• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鋁熱反應(yīng)法制備雙股類螺旋Zn2SnO4單晶納米帶

    2012-12-11 09:35:02厲建龍張建平
    物理化學(xué)學(xué)報 2012年10期
    關(guān)鍵詞:張建平光致發(fā)光單晶

    王 煜 陳 靜 廖 清 孫 偉 厲建龍,* 張建平 吳 凱,*

    (1北京大學(xué)化學(xué)與分子工程學(xué)院,北京分子科學(xué)國家實驗室,北京100871;2中國科學(xué)院化學(xué)研究所,北京100190; 3中國人民大學(xué)化學(xué)系,北京100872)

    鋁熱反應(yīng)法制備雙股類螺旋Zn2SnO4單晶納米帶

    王 煜1陳 靜1廖 清2孫 偉1厲建龍1,*張建平3吳 凱1,*

    (1北京大學(xué)化學(xué)與分子工程學(xué)院,北京分子科學(xué)國家實驗室,北京100871;2中國科學(xué)院化學(xué)研究所,北京100190;3中國人民大學(xué)化學(xué)系,北京100872)

    綜合利用化學(xué)氣相沉積、鋁熱反應(yīng)法、汽-液-固生長法、極性面融合和穩(wěn)態(tài)湍流動力學(xué)控制來大量制備雙股類螺旋Zn2SnO4單晶納米帶.該材料屬于面心立方尖晶石型透明半導(dǎo)體,在光伏器件和濕度與可燃?xì)怏w傳感器中有著廣泛的應(yīng)用.掃描電鏡、透射電鏡、電子衍射、X射線衍射、拉曼光譜以及光發(fā)射等技術(shù)分析表明所得的雙股類螺旋納米帶是由兩個獨立的Zn2SnO4納米帶通過扭曲糾纏和融合而成.該雙股類螺旋納米帶實際上是在軸向具有周期性的超晶格材料.光致發(fā)光測量表明該納米帶在326.1 nm處出現(xiàn)強發(fā)射峰,線寬約為1.5 nm.本研究所采用的綜合制備法中的鋁熱反應(yīng)法和穩(wěn)態(tài)湍流微擾法可能有助于類似材料的控制制備.

    雙股類螺旋納米帶;Zn2SnO4;鋁熱反應(yīng)法;光致發(fā)光

    1 Introduction

    Controlling morphology and structure of nanomaterials plays a central role in tuning their properties for various applications.1-4Various types of one-dimensional(1D)inorganic nanomaterials5-14with different morphologies and structures have been fabricated in the past decade by using strategies like energy minimization,12lattice match-up,13and dislocation.14Nature is absolutely the master for designing and forming unique structures.One of its great masterpieces is the creation of bifilar or double-stranded helix DNA.People have been imitating nature?s trick to synthesize helix-like materials due to their unique structures that possess chirality.In nanofabrication, many studies are related to unifilar or singe-stranded zigzag and helix-like inorganic nanowires and nanobelts,5-14and few works have focused on bifilar helix-like nanostructures.Developing a facile and efficient approach to synthesizing the bifilar helix-like nanostructures in a controlled manner is apparently a tough challenge.

    Meanwhile,controlling the composition of the prepared inorganic nanomaterials is another big task in materials science.15-20Chemical reactions between oxides with cations of double and triple valence states frequently yield spinel and/or garnet composite oxides.When doped with some functional materials including rare earth elements and some transition metal ingredients,these composite oxides can be very useful in optics,electromagnetics,piezoelectrics and sensor.4In this research field, we have developed the interfacial reaction growth(IRG)approach21to growing integrated face-centered cubic(FCC)crystalline ZnAl2O4nanotube/nanonet22on porous alumina template and later on,crystalline ZnO(zinc spinel)nanonet on the grown ZnAl2O4nanonet by epitaxial growth.23,24Zn2SnO4(ZTO, zinc stanate),belonged to the FCC spinel,is an important transparent semiconductor with a band gap of 3.6 eV.25,26With high electron mobility,high electric conductivity,and low absorptivity of visible light,it is very useful in photovoltaic devices and sensors for humidity and various combustible gases.27-32Sparsely zigzagged Zn2SnO4nanowires were previously reported by employing thermal evaporation of ZnO/Sn powders under argon or nitrogen gas.33

    Here we report the preparation in large quantity of 1D bifilar helix-like ZTO nanobelt(BHZN)consisting of two twisted zigzag nanobelts that merged together to form a single crystal. Each nanobelt was 50-70 nm wide and 20-30 nm thick and alternately grew along theanddirections.The chiral single crystal BHZN extended along the axial directionIts fabrication was realized by a strategy combining aluminothermal reaction approach,34vapor-liquid-solid (VLS) growth,polar-plane mergence,and steady-state turbulent gas flow control.Photoluminescence(PL)measurements showed that it had a strong light emission feature centered at about 326 nm with a line width of about 1.5 nm.

