitization effect of coordinated dpbt,locates at 402 nm,while that in EuPHS red-shifts to 415 nm,with an edge of this band extending up to 475 nm.The luminescence spectrum of the toluene solution of Eu(tta)3dpbt displays a small peak centered at 440 nm which is the emitting band of free dpbt derived from the dissociation of Eu(tta)3dpbt.21In contrast,this fluorescence signal of dpbt could not be observed in the luminescence spectrum of EuPHS, indicating the intactness of coordination structure between Eu3+and dpbt in EuPHS.

    The photoluminescence decay kinetics at the probing wavelength of 614 nm could be accounted by a two-exponential decay model function,which yielded the apparent decay time constants of 51μs(8%)and 508μs(92%)(Fig.S3(see Supporting Information)).The phenomena of red-shift in the excitation peak and the multi-exponential decay were also observed in the previously reported nanosized Eu(tta)3dpbt congeries prepared by a precipitation method,22which could be explained by the formation of J-type aggregates of the polar Eu(tta)3dpbt molecules.

    Fig.2 STEM image(a)and the elemental mapping of C(b),Si(c),and Eu(d)of one of EuPHS

    As shown in Fig.4,the UV-Vis absorption spectrum of EuPHS in the colloidal solution shows a maximal absorption peak centered at 415 nm with a molar extinction coefficient(ε) of 2.4×104mol-1·L·cm-1.The luminescence quantum yield(Φ) for the Eu3+emission of the prepared nanoparticles was mea-sured to be 0.31±0.03 upon the excitation at 415 nm at 23°C. Assuming that the nanoparticles have a diameter of 45 nm and the density of the nanoparticles is equal to~1.0 g·cm-3(the densities of P(ST-co-MMA),OTS,and Eu(tta)3dpbt are 1.05, 0.91,and 0.92 g·cm-3,respectively),it is estimated that each nanoparticle contains about 10000 Eu(tta)3dpbt molecules(see Supporting Information for details).The luminescent brightness of EuPHS(defined as ε×Φ)is estimated to be 7.4×107mol-1·L·cm-1under excitation at 415 nm,suggesting a remarkable signal amplification capability of EuPHS in bioanalysis.

    Fig.3 Normalized excitation(dashed line,λem=614 nm)and emission(solid line,λex=415 nm)spectra of Eu(tta)3dpbt in a colloidal solution of EuPHS(upper)and in toluene(lower)

    The maximal TPE action cross section(δ×Φ)of the europium complex molecules in EuPHS was measured to be 50 GM at 23°C at 830 nm(Fig.5).This δ×Φ value was about 62%of that of Eu(tta)3dpbt molecules in toluene,6indicating that the excellent two-photon-sensitized luminescence properties of Eu(tta)3dpbt molecules were maintained mostly in EuPHS. Considering the number of europium complex molecules (~10000)in each nanoparticle having the average diameter,the maximal TPE action cross section of EuPHS(dav=45 nm)was roughly estimated to be 5×105GM,which was about 10 times higher than the highest value reported for CdSe/ZnS core-shell quantum dots(dav≈4.5 nm)determined by a similar method,30and was about 4 times higher than that of our previously reported EuLNPs nanoparticles(52 nm in average diameter).20

    Fig.4 UV-Vis absorption spectrum of EuPHS in water

    Fig.5 Two-photon excitation action cross sections(δ×Φ)of Eu(tta)3dpbt in EuPHSThe experimental uncertainty is about 15%. 1 GM=10-50cm4·s·photon-1·molecule-1

    Fig.6 Photobleaching curves of colloidal solutions of EuPHS(a)and nanoparticles prepared in the absence of P(ST-co-MMA(EuHS)(b)

    Fig.7 Cytotoxicity tests of EuPHS and Tf-EuPHS with HeLa cellsData are represented as mean±SD(standard deviation)(n=6).The untreated cells were used as the control.Statistical significance(Student?s t-test)compared to the control is indicated:**P<0.01

    Photostability is important for luminescent probes.In order to evaluate the photostability of the prepared nanoparticles, photobleaching measurements were carried out on EuPHS and nanoparticles prepared in the absence of the polymer(EuHS) for comparison,using a 150 W xenon lamp as an excitation source(Fig.6).The emission intensities of the EuPHS and EuHS nanoparticles decreased by 10%and 64%,respectively, after irradiation with the lamp for 1 h.The good photostability of EuPHS was derived from the hybrid encapsulation material acting as a barrier to protect Eu(tta)3dpbt molecules from photoreactions with species in the colloidal solution.The photostability of the EuHS nanoparticles was much lower than that of EuPHS,indicating that the polysiloxane in the EuHS nanoparticles could not provide sufficient shield for Eu(tta)3dpbt molecules from the outside environment.

    Fig.8 Images of live HeLa cells incubated with Tf-EuPHS for 3 h at 37°C(a)two-photon-excited luminescence images.The excitation wavelength was fixed at 800 nm with an average laser power of~10 mW on the focal plane,and the luminescence was collected in the spectral range from 590 to 620 nm;(b)differential interference contrast(DIC)images;(c)the overlay of the corresponding luminescence and DIC images.Images shown in panels of a-c have the same scale bar.