    2 Experimental

    2.1 Sample preparation and structural characterization

    The applied aluminothermal reaction approach has been described in detail in a recent report.34In brief,mixed powder of ZnO,SnO2,and Al in a molar ratio of 1:2:12-1:4:12 was put in the front of an alumina boat,and a piece of Si wafer(4 mm×8 mm)coated with a thin gold layer of 20-40 nm in thickness was placed behind the mixed powder by a separation of 0.3-0.5 cm in the boat.The boat was then put into the constant temperature segment of a chemical vapor deposition(CVD) furnace.After purged by 100 cm3·min-1(standard state)high purity(>99.99%)N2flow(that flowed downstream from the mixed powder to the Si wafer)for 20 min,the boat was heated from room temperature(RT)to 950°C in 50 min in 30 cm3· min-1N2flow that was afterwards switched to two gas flows of 80 cm3·min-1N2and 20 cm3·min-1Ar through a 3-way gas valve.The boat was kept at 950°C for 30 min and then cooled in 30 cm3·min-1N2down to RT.The Si wafer was finally coated with a thin white layer of products that were directly used for morphology observations by scanning electron microscopy (SEM,Strata DB235,FEI and S4800,Hitachi)and environmental SEM(ESEM,Quanta 200F,FEI).The Si wafer was ultrasonicated in alcohol for 3 min and the suspension was dropped onto a copper grid for structural analyses by high-resolution transmission electron microscopy(HRTEM,Tecnai F30, Philips,300 kV).

    2.2 Photoluminescence and Raman measurements

    The samples used in the PL measurement were the as-prepared Zn2SnO4/Si wafer that was also mixed with a small amount of ZnO nanobelts and nanosaws.The as-prepared sample was optically pumped by the fourth harmonics of a Nd: YAG laser(266 nm in wavelength,4 Hz in frequency,5 ns in pulse time)at an incident angle of 45°.The light emission was collected along the sample surface normal direction with a polychromator(Spectropro 550i,Acton)equipped with a charge-coupled device(CCD)detector(SPEC-10-400B/LN, Roper Scientific)cooled with liquid nitrogen.Raman spectroscopy was also carried out on the same sample used for PL experiment.In Raman,an Ar+laser(488 nm in wavelength)was used as the excitation source and light reflected from the sample surface was collected by the CCD.

    3 Results and discussion

    The final products widely spread on a Si wafer that was about 3-4 mm away from the mixed precursor pile consisting of ZnO,SnO2and Al(for details of the products collection,refer to Fig.S1(a)in Supporting Information).Under our experimental conditions,the main part of the product on the Si wafer was Zn2SnO4and the left part was ZnO.This was verified by X-ray diffraction(XRD)measurements(Fig.S2(b)in Supporting Information).Normally these two kinds of products, Zn2SnO4and ZnO,mainly stayed in different collection zones, but the Zn2SnO4product could be also mixed with a small amount of ZnO.

    Fig.1 Large-scale(a)and magnified(b)ESEM images ofthe as-prepared BHZN on Si wafer.(c)TEM image(top view), (d)SAED pattern(with the e-beam perpendicular to the wire)and (e)enlarged TEM image(top view)of a BHZN.(f)EDX analysis of the BHZN in(e)The inset in(b)is the proposed side-view 3D model.Arrows in(c)and (e)mark the growth directions.The Cu signal in(f)was from the Cu grid used for the sample preparation.

    The SEM image in Fig.1(a)demonstrates that 1D spindle-like nanowires with a periodicity along their axes were successfully synthesized.A closer look at a particular spindle-like nanowire(Fig.1(b))showed that it had a regular shape and was helix-like.Inset in Fig.1(b)is a possible 3-dimensional(3D) model for this helix-like nanowire(side view).TEM measurements(Figs.1(c)and 1(e))suggested the spindle-like nanowire actually contained two twisted zigzag nanobelts whose contacting parts merged together.The segments pointing lower right were longer than those pointing upper left(Fig.1(c),top view), implying that the growth directions of the two different segments might be with different lattice orientations(see Fig.2 and Supporting Information).Selected-area electron diffraction (SAED,Fig.1(d))with the e-beam perpendicular to the wire displayed a sharp pattern,indicating that it was a single crystal. By indexing the SAED pattern,the growth direction and individual crystal planes of the produced zigzag nanobelt could be deduced.Energy-dispersive X-ray(EDX)analysis in Fig.1(f) showed that it was made of three elements,Zn,Sn,and O,with a stoichiometric ratio of about 2:1:4.No Al signal was detected within the EDX measurement limit(about 5%).All of these measurements pointed out that the helix-like nanobelts were an FCC Zn2SnO4crystal,growing alternately along the[022],anddirections.The merged BHZN was~100 nm in diameter.