    3.3 Cytotoxicity of EuPHS

    The cytotoxicity of EuPHS was evaluated by the methyl thiazolyl tetrazolium assay(see Experiment Section for details). Cell viability of HeLa carcinoma cells was record after exposed to EuPHS for 24 h.EuPHS did not show statistically significant toxicity(P<0.01)to HeLa cells at the dosage lower than 25.0 μg·mL-1(9.5 μmol·L-1of Eu(tta)3dpbt)(Fig.7).

    The cytotoxicity of EuPHS is similar to that of previously reported EuLNPs nanoparticles which showed no apparent cytotoxicity to HeLa and Lewis cells when the concentration of EuLNPs was less than 100.0 μg·mL-1(7.4 μmol·mL-1Eu(tta)3dpbt),20while much lower than that of an unpacked complex(Eu(tta)2Cldpbt)labeling material which killed 30%of HeLa cells at a Eu(tta)2Cldpbt concentration of 1.0 μg·mL-1(0.9 μmol·mL-1).18The efficient shielding of Eu(tta)3dpbt molecules by the matrix in EuPHS may be a cause of the low cytotoxicity of EuPHS to the cells.Nanoprobes(Tf-EuPHS)prepared by adsorbing transferrin on the surfaces of EuPHS exhibited the similar behavior in the cytotoxicity tests(Fig.7).It should be mentioned that in the preparation of the present bionanoprobes,most of CTAB added for preparing EuPHS nanospheres has been removed.Therefore, the contribution of CTAB to the cytotoxicity is negligible in the aforementioned experiments.

    3.4 Two-photon-excitation imaging of live cell

    Transferrin receptor,over-expressed in many cancer types, provides an opportunity for designing receptor-targeted approaches for cancer cell labeling and imaging.31Tf-EuPHS were used as luminescent labels in the two-photon-excitation imaging of live HeLa cells.As shown in Fig.8,the receptor-mediated endocytosis of Tf-EuPHS by the cells occurred smoothly and high quality two-photon-excitation imaging of the labeled cells were achieved due to the high Eu3+luminescence capacity(δ×Φ)of EuPHS upon TPE.

    It is well documented that transferrin can be internalized through clathrin-dependent endocytosis.32We performed the control experiments,in which the cells were pre-treated with NaN3and 2-deoxy-D-glucose that can block the clathrin-dependent endocytosis.33,34As shown in Fig.S4(see Supporting Information),this pretreatment drastically reduced the uptake level of Tf-EuPHS.These results confirmed that the internalization of Tf-EuPHS occurred through a transferrin receptor-mediated clathrin-dependent pathway,implying that other biomolecules (such as antibody and peptide)with receptor-target recognizability could also be used to conjugate with EuPHS for preparing target-recognizable TPE nanoprobes.The high TPE action cross section(δ×Φ)and the characteristic Eu3+emission,the good dispersibility in water,high photostability,and excellent biocompatibility of EuPHS make them promising for a wide variety of potential biomedical applications based on two-photon excitation or visible light excitation imaging of live cells.

    4 Conclusions

    In summary,luminescent nanospheres EuPHS(dav=45 nm) with a markedly enhanced TPE Eu3+luminescence capacity have been prepared by encapsulating Eu(tta)3dpbt in an in situ formed hybrid material composed of P(ST-co-MMA),OTS, and poly(octylsiloxane)through a co-precipitation-condensation encapsulation method.EuPHS containing 40%(w)of Eu(tta)3dpbt exhibited good stability and dispersibility in aqueous solutions,high photostability,and low cytotoxicity.The Eu3+luminescence excitation peak centered at 415 nm with a red-edge extending up to 475 nm,and the quantum yield for Eu3+luminescence of 0.31 under excitation at 415 nm of EuPHS reflect their excellent visible-light-excitation luminescence properties.The high TPE action cross section of EuPHS (5×105GM at 830 nm and 23°C)is promising for the application in bioimaging in vivo.

    Supporting Information: Experimental details for the EuPHS composition analysis and estimation of the molecule number of Eu(tta)3dpbt in one of EuPHS with the average diameter,molecular structure of Eu(tta)3dpbt(Scheme S1),EDX analysis of EuPHS(Fig.S1),TEM image of the nanoparticles prepared in the absence of OTS(Fig.S2),the photoluminescence decay curve of EuPHS(Fig.S3).Images of Hela cells pre-treated with NaN3and 2-deoxy-D-glucose(Fig.S4).The Information is available free of charge via the internet at http:// www.whxb.pku.edu.cn.

    (1) Helmchen,F.;Denk,W.Nat.Methods 2005,2,932.doi: 10.1038/nmeth818

    (2) Denk,W.;Strickler,J.H.;Webb,W.W.Science 1990,248,73. doi:10.1126/science.2321027

    (3) Eliseeva,S.V.;Bunzli,J.C.G.Chem.Soc.Rev.2010,39,189. doi:10.1039/b905604c

    (4)Ma,Y.;Wang,Y.Coord.Chem.Rev.2010,254,972.doi: 10.1016/j.ccr.2010.02.013

    (5)Andraud,C.;Maury,O.Eur.J.Inorg.Chem.2009,4357.