    Fig.2 (a)HRTEM image of the lattice structure at the contacting part of the two ZTO nanobelts.(b)and(c)Atomic crystal models explaining the lattice structure shown in(a). (d)HRTEM image of another contacting section,showing the lattice dislocation indicated by the arrows.(e)TEM images of the endings of the BHZNs.(f)EDX analysis of the circled particle in(e)In(e),the rectangular cross-section(see the enlarged picture in the inset)of the ZTO nanobelt withAu particles attached can be clearly seen.Shorter arrow points the rectangular cross-sectional end of a ZTO nanobelt in the BHZN and the longer one indicates the ZTO nanobelt whose end actually curled.

    To understand its structural details,HRTEM was used to image the lattice structures of a particular nanobelt along the nanobelt axis at different spots.The results(see Supporting Information)indicated that both nanobelts were single crystal. The lattice constant of the nanobelt along its own axis was about 0.50 nm(Fig.2(a)),corresponding to the inter-plane distance of theplanes.The lattice constant of the other along thedirection was 0.31 nm(Fig.2(a)),the inter-plane distance of theplanes.In consideration of the SAED patterns and the HRTEM fast Fourier transform(FFT) patterns(see Supporting Information),the growth direction of either nanobelt was deduced to be along

    The existence of lattice dislocation(Fig.2(d))substantiated that the BHZN was indeed formed by two independent nano-belts.The possible formation mechanism of the BHZN was further studied with HRTEM.Figs.2(a)and 2(d)show the lattice structures and orientations around the merging section and the possible atomic structure models are given in Figs.2(b)and 2(c),respectively.Tentative analyses indicated that the BHZN grew along thedirection.The Zn,Sn,and O atoms in the side plane ofare symmetrically distributed,meaning that this plane is a non-polar one.However,when the same ZTO nanobelt changed its growth direction toits side direction waswhose corresponding face was theplane in which the Zn,Sn,and O atoms were asymmetrically distributed(Fig.2(c))and hence the side plane was polar(Fig.1(c)). Polar plane is not stable and tends to facet into non-polar planes in order to reduce the energy.This happened around the merging places of the two ZTO nanobelts.Although one of the polar side planes of each ZTO nanobelt still remained after merging,the BHZN energy was already substantially released during the merging process.Similar mechanism was previously reported for the merging of ZnO polar planes into a nanoring by Wang et al.35Fig.2(e)showed the situation where the twisting of the two ZTO nanobelts terminated or interrupted.In Fig.2(e),one could clearly see the rectangular cross section (pointed out by the shorter arrow in the inset in Fig.2(e))of the nanobelt end(Fig.2(e)).It?s from this rectangular cross-section that the thickness of a single ZTO nanobelt in BHZN was estimated to be around 20-30 nm.The width of the ZTO nanobelt was 50-70 nm(Fig.3(c)given below).In Fig.2(e),the belt width at the end was substantially larger than those in other parts,due to that the two nanobelts merged into one side by side[thefaces merged together]and their twisting ended. EDX measurement(Fig.2(f))of the circled particle on top of the BHZN in Fig.2(e)indicated that its main chemical composition was Au,implying that the ZTO nanobelt was grown through the VLS mechanism.It should be mentioned thatand its equivalent planes are highly indexed planes with high surface energy.To reduce this high surface energy,the end planeof the ZTO nanobelt could facet,which we might not detect with TEM or SEM due to technical limitation.However,a highly indexed face may also be stabilized by adsorbing foreign atoms/molecules or by coating with a layer of foreign film that has small surface energy.We feel that the latter may happen in our case because,as indicated by Figs.2(e)and 2(f), the end of the ZTO nanobelt was attached with a fairly large Au particle.

    Figs.3(a)and 3(b)are the SEM and TEM images of isolated single ZTO nanobelts.In Fig.3(b),the electron diffraction pattern(with the e-beam perpendicular to the ZTO nanobelt) shows the same diffraction pattern as that shown in Fig.1(d) for the BHZN(Fig.1(c)),meaning that the ZTO nanobelt has the same lattice structure and growth orientation as those in the BHZN.Moreover,we could observe by TEM a BHZN with a“normal”splitting end after its growth was interrupted.This is shown in Fig.3(c).One can see that the two ZTO nanobelts forming the BHZN split again,as indicated by the arrow in Fig.3(c).All these strongly support that the BHZN is composed of two ZTO nanobelts.

    Fig.3 (a)SEM and(b)TEM images of isolated single zigzag ZTO nanobelts.The inset in(b)is the ED pattern of the ZTO nanobelt with the e-beam perpendicular to the zigzag ZTO nanobelt. (c)TEM image of a BHZN,showing that its end split into two ZTO nanobelts again after the growth was interrupted.

    Since the possibility of forming either left-handed(Fig.4(b)) or right-handed(Fig.4(c))structure is equal and hence,we could find both of them in the as-prepared samples.Obviously, the BHZN structure in Fig.4(c)can only be obtained by a mirror operation of the structure in Fig.4(b).Figs.4(a)and 4(d)are the proposed top-view 3D models(projected perpendicular to the axial directionfor the BHZN structures in Figs.4(b) and 4(c),respectively.The BHZN structure is quite similar to that of DNA,except for that the two ZTO nanobelts were bound together by lattice merging rather than the hydrogen bonds between the base pairs in DNA.