    (6)Fu,L.M.;Wen,X.F.;Ai,X.C.;Sun,Y.;Wu,Y.S.;Zhang,J.P.; Wang,Y.Angew.Chem.Int.Edit.2005,44,747.doi:10.1002/ (ISSN)1521-3773

    (7) Piszczek,G.;Maliwal,B.P.;Gryczynski,I.;Dattelbaum,J.; Lakowicz,J.R.J.Fluoresc.2001,11,101.doi:10.1023/A: 1016673300913

    (8) Picot,A.;D?Aleo,A.;Baldeck,P.L.;Grichine,A.;Duperray,A.; Andraud,C.;Maury,O.J.Am.Chem.Soc.2008,130,1532.doi: 10.1021/ja076837c

    (9) Eliseeva,S.V.;Aubock,G.;van Mourik,F.;Cannizzo,A.; Song,B.;Deiters,E.;Chauvin,A.S.;Chergui,M.;Bunzli,J.C. G.J.Phys.Chem.B 2010,114,2932.doi:10.1021/jp9090206

    (10)Shi,M.;Ding,C.R.;Dong,J.W.;Wang,H.Z.;Tian,Y.P.;Hu, Z.J.Phys.Chem.Chem.Phys.2009,11,5119.

    (11) Lakowicz,J.R.;Piszczek,G.;Maliwal,B.P.;Gryczynski,I. ChemPhysChem 2001,2,247.doi:10.1002/(ISSN)1439-7641

    (12)Werts,M.H.V.;Nerambourg,N.;Pelegry,D.;Le Grand,Y.; Blanchard-Desce,M.Photochem.Photobiol.Sci.2005,4,531. doi:10.1039/b504495b

    (13) Picot,A.;Malvolti,F.;Le Guennic,B.;Baldeck,P.L.;Williams, J.A.G.;Andraud,C.;Maury,O.Inorg.Chem.2007,46,2659. doi:10.1021/ic062181x

    (14) D?Aleo,A.;Picot,A.;Baldeck,P.L.;Andraud,C.;Maury,O. Inorg.Chem.2008,47,10269.doi:10.1021/ic8012975

    (15) D?Aleo,A.;Allali,M.;Picot,A.;Baldeck,P.L.;Toupet,L.; Andraud,C.;Maury,O.C.R.Chimie 2010,13,681.doi: 10.1016/j.crci.2010.01.008

    (16)Xue,F.M.;Ma,Y.;Fu,L.M.;Hao,R.;Shao,G.S.;Tang,M. X.;Zhang,J.P.;Wang,Y.Phys.Chem.Chem.Phys.2010,12, 3195.

    (17) Palsson,L.O.;Pal,R.;Murray,B.S.;Parker,D.;Beeby,A. Dalton Trans.2007,5726.

    (18)Law,G.L.;Wong,K.L.;Man,C.W.Y.;Tsao,S.W.;Wong,W. T.J.Biophotonics 2009,2,718.doi:10.1002/jbio.v2:12

    (19)Wu,J.;Ye,Z.Q.;Wang,G.L.;Jin,D.Y.;Yuan,J.L.;Guan,Y. F.;Piper,J.J.Mater.Chem.2009,19,1258.doi:10.1039/ b815999h

    (20)Shao,G.S.;Han,R.C.;Ma,Y.;Tang,M.X.;Xue,F.M.;Sha, Y.L.;Wang,Y.Chem.Eur.J.2010,16,8647.doi:10.1002/ chem.201001367

    (21)Yang,C.;Fu,L.M.;Wang,Y.;Zhang,J.P.;Wong,W.T.;Ai,X. C.;Qiao,Y.F.;Zou,B.S.;Gui,L.L.Angew.Chem.Int.Edit. 2004,43,5010.doi:10.1002/(ISSN)1521-3773

    (22)Wen,X.F.;Li,M.Y.;Wang,Y.;Zhang,J.P.;Fu,L.M.;Hao,R.; Ma,Y.;Ai,X.C.Langmuir 2008,24,6932.doi:10.1021/ la800903s

    (23)Shao,G.S.;Xue,F.M.;Han,R.C.;Tang,M.X.;Wang,Y.Acta Phys.-Chim.Sin.2010,26,2031.[邵光勝,薛富民,韓榮成,湯敏賢,王 遠(yuǎn).物理化學(xué)學(xué)報,2010,26,2031.]doi:10.3866/ PKU.WHXB20100715

    (24)Hao,R.;Li,M.;Wang,Y.;Zhang,J.;Ma,Y.;Fu,L.;Wen,X.; Wu,Y.;Ai,X.;Zhang,S.;Wei,Y.Adv.Funct.Mater.2007,17, 3663.doi:10.1002/(ISSN)1616-3028

    (25) Arriagada,F.J.;Osseo-Asare,K.J.Colloid Interface Sci.1999, 211,210.doi:10.1006/jcis.1998.5985

    (26) St?ber,W.;Fink,A.;Bohn,E.J.Colloid Interface Sci.1968,26, 62.doi:10.1016/0021-9797(68)90272-5

    (27)Wang,Y.;Fu,X.Y.;Shao,G.S.Photoluminescent nanoparticle, preparation,and application thereof.CN Patent, 200910203407.3,2009-05-05.[王 遠(yuǎn),符小藝,邵光勝.熒光納米粒子及其制備方法和應(yīng)用:中國,CN200910203407.3[P] 2009-05-05.]