    The involved chemical reactions in the CVD device can be written as:

    Fig.4 Two zigzag ZTO nanobelts twisted into one.The twisting could happen in two ways,ending up with either left-handed BHZN(b)or right-handed BHZN(c).(a)and(d)are the corresponding top-view 3D models for(b)and(c),respectively. (e)Perspective-view SEM image and(f)3D model of a tilted BHZN.(g)Side-view 3D model of the BHZN

    Without Al,we did not obtain any BHZNs under our experimental conditions.Moreover,no Al signal was detected in the final products on the Si wafer,meaning that Al served as a reductant and its reaction with ZnO and SnO2to form Al2O3via reactions(1),(2),and(2?)also released a large amount of local heat spurring following reactions.The oxygen came from the residual gas in CVD.In our experiments,Au layer on the Si wafer was employed.Without the Au layer,no Zn2SnO4products were detected,indicating that Au might serve as a catalyst for the Zn2SnO4formation via the so-called VLS mechanism. In Fig.2(e),Au particles clearly existed at the ends of both ZTO nanobelts,supporting the VLS mechanism proposal.

    To verify the above deductions,we carried out a series of control experiments.Without the Au layer on Si wafer,no BHZNs were synthesized under our experimental conditions. On the other hand,under the same experimental conditions without the precursors,the Au layer on the Si wafer shrank into many small nanoparticles ranging from 60 to 80 nm in diameter(see Supporting Information),in good agreement with the Au size detected at the BHZN end shown in Fig.2(e).If we put the precursors in,raised the temperature to 950°C in 50 min in 30 cm3·min-1N2and then swiftly cooled the sample down to RT,observed were some short nanowires on top of which the Au particles were seated(Supporting Information).This further supports the VLS growth mechanism.Under the same experimental conditions as for Figs.1(a)and 1(b),single zigzag ZTO nanobelt was also identified(Fig.3).However,if 100 cm3· min-1N2was introduced into the CVD system instead of 80 cm3·min-1N2and 20 cm3·min-1Ar,no zigzag nanostructure or BHZN was synthesized,showing that the turbulent flow is a must for the appearance of the zigzag nanobelt and BHZN.

    To understand the role of the turbulent flow gas,we added a gas reservoir(acting as a gas buffer)between the 3-way gas valve and the CVD device so that the gases were thoroughly pre-mixed before entering the CVD tube.With such a modification,no BHZN was detected,indicating that the two independent gas flows played an important role in tuning the morphology of the products.The two independent gas flows might form a wave-like turbulence in CVD that affects the structure orientation of BHZN separated out of the Zn,Sn,and Au alloy on the Si wafer.

    To further verify the attribution of the chemical composition of the BHZN,Raman measurement was taken.Since the Si wafer substrate had a resonant feature at about 520 nm,the experimentally measured Raman spectroscopy was calibrated by subtracting the Si signal.The calibrated Raman spectroscopy is shown in Fig.5(a).Four sharp Raman features at about 666.4, 526.6,225.3,and 110.3 cm-1can be clearly identified.The 666.4 cm-1feature is the main one.According to the literature,26,32these four features can be assigned to the Raman resonances of Zn2SnO4.The sharpness of the measured Raman features in our experiment suggested that the BHZN was in good crystallinity.26Again,the Raman result evidenced that the chemical composition of the prepared BHZN was fcc spinel Zn2SnO4.

    Putting all above experimental facts together,we can now work out a picture for the growth of the BHZN under our experimental conditions.Initially,ZnO and SnO2were reduced by Al to produce Zn and Sn vapor,meanwhile the Au layer on Si wafer shrank into small Au particles.At 950°C,the Zn and Sn vapor dissolved into liquid Au particles.After exceeding the saturation concentration,solid Zn and Sn crystallized out of the liquid and immediately reacted with residual oxygen to yield ZTO nanobelts via reactions(3)and(3?).Under the disturbance of a steady-state turbulent gas flow of N2and Ar,the growth directions of the ZTO nanobelts would be perturbed to produce the zigzag structures(Figs.3(b)and 3(c)).With time going on at such a high temperature,these zigzagged ZTO nanobelts would twist(Fig.4)and finally merged at their contacting sections(Figs.2(a)and 2(d)).Fig.4(f)is a perspective-view 3D model for the produced BHZN in Fig.4(e).The two zigzag ZTO nanobelts grow along the[022],[111],and [422]directions,alternately.Their side planes including the polar(111)and non-polar(011)planes would merge together at high temperatures.To enhance visibility,we use two colors to discriminate each zigzag ZTO nanobelt in the BHZN in the 3D models.In reality,any contacting parts between the two zigzag ZTO nanobelts merge into an integrated one.Fig.4(g)displays a side-view 3D model for the BHZN,showing the up-anddown fluctuation of both ZTO nanobelts in the BHZN.This means that these ZTO nanobelts are actually in zigzag form projected along both the top-view(Fig.4(a)or Fig.4(d))and the side-view(Fig.4(g))directions.