    (28) Peng,H.S.;Stich,M.I.J.;Yu,J.B.;Sun,L.N.;Fischer,L.H.; Wolfbeis,O.S.Adv.Mater.2010,22,716.doi:10.1002/adma. v22:6

    (29) Demas,J.N.;Crosby,G.A.J.Phys.Chem.1971,75,991.doi: 10.1021/j100678a001

    (30) Larson,D.R.;Zipfel,W.R.;Williams,R.M.;Clark,S.W.; Bruchez,M.P.;Wise,F.W.;Webb,W.W.Science 2003,300, 1434.doi:10.1126/science.1083780

    (31)Chan,W.C.W.;Nie,S.M.Science 1998,281,2016.doi: 10.1126/science.281.5385.2016

    (32) Richard,J.P.;Melikov,K.;Brooks,H.;Prevot,P.;Lebleu,B.; Chernomordik,L.V.J.Biol.Chem.2005,280,15300.doi: 10.1074/jbc.M401604200

    (33) Kam,N.W.S.;Liu,Z.A.;Dai,H.J.Angew.Chem.Int.Edit. 2006,45,577.doi:10.1002/(ISSN)1521-3773

    (34) Zhang,B.L.;Li,Y.Q.;Fang,C.Y.;Chang,C.C.;Chen,C.S.; Chen,Y.Y.;Chang,H.C.Small 2009,5,2716.doi:10.1002/ smll.v5:23

    June 20,2012;Revised:August 16,2012;Published on Web:August 16,2012.

    Nanoprobes with Enhanced Two-Photon-Sensitized Eu3+Luminescence Properties for Live Cell Imaging

    FU Xiao-Yi1,2,?SHAO Guang-Sheng1,?HAN Rong-Cheng1,?MA Yan1XUE Fu-Min1YANG Fan3FU Li-Min3ZHANG Jian-Ping3WANG Yuan1,*
    (1Beijing National Laboratory for Molecular Sciences,State Key Laboratory for Structural Chemistry of Unstable and Stable Species,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P.R.China;2School of Materials Science and Engineering,South China University of Technology,Guangzhou 510640,P.R.China;3Department of Chemistry,Renmin University of China,Beijing 100872,P.R.China)

    Luminescent nanospheres(EuPHS,dav=45 nm)containing 40%(w)of Eu(tta)3dpbt(tta= thenoyltrifluoroacetonato;dpbt=2-(N,N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine) were prepared by encapsulating Eu(tta)3dpbt in a hybrid matrix formed in situ from poly(styrene-co-methyl methacrylate),octyltrimethoxysilane,and poly(octylsiloxane).The EuPHS are promising luminescent markers for bioanalysis because of their good dispersibility in aqueous solutions,high photostability,low cytotoxicity,and bright Eu3+luminescence under excitation at long wavelengths.EuPHS exhibited excellent visible light-sensitized and near-infrared two-photon-sensitized Eu3+luminescence properties,with a visible-light excitation peak at 415 nm and an excitation window extending up to 475 nm.The quantum yield for Eu3+luminescence was 0.31(λex=415 nm,T=23°C),and the two-photon excitation(TPE)action cross section was 5.0×105GM(1 GM=10-50cm4·s·photon-1·particle-1)at 830 nm.Bionanoprobes prepared by adsorbing transferrin on the surfaces of EuPHS were successfully applied in target-specific labeling and two-photon-excitation imaging of live HeLa cells.

    Luminescence;Europium complex;Two-photon excitation;Bio-nanoprobe; Cell Imaging

    10.3866/PKU.WHXB201208161

    ?Corresponding author.Email:wangy@pku.edu.cn;Tel:+86-10-62751491.?These authors contributed equally to this work.

    The project was supported by the National Natural Science Foundation of China(21073002,21133001,21227803,51121091)and National Key Basic Research Special Foundation of China(2011CB808702).

    國家自然科學(xué)基金(21073002,21133001,21227803,51121091)及國家重點(diǎn)基礎(chǔ)研究專項(xiàng)經(jīng)費(fèi)(2011CB808702)資助

    O648

    猜你喜歡
    小藝榮成敏化
    冠心病穴位敏化現(xiàn)象與規(guī)律探討
    《蘭臺見證:榮成70年大事記》出版發(fā)行
    山東檔案(2021年3期)2021-11-28 05:39:44
    近5年敏化態(tài)與非敏化態(tài)關(guān)元穴臨床主治規(guī)律的文獻(xiàn)計(jì)量學(xué)分析
    榮成“天鵝湖”
    金橋(2021年8期)2021-08-23 01:06:50
    陪伴成長,一路花開
    ——記榮成雪梅讀書寫作團(tuán)隊(duì)創(chuàng)立人楊雪梅
    教書育人(2019年25期)2019-09-12 11:14:22
    轉(zhuǎn)讓來的相親對象
    晚報文萃(2017年2期)2017-07-01 22:36:18
    小藝的夢工廠
    轉(zhuǎn)讓來的相親對象
    晚報文萃(2016年3期)2016-05-03 00:40:15
    耦聯(lián)劑輔助吸附法制備CuInS2量子點(diǎn)敏化太陽電池
    5種天然染料敏化太陽電池的性能研究
    99热精品在线国产| 国产精品久久久久久人妻精品电影| 中文字幕久久专区| 人妻久久中文字幕网| aaaaa片日本免费| 成年人黄色毛片网站| 久久午夜亚洲精品久久| 在线观看日韩欧美| 观看免费一级毛片| 夜夜看夜夜爽夜夜摸| 日韩免费av在线播放| 精品日产1卡2卡| 国产av麻豆久久久久久久| 一个人观看的视频www高清免费观看 | 国产亚洲精品av在线| 91麻豆精品激情在线观看国产| 不卡一级毛片| 免费在线观看亚洲国产| 日本 欧美在线| 日本熟妇午夜| 久久精品人妻少妇| av女优亚洲男人天堂 | cao死你这个sao货| 亚洲欧美日韩东京热| 国产伦精品一区二区三区视频9 | www日本黄色视频网| 日日摸夜夜添夜夜添小说| 欧美绝顶高潮抽搐喷水| 色老头精品视频在线观看| h日本视频在线播放| 亚洲中文日韩欧美视频| 精品一区二区三区av网在线观看| 国产精品一区二区三区四区久久| 日韩 欧美 亚洲 中文字幕| 国产精品日韩av在线免费观看| 老司机午夜福利在线观看视频| 日本黄大片高清| 亚洲在线观看片| 日韩欧美免费精品| 国产精品久久久久久精品电影| 午夜影院日韩av| 日本 av在线| 国产黄a三级三级三级人| 亚洲九九香蕉| 亚洲av熟女| 最近在线观看免费完整版| 亚洲欧美精品综合久久99| 国产精品野战在线观看| 大型黄色视频在线免费观看| 日韩精品青青久久久久久| 中文字幕av在线有码专区| 亚洲成人免费电影在线观看| 久久精品影院6| 国产欧美日韩一区二区精品| 国产成人精品久久二区二区免费| 人妻夜夜爽99麻豆av| 巨乳人妻的诱惑在线观看| 国产高清视频在线播放一区| 国产一区二区三区在线臀色熟女| 精品人妻1区二区| 老熟妇乱子伦视频在线观看| 日本一本二区三区精品| 午夜视频精品福利| 欧美高清成人免费视频www| 国产精品久久电影中文字幕| 欧美中文日本在线观看视频| 最新在线观看一区二区三区| 亚洲天堂国产精品一区在线| 成人精品一区二区免费| 精品一区二区三区av网在线观看| 日韩人妻高清精品专区| 国产精品爽爽va在线观看网站| 别揉我奶头~嗯~啊~动态视频| 两个人看的免费小视频| 亚洲专区中文字幕在线| 免费观看人在逋| 久久久国产成人精品二区| 人人妻人人看人人澡| 97碰自拍视频| 国产精品九九99| 亚洲黑人精品在线| 美女被艹到高潮喷水动态| 天天躁狠狠躁夜夜躁狠狠躁| 久久这里只有精品19| 蜜桃久久精品国产亚洲av| 亚洲 欧美 日韩 在线 免费| 又黄又粗又硬又大视频| 人妻丰满熟妇av一区二区三区| 狂野欧美激情性xxxx| 国内毛片毛片毛片毛片毛片| 国产av在哪里看| 伊人久久大香线蕉亚洲五| 色播亚洲综合网| 久久久国产欧美日韩av| 国产精品一区二区免费欧美| 亚洲成av人片免费观看| 亚洲成人精品中文字幕电影| 老汉色∧v一级毛片| 老汉色∧v一级毛片| 91av网站免费观看| 最近最新免费中文字幕在线| 久久中文字幕一级| 丝袜人妻中文字幕| av片东京热男人的天堂| 国产1区2区3区精品| 国产午夜福利久久久久久| 欧美黄色片欧美黄色片| 精品免费久久久久久久清纯| 脱女人内裤的视频| 一个人免费在线观看电影 | 精品久久久久久久毛片微露脸| 久久中文字幕一级| 高清毛片免费观看视频网站| 亚洲成a人片在线一区二区| 午夜影院日韩av| 亚洲精华国产精华精| 国语自产精品视频在线第100页| 亚洲av片天天在线观看| 亚洲在线自拍视频| 午夜福利在线在线| 国产亚洲精品久久久com| 