    Fig.5 (a)Raman spectroscopy and(b)PLmeasurement of the as-prepared sampleIn(a),the Si background was deducted by using bare Si wafer as the blank experimental sample.The energy densities of the incident pump laser for traces 1 through 9 in(b)were 3.1,5.3,11,25,38,66,120,240, and 510 mJ·cm-2,respectively.

    ZTO is a transparent semiconductor oxide,so its PL measurement should be interesting.This is shown in Fig.5(b).With the energy density increase of the pump laser,a feature at 326.1 nm first appeared and followed by the features at 333.5, 317.6,and 380.0 nm.Since in our experimental conditions,a small portion of ZnO nanobelts could also exist(supporting information),the 380.0 nm feature is much likely due to the presence of ZnO nanostructures and similar to the PL feature from ZnO nanonet reported in our previous study.23The reported band gap of Zn2SnO4 was about 3.6 eV,25,26corresponding to a light wavelength of about 344 nm.The main feature at 326.1 nm in PL can be attributed to the characteristic emission of Zn2SnO4.The blue shift of the main feature might be due to the quantum confinement effect.There could be other factors that may cause the blue shift of the main feature,but this needs further investigation.

    Blue shift of the PL features for semiconductor materials has been frequently reported36-40as their sizes downsize from bulk to nanoscale.For example,the band gap of bulk GaN is about 3.40 eV,corresponding to 364.7 nm in wavelength.When the GaN material downsized to a nanostructure of 40 nm in thickness and 120 nm in diameter,its PL feature centered at about 3.472 eV(357.1 nm),with a shift of about 7.6 nm in wavelength.Further decrease of its size led to a PL feature at about 3.581 eV(346.3 nm),corresponding to a shift in wavelength as large as 18.4 nm.39Therefore,our observation of the blue shift for the BHZN by 18 nm from that for bulk Zn2SnO4is not unusual.In fact,Palmer and Poeppelmeier25had reported the diffuse reflectance(approximate transmission)spectra of Zn2SnO4whose starting edge was about 330-340 nm,also in agreement with our result.Therefore,the main feature at 326.1 nm is attributed to the light emission from the BHZN.Since the line width(FWHM,full width at half maximum)was quite narrow (about 1.5 nm)and there existed an energy density threshold for the pump laser,this emission was likely to be the stimulated emission rather than the spontaneous one.

    At both sides of the main feature appeared new features at 333.5 and 317.6 nm were quite puzzling.Due to the strong intensity(as high as 7000 cps in experiment)and narrow line width(about 1.5 nm,its full width at half maximum)of the main feature,the main PL emission feature may act as a new excitation light.If this were true,then the main Raman resonance in Fig.5(a)could appeared as Stokes and anti-Stokes lines.Since the main Raman resonance wave number is 666.4 cm-1,corresponding to about 0.083 eV in energy,the wavelengths of the Stokes and anti-Stokes Raman lines around the 326.1 nm feature would be 333.4 and 319.1 nm,respectively. These calculated wavelength values are in good agreement with our measured ones in Fig.5(b).An alternative possible explanation of the two small features around the main one in PL could be distortion of the energy band caused by the lattice distortion and dislocation in the BHZN.The origin of the weak feature at about 303 nm is unclear at the moment.We did observe a big lump feature between 400-600 nm.This was ascribed to the vacancy or surface states or defects in the crystal.32

    4 Conclusions

    To conclude,we have successfully prepared bifilar helix-like single crystalline Zn2SnO4nanobelt(BHZN)by exploiting the aluminothermal reaction,VLS growth mode with Au,the merging of polar planes and kinetic control with steady-state turbulent gas flow.The BHZN was formed by the twisting of two ZTO nanobelts.Each ZTO nanobelt alternately grew along the [022],[111],and[422]directions.They finally merged into one nanobelt at 950°C whose axial direction was[111]and diameter was about 100 nm.The BHZN displayed a periodicity along the axial direction,forming an actual super-lattice structure whose side faces were still polar.The PL measurements showed a strong light emission at 326.1 nm from the BHZN sample with a line width of about 1.5 nm.The combined approach used in this study,in particular its aluminothermal reaction and steady-state turbulent gas flow perturbation steps,may be helpful in preparing other materials.The BHZN structure may have potential applications in piezoelectrics,optoelectrics, and gas sensors.

    Supporting Information:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1)Wang,Z.L.Dekker Encyclopedia of Nanoscience and Nanotechnology 2004,1773.