国产伦精品一区二区三区视频9 | 波多野结衣高清作品| 亚洲一区二区三区色噜噜| xxx96com| 国产人伦9x9x在线观看| 免费看日本二区| 此物有八面人人有两片| 人妻久久中文字幕网| 国产成人精品无人区| av天堂在线播放| 性欧美人与动物交配| 国产精品爽爽va在线观看网站| 人妻夜夜爽99麻豆av| 99re在线观看精品视频| 淫秽高清视频在线观看| 99精品久久久久人妻精品| 日韩欧美国产在线观看| 国产av一区在线观看免费| 狂野欧美激情性xxxx| 最近最新中文字幕大全电影3| 亚洲va日本ⅴa欧美va伊人久久| 亚洲成人精品中文字幕电影| 90打野战视频偷拍视频| xxxwww97欧美| 精品久久久久久久人妻蜜臀av| 亚洲成人久久性| 成人三级黄色视频| 淫秽高清视频在线观看| 国产成人av教育| 欧美中文综合在线视频| 国产av一区在线观看免费| 观看美女的网站| 欧美激情久久久久久爽电影| 欧美日韩瑟瑟在线播放| 国产乱人伦免费视频| 一级黄色大片毛片| 最新美女视频免费是黄的| 精品一区二区三区四区五区乱码| 亚洲,欧美精品.| 一卡2卡三卡四卡精品乱码亚洲| 真人做人爱边吃奶动态| 高潮久久久久久久久久久不卡| 亚洲 欧美一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 国产精品国产高清国产av| 国产男靠女视频免费网站| 久久久久久久午夜电影| 丝袜人妻中文字幕| 在线播放国产精品三级| 老司机福利观看| 可以在线观看毛片的网站| 久久久久性生活片| 亚洲狠狠婷婷综合久久图片| 18禁裸乳无遮挡免费网站照片| 午夜福利免费观看在线| 亚洲成人精品中文字幕电影| 亚洲av电影在线进入| 日韩有码中文字幕| 久久国产精品人妻蜜桃| 婷婷精品国产亚洲av| 99热这里只有精品一区 | 国产精品1区2区在线观看.| 男人的好看免费观看在线视频| 亚洲 欧美一区二区三区| 在线观看午夜福利视频| 国产精品一及| 波多野结衣高清作品| 88av欧美| 母亲3免费完整高清在线观看| 亚洲精品乱码久久久v下载方式 | 黄色片一级片一级黄色片| 99热这里只有是精品50| 亚洲中文字幕日韩| 亚洲欧美日韩无卡精品| 国产精品女同一区二区软件 | 久久久国产欧美日韩av| 最近最新免费中文字幕在线| 国产成人精品久久二区二区免费| 欧美黑人欧美精品刺激| 亚洲国产精品久久男人天堂| 人人妻人人澡欧美一区二区| 亚洲欧美日韩高清专用| 国产毛片a区久久久久| 1024香蕉在线观看| 国产亚洲欧美98| 久久香蕉精品热| 精品午夜福利视频在线观看一区| 搞女人的毛片| 九九热线精品视视频播放| 欧美另类亚洲清纯唯美| 国产三级在线视频| 可以在线观看的亚洲视频| 免费无遮挡裸体视频| 国产成人福利小说| 国产av一区在线观看免费| 久久欧美精品欧美久久欧美| 两性夫妻黄色片| 亚洲av成人一区二区三| 亚洲精品美女久久av网站| 一卡2卡三卡四卡精品乱码亚洲| 一区二区三区高清视频在线| 亚洲aⅴ乱码一区二区在线播放| 成人一区二区视频在线观看| 精华霜和精华液先用哪个| 香蕉国产在线看| 日韩国内少妇激情av| 天堂√8在线中文| 美女扒开内裤让男人捅视频| 大型黄色视频在线免费观看| 听说在线观看完整版免费高清| 男女床上黄色一级片免费看| 三级毛片av免费| 丁香六月欧美| 91字幕亚洲| 俄罗斯特黄特色一大片| 欧美日韩福利视频一区二区| 国产激情久久老熟女| 亚洲av免费在线观看| 国产亚洲精品久久久com| 嫩草影视91久久| 亚洲国产欧美人成| 久久久久性生活片| 欧美乱码精品一区二区三区| 欧美日本亚洲视频在线播放| 偷拍熟女少妇极品色| 天堂影院成人在线观看| 久久久久久九九精品二区国产| 偷拍熟女少妇极品色| 人妻久久中文字幕网| 香蕉久久夜色| a级毛片a级免费在线| 免费看美女性在线毛片视频| 国产精品美女特级片免费视频播放器 | 亚洲av成人不卡在线观看播放网| 日本成人三级电影网站| 久久久国产欧美日韩av| 亚洲av日韩精品久久久久久密| 久久这里只有精品19| 国产亚洲精品一区二区www| 美女免费视频网站| 天天躁日日操中文字幕| 久久热在线av| 动漫黄色视频在线观看| 亚洲五月天丁香| 亚洲国产欧美网| 亚洲国产精品sss在线观看| 97碰自拍视频| 久久午夜亚洲精品久久| 一区二区三区激情视频| 免费看十八禁软件| 国产精品1区2区在线观看.| 精品国产乱码久久久久久男人| 精品一区二区三区av网在线观看| 国产精品一及| 欧美国产日韩亚洲一区| 精品国产三级普通话版| 91麻豆av在线| 91av网一区二区| 女警被强在线播放| 18禁国产床啪视频网站| 精品欧美国产一区二区三| 久久久久免费精品人妻一区二区| 亚洲,欧美精品.| 国产激情久久老熟女| 国产三级在线视频| 99久久精品国产亚洲精品| 成人av一区二区三区在线看| 好男人在线观看高清免费视频| 黄色成人免费大全| 啪啪无遮挡十八禁网站| 无限看片的www在线观看| 久久久久久国产a免费观看| 久久热在线av| 亚洲,欧美精品.| 日韩欧美在线二视频| 亚洲av电影不卡..在线观看| av在线蜜桃| 国产成人精品无人区| 亚洲无线观看免费| 综合色av麻豆| 精品久久久久久久人妻蜜臀av| 欧美黑人欧美精品刺激| 精品久久久久久久久久免费视频| 丰满人妻一区二区三区视频av | 色尼玛亚洲综合影院| 欧美+亚洲+日韩+国产| 欧美成狂野欧美在线观看| 一二三四在线观看免费中文在| 一夜夜www| 国产探花在线观看一区二区| 亚洲熟女毛片儿| 亚洲,欧美精品.| 国产成人av教育| 日本黄色片子视频| 亚洲成av人片在线播放无| 欧美日韩综合久久久久久 | 国产av麻豆久久久久久久| 国内精品一区二区在线观看| 搡老岳熟女国产| 18禁美女被吸乳视频| 久久热在线av| 午夜免费成人在线视频| 欧美黑人巨大hd| 国产欧美日韩精品一区二区| 国产又色又爽无遮挡免费看| 精品久久久久久久末码| 级片在线观看| 国产不卡一卡二| 亚洲成a人片在线一区二区| 亚洲 国产 在线| 色在线成人网| 老鸭窝网址在线观看| 99国产精品一区二区三区| 偷拍熟女少妇极品色| 亚洲av中文字字幕乱码综合| 亚洲熟妇熟女久久| 国产伦精品一区二区三区四那| 波多野结衣高清作品| 久久人妻av系列| 一进一出好大好爽视频| 午夜久久久久精精品| 国产蜜桃级精品一区二区三区| 亚洲国产中文字幕在线视频| 午夜福利欧美成人| 色av中文字幕| 午夜福利欧美成人| 亚洲国产精品久久男人天堂| 亚洲狠狠婷婷综合久久图片| 国产熟女xx| 成在线人永久免费视频| 日韩欧美在线乱码| 国产精品av久久久久免费| 波多野结衣巨乳人妻| 床上黄色一级片| 可以在线观看毛片的网站| 亚洲熟妇熟女久久| 亚洲中文日韩欧美视频| 欧美性猛交黑人性爽| 麻豆一二三区av精品| 亚洲国产欧美人成| 国产亚洲精品综合一区在线观看| 国产一区二区三区在线臀色熟女| 香蕉久久夜色| 岛国在线免费视频观看| 婷婷精品国产亚洲av| 最近最新免费中文字幕在线| 亚洲中文字幕日韩| 欧美色视频一区免费| av在线蜜桃| 麻豆国产av国片精品| 亚洲成人久久性| 在线观看日韩欧美| 婷婷精品国产亚洲av在线| av片东京热男人的天堂| 成人三级黄色视频| 国产精品久久电影中文字幕| 亚洲精品粉嫩美女一区| 国产人伦9x9x在线观看| 男女床上黄色一级片免费看| 日日摸夜夜添夜夜添小说| 亚洲中文av在线| 可以在线观看毛片的网站| 国产一区二区激情短视频| 可以在线观看毛片的网站| 女生性感内裤真人,穿戴方法视频| 丁香六月欧美| 天天添夜夜摸| 欧美日韩瑟瑟在线播放| 欧美xxxx黑人xx丫x性爽| 小说图片视频综合网站| 午夜免费激情av| 久久精品91蜜桃| 日日夜夜操网爽| 在线免费观看的www视频| 在线播放国产精品三级| 国产蜜桃级精品一区二区三区| 伦理电影免费视频| 十八禁网站免费在线| 国产在线精品亚洲第一网站| 免费高清视频大片| 日韩大尺度精品在线看网址| 国产黄a三级三级三级人| 国产激情偷乱视频一区二区| 90打野战视频偷拍视频| 不卡av一区二区三区| 国产成人精品久久二区二区91| 亚洲午夜精品一区,二区,三区| 中亚洲国语对白在线视频| 曰老女人黄片| 国产亚洲av嫩草精品影院| 国产99白浆流出| 好男人在线观看高清免费视频| 国内少妇人妻偷人精品xxx网站 | 国产av在哪里看| 又爽又黄无遮挡网站| 午夜福利欧美成人| 国产aⅴ精品一区二区三区波| 国产高清视频在线观看网站| 中文字幕av在线有码专区| 美女扒开内裤让男人捅视频| 国产欧美日韩一区二区三| xxx96com| 亚洲国产欧美人成| 成人永久免费在线观看视频| 99久久无色码亚洲精品果冻| 亚洲中文字幕日韩| 色精品久久人妻99蜜桃| 中文资源天堂在线| 免费av不卡在线播放| 国产1区2区3区精品| 最近最新中文字幕大全电影3| 精品国产亚洲在线| 久久中文字幕人妻熟女| 免费观看精品视频网站| 18禁国产床啪视频网站| 免费观看人在逋| 欧美性猛交╳xxx乱大交人| 亚洲男人的天堂狠狠| 亚洲电影在线观看av| 一二三四社区在线视频社区8| 国产精品 欧美亚洲| 99国产极品粉嫩在线观看| 真人一进一出gif抽搐免费| 免费av不卡在线播放| 亚洲av第一区精品v没综合| 亚洲七黄色美女视频| 啦啦啦观看免费观看视频高清| 男人舔女人下体高潮全视频| 久久性视频一级片| 变态另类成人亚洲欧美熟女| 成人午夜高清在线视频| 99久久99久久久精品蜜桃| 亚洲av第一区精品v没综合| 色老头精品视频在线观看| 性色avwww在线观看| 国产一级毛片七仙女欲春2| 热99re8久久精品国产| 97人妻精品一区二区三区麻豆| 成人午夜高清在线视频| 欧美成人免费av一区二区三区| 久久精品aⅴ一区二区三区四区| 男女那种视频在线观看| 国产三级黄色录像| 亚洲国产日韩欧美精品在线观看 | 久久久久国内视频| 999久久久国产精品视频| 亚洲人成伊人成综合网2020| 国产又色又爽无遮挡免费看| 亚洲在线自拍视频| av在线天堂中文字幕| 成人国产综合亚洲| 久久久色成人| 日韩成人在线观看一区二区三区| 亚洲天堂国产精品一区在线| 综合色av麻豆| 国产精品99久久99久久久不卡| 亚洲色图 男人天堂 中文字幕| 嫩草影视91久久| 成人三级做爰电影| 国产免费av片在线观看野外av| 夜夜躁狠狠躁天天躁| 亚洲av电影在线进入| 激情在线观看视频在线高清| 禁无遮挡网站| 国产av在哪里看| 国产久久久一区二区三区| 九九久久精品国产亚洲av麻豆 | 露出奶头的视频| 熟妇人妻久久中文字幕3abv| 18美女黄网站色大片免费观看| 一区二区三区高清视频在线| 婷婷丁香在线五月| 十八禁网站免费在线| 国产伦在线观看视频一区| 老鸭窝网址在线观看| 免费在线观看影片大全网站| 国产亚洲欧美98| 久久99热这里只有精品18| 成人一区二区视频在线观看| 最近最新中文字幕大全免费视频| 亚洲 欧美 日韩 在线 免费| 国产亚洲欧美98| 久久天堂一区二区三区四区| 亚洲午夜理论影院| 中国美女看黄片| 两个人的视频大全免费| 精品久久蜜臀av无| 深夜精品福利| 老司机深夜福利视频在线观看| 一边摸一边抽搐一进一小说| 午夜福利高清视频| 婷婷丁香在线五月| 国产av不卡久久| 欧美乱色亚洲激情| 男插女下体视频免费在线播放| 精品人妻1区二区| www.精华液| 亚洲精品美女久久久久99蜜臀| 99热这里只有是精品50| 观看美女的网站| 亚洲电影在线观看av| 日本黄色片子视频| 岛国视频午夜一区免费看| 欧美高清成人免费视频www| 中亚洲国语对白在线视频| 亚洲 国产 在线| 欧洲精品卡2卡3卡4卡5卡区| 视频区欧美日本亚洲| 少妇熟女aⅴ在线视频| 男人和女人高潮做爰伦理| 久久久久久九九精品二区国产| 亚洲av电影不卡..在线观看| 国产一区二区在线av高清观看| 天天一区二区日本电影三级| 久久久国产成人免费| 日韩 欧美 亚洲 中文字幕| 高潮久久久久久久久久久不卡| 在线观看美女被高潮喷水网站 | 一级毛片女人18水好多| 精品免费久久久久久久清纯| 我的老师免费观看完整版| 国产v大片淫在线免费观看| 波多野结衣高清作品| 免费看光身美女| 99在线视频只有这里精品首页| 91av网一区二区| 看免费av毛片| 亚洲七黄色美女视频| 99久久久亚洲精品蜜臀av| 成人三级做爰电影| 国产精品日韩av在线免费观看| 黄色日韩在线| 国产视频内射| 婷婷六月久久综合丁香| 国产aⅴ精品一区二区三区波| 老汉色av国产亚洲站长工具| 国内精品久久久久久久电影| svipshipincom国产片| 国产精品久久久人人做人人爽| 亚洲天堂国产精品一区在线| 香蕉av资源在线| 亚洲人成网站高清观看| 中文字幕人妻丝袜一区二区| 久久午夜综合久久蜜桃| 亚洲av成人av| 午夜免费激情av| 亚洲av日韩精品久久久久久密| 欧美最黄视频在线播放免费| 天堂√8在线中文| 中文字幕av在线有码专区| 听说在线观看完整版免费高清| 又黄又粗又硬又大视频| 夜夜爽天天搞| 亚洲精品在线美女| 久99久视频精品免费| 免费看a级黄色片| 色av中文字幕| 久久久成人免费电影| 在线播放国产精品三级| 一二三四社区在线视频社区8| 午夜日韩欧美国产| 欧美成人性av电影在线观看| www.精华液| 九九在线视频观看精品| 桃红色精品国产亚洲av| 午夜两性在线视频| 欧美色视频一区免费| 日本免费一区二区三区高清不卡| 国产69精品久久久久777片 | 两个人视频免费观看高清| 亚洲欧美精品综合一区二区三区| 美女午夜性视频免费| aaaaa片日本免费| av国产免费在线观看| 国内久久婷婷六月综合欲色啪| 国产精品一及| 看片在线看免费视频| 国产黄色小视频在线观看| 国产亚洲精品久久久久久毛片| 狂野欧美白嫩少妇大欣赏| 美女大奶头视频| 中文字幕最新亚洲高清| 性色av乱码一区二区三区2| 久久久久久人人人人人| 级片在线观看| 日日干狠狠操夜夜爽| 欧美一区二区精品小视频在线| 中文字幕最新亚洲高清| av视频在线观看入口| 亚洲精品在线观看二区| 日韩大尺度精品在线看网址| 精品久久久久久久末码| 国产三级黄色录像| 亚洲中文字幕日韩|