    (2) Chen,J.Y.;Benjamin,W.;Joseph,M.;Xiong,Y.J.;Li,Z.Y.; Xia,Y.N.Nano Lett.2005,5,2058.doi:10.1021/nl051652u

    (3) Kuang,Q.;Jiang,Z.Y.;Xie,Z.X.;Lin,S.C.;Lin,Z.W.;Xie, S.Y.;Huang,R.B.;Zheng,L.S.J.Am.Chem.Soc.2005,127, 11777.doi:10.1021/ja052259t

    (4) Benjamin,D.Y.;David,O.Z.;Peter,J.P.;He,R.R.;Yang,P.D. Angew.Chem.Int.Edit.2006,45,420.doi:10.1002/(ISSN) 1521-3773

    (5) Zhang,H.F.;Wang,C.M.;Wang,L.S.Nano Lett.2002,2,941. doi:10.1021/nl025667t

    (6)Zhang,D.Q.;Abdullah,A.;Han,H.G.;Hasan,M.;McIlroy,D. N.Nano Lett.2003,3,983.doi:10.1021/nl034288c

    (7)Vardhan,B.;Dai,L.M.;Toshiyuki,O.J.Am.Chem.Soc.2004, 126,5070.doi:10.1021/ja031738u

    (8) Zhang,G.Y.;Jiang,X.;Wang,E.G.Appl.Phys.Lett.2004,84, 2646.doi:10.1063/1.1695198

    (9) Gao,R.P.;Wang,Z.L.;Fan,S.S.J.Phys.Chem.B 2000,104, 1227.doi:10.1021/jp9937611

    (10)Tang,Y.H.;Zhang,Y.F.;Wang,N.;Lee,C.S.;Han,X.D.; Bello,I.;Lee,S.T.J.Appl.Phys.1999,85,7981.doi:10.1063/ 1.369389

    (11) Duan,J.H.;Yang,S.G.;Liu,H.W.;Gong,J.F.;Huang,H.B.; Zhao,X.N.;Zhang,R.;Du,Y.W.J.Am.Chem.Soc.2005,127, 6180.doi:10.1021/ja042748d

    (12) Yang,R.S.;Ding,Y.;Wang,Z.L.Nano Lett.2004,4,1309. doi:10.1021/nl049317d

    (13) Bae,S.Y.;Lee,J.Y.;Jung,H.S.;Park,J.H.;Ahn,J.P.J.Am. Chem.Soc.2005,127,10802.doi:10.1021/ja0534102

    (14) Zhan,J.H.;Bando,Y.;Hu,J.Q.;Xu,F.F.;Golberg,D.Small 2005,1,883.doi:10.1002/(ISSN)1613-6829

    (15) Zarur,A.J.;Ying,J.Y.Nature 2000,403,65.doi:10.1038/ 47450

    (16) Shen,S.C.;Kus,H.;Liya,E.Y.;Sibudjing,K.Adv.Mater. 2004,16,541.doi:10.1002/(ISSN)1521-4095

    (17) Chen,Y.C.;Chang,Y.H.;Tsai,B.S.Mater.Trans.2004,45, 1684.doi:10.2320/matertrans.45.1684

    (18)vander Laaga,N.J.;Snela,M.D.;Magusinb,P.C.M.M.;de With,G.J.Eur.Cer.Soc.2004,24,2417.doi:10.1016/ j.jeurceramsoc.2003.06.001

    (19) Lou,Z.D.;Hao,J.H.Thin Solid Films 2004,450,334.doi: 10.1016/j.tsf.2003.11.294

    (20) Zawadzki,M.;Wrzyszcz,J.;Strek,W.;Hreniak,D.J.Alloy. Compd.2001,323-324,279.

    (21)Yu,J.F.;Wang,F.;Wang,Y.;Gao,H.;Li,J.L.;Wu,K.Chem. Soc.Rev.2010,39,1513.doi:10.1039/b812787p

    (22)Wang,Y.;Wu,K.J.Am.Chem.Soc.2005,127,9686.doi: 10.1021/ja0505402

    (23)Wang,Y.;Liao,Q.;Lei,H.;Zhang,X.P.;Ai,X.C.;Zhang,J.P.; Wu,K.Adv.Mater.2006,18,943.doi:10.1002/(ISSN) 1521-4095

    (24)Liao,Q.;Wang,Y.;Li,J.L.;Wu,K.;Ai,X.C.;Zhang,J.P. Appl.Phys.Lett.2007,91,041103.doi:10.1063/1.2759473

    (25) Palmer,G.B.;Poeppelmeier,K.R.Solid State Sci.2002,4,317. doi:10.1016/S1293-2558(01)01258-4

    (26) Coutts,T.J.;Young,D.L.;Li,X.;Mulligan,W.P.;Wu,X. J.Vac.Sci.Technol.A 2000,18,2646.

    (27) Stambolova,I.;Konstantinov,K.;Kovacheva,D.;Peshev,P.; Donchev,T.J.Solid State Chem.1997,128,305.doi:10.1006/ jssc.1996.7174

    (28)Yamada,Y.;Seno,Y.;Masuoka,Y.;Yamashita,K.Sens.Actua. B-Chem.1998,49,248.doi:10.1016/S0925-4005(98)00135-X

    (29) Stambolova,I.;Konstantinov,K.;Khristova,M.;Peshev,P. Phys.Status Solid.-Appl.Res.1998,167,R11.

    (30) Jie,J.S.;Wang,G.Z.;Han,X.H.;Fang,J.P.;Yu,Q.X.;Liao, Y.;Xu,B.;Wang,Q.T.;Hou,J.G.J.Phys.Chem.B 2004,108, 8249.doi:10.1021/jp049230g

    (31)Chen,H.Y.;Wang,J.X.;Yu,H.C.;Yang,H.X.;Xie,S.S.;Li, J.Q.J.Phys.Chem.B 2005,109,2573.doi:10.1021/jp046125y

    (32)Wang,J.X.;Xie,S.S.;Gao,Y.;Yan,X.Q.;Liu,D.F.;Yuan,H. J.;Zhou,Z.P.;Song,L.;Liu,L.F.;Zhou,W.Y.;Wang,E.G. J.Cryst.Growth 2004,267,177.

    (33)Kim,H.S.;Hwang,S.O.;Myung,Y.;Park,J.;Bae,S.Y.;Ahn, J.P.Nano Lett.2008,8,551.doi:10.1021/nl072829i

    (34)Yu,J.F.;Wang,Y.;Wen,W.;Yang,D.H.;Huang,B.;Li,J.L.; Wu,K.Adv.Mater.2010,22,1479.doi:10.1002/adma. 200903656

    (35) Kong,X.Y.;Ding,Y.;Yang,R.S.;Wang,Z.L.Science 2004, 303,1348.doi:10.1126/science.1092356

    (36) Gates,B.;Mayers,B.;Cattle,B.;Xia,Y.N.Adv.Funct.Mater. 2002,12,219.doi:10.1002/1616-3028(200203)12:3<219:: AID-ADFM219>3.0.CO;2-U

    (37) Joo,J.;Son,J.S.;Kwon,S.G.;Yu,J.H.;Hyeon,T.J.Am. Chem.Soc.2006,128,5632.doi:10.1021/ja0601686

    (38) Goodwin,T.J.;Leppert,V.J.;Risbud,S.H.;Kennedy,I.M.; Lee,H.W.H.Appl.Phys.Lett.1997,70,3122.doi:10.1063/ 1.119109

    (39) Ramyall,P.;Tanaka,S.;Nomura,S.;Riblet,P.;Aoyagi,Y.Appl. Phys.Lett.1998,73,1104.doi:10.1063/1.122098

    (40) Hu,P.A.;Liu,Y.Q.;Fu,L.;Cao,L.C.;Zhu,D.B.J.Phys. Chem.B 2004,108,936.

    August 28,2012;Revised:September 10,2012;Published on Web:September 11,2012.

    Bifilar Helix-Like Nanobelt of Single Crystalline Zn2SnO4Fabricated by Aluminothermal Reaction Approach

    WANG Yu1CHEN Jing1LIAO Qing2SUN Wei1LI Jian-Long1,*ZHANG Jian-Ping3WU Kai1,*
    (1Beijing National Laboratory for Molecular Sciences,College of Chemistry and Molecular Engineering,Peking University, Beijing 100871,P.R.China;2Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,P.R.China;3Department of Chemistry,Remin Unversity of China,Beijing 100872,P.R.China)

    This paper reports the preparation in large quantity of bifilar helix-like nanobelts of single crystalline Zn2SnO4,a face-centered cubic spinel and transparent semiconductor that possesses wide applications in photovoltaic devices and sensors for humidity and combustible gases,by using a unique approach that combines chemical vapor deposition,aluminothermal reaction,vapor-liquid-solid growth, mergence of polar planes,and kinetic control by steady-state turbulent flow.The bifilar helix-like nanobelt was formed by the twisting and merging of two independent Zn2SnO4nanobelts,as analyzed by scanning electron microscopy,transmission electron microscopy,electron diffraction,X-ray diffraction,Raman spectroscopy,and photoluminescence.It had a periodicity along the axial direction and hence,is actually a super-lattice material.The photoluminescence measurements showed a strong light emission at 326.1 nm from the as-prepared sample with a line width of about 1.5 nm.The combined approach used in this study, in particular its aluminothermal reaction and steady-state turbulent gas flow perturbation steps,may be helpful in preparing other similar materials.

    Bifilar helix-like nanobelt;Zn2SnO4;Aluminothermal reaction approach; Photoluminescence

    10.3866/PKU.WHXB201209113

    ?Corresponding authors.WU Kai,Email:kaiwu@pku.edu.cn;Tel:+86-10-62754005.LI Jian-Long,Eamil:jlipku@pku.edu.cn; Tel:+86-10-62757062.

    The project was supported by the National Natural Science Foundation of China(20827002,20911130229)and National Key Basic Research Program of China(973)(2009CB929403,2011CB808702).

    國家自然科學(xué)基金(20827002,20911130229)及國家重點基礎(chǔ)研究發(fā)展規(guī)劃項目(973)(2009CB929403,2011CB808702)資助

    O641

    猜你喜歡
    張建平光致發(fā)光單晶
    古詩集句(草書)
    光致發(fā)光與變色纖維發(fā)展趨勢
    買一片海愛你夠不夠,95后小情侶的勵志浪漫
    大尺寸低阻ZnO單晶襯弟
    大尺寸低阻ZnO單晶襯底
    書記愛“折騰”
    雙摻雜核殼結(jié)構(gòu)ZnS:Mn@ZnS:Cu量子點的水熱法合成及其光致發(fā)光性能
    大尺寸低阻ZnO 單晶襯底
    大尺寸低阻ZnO 單晶襯底
    One-pot facile synthesis of highly photoluminescent graphene quantum dots with oxygen-rich groups
    亚洲精品日韩在线中文字幕| 午夜激情av网站| 制服诱惑二区| 看免费成人av毛片| 精品视频人人做人人爽| 久久精品国产a三级三级三级| 成人二区视频| 韩国av在线不卡| 美国免费a级毛片| 在线观看免费高清a一片| 日日爽夜夜爽网站| 搡老乐熟女国产| 亚洲综合色网址| 最新中文字幕久久久久| 欧美人与性动交α欧美精品济南到 | 成人亚洲欧美一区二区av| 国产在线视频一区二区| 国产探花极品一区二区| 欧美日本中文国产一区发布| 91精品三级在线观看| 美女中出高潮动态图| 巨乳人妻的诱惑在线观看| 国产日韩欧美亚洲二区| 免费黄网站久久成人精品| 久久久久久人人人人人| 国产成人欧美| 妹子高潮喷水视频| 国产日韩欧美视频二区| 狂野欧美激情性bbbbbb| 国产片特级美女逼逼视频| 99久久综合免费| videossex国产| 91精品伊人久久大香线蕉| 卡戴珊不雅视频在线播放| 黄色怎么调成土黄色| 亚洲色图综合在线观看| 久久国产亚洲av麻豆专区| 亚洲 欧美一区二区三区| 亚洲精品久久午夜乱码| 久久精品久久久久久久性| 97在线视频观看| 大片电影免费在线观看免费| 国产亚洲午夜精品一区二区久久| 777米奇影视久久| 久久人人爽人人爽人人片va| 日韩伦理黄色片| 免费高清在线观看视频在线观看| 国产精品成人在线| 黄片无遮挡物在线观看| 午夜av观看不卡| 成人黄色视频免费在线看| 最黄视频免费看| 哪个播放器可以免费观看大片| 最黄视频免费看| 一区二区av电影网| 精品国产一区二区久久| 少妇人妻久久综合中文| 日韩大片免费观看网站| 中文精品一卡2卡3卡4更新| 国产一区亚洲一区在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 男女边吃奶边做爰视频| 少妇的逼好多水| 狂野欧美激情性xxxx在线观看| 中国国产av一级| 人人妻人人添人人爽欧美一区卜| 青春草亚洲视频在线观看| 国产综合精华液| 视频中文字幕在线观看| 亚洲精品av麻豆狂野| 亚洲高清免费不卡视频| 2021少妇久久久久久久久久久| 91精品伊人久久大香线蕉| 啦啦啦视频在线资源免费观看| 热re99久久国产66热| 亚洲高清免费不卡视频| av卡一久久| 成人手机av| av国产精品久久久久影院| 亚洲成人手机| 在线观看www视频免费| 国产 一区精品| 天堂中文最新版在线下载| 中文天堂在线官网| 亚洲一区二区三区欧美精品| 视频在线观看一区二区三区| 日本色播在线视频| 一区在线观看完整版| 中国三级夫妇交换| 2018国产大陆天天弄谢| 亚洲欧洲精品一区二区精品久久久 | 七月丁香在线播放| 一本—道久久a久久精品蜜桃钙片| 在线观看三级黄色| 丰满乱子伦码专区| 精品第一国产精品| 国精品久久久久久国模美| 亚洲国产最新在线播放| 欧美日韩av久久| 国产精品一二三区在线看| 国产69精品久久久久777片| 性色av一级| 午夜精品国产一区二区电影| 韩国精品一区二区三区 | 免费在线观看黄色视频的| 成人国产av品久久久| 黑人高潮一二区| 少妇人妻久久综合中文| 国产精品人妻久久久影院| 欧美国产精品一级二级三级| 亚洲情色 制服丝袜| 在线观看免费高清a一片| 久久久久网色| 国产无遮挡羞羞视频在线观看| 久久久久久人妻| 久久狼人影院| 国产成人一区二区在线| 成人亚洲欧美一区二区av| 美女大奶头黄色视频| 国产黄色免费在线视频| 国产欧美日韩综合在线一区二区| 久久久久视频综合| 欧美另类一区| 久久久久久久精品精品| 精品一区二区三区视频在线| 婷婷色av中文字幕| 黑人巨大精品欧美一区二区蜜桃 | 五月玫瑰六月丁香| 国产精品三级大全| 午夜免费鲁丝| av不卡在线播放| 黄网站色视频无遮挡免费观看| 91成人精品电影| 日本vs欧美在线观看视频| 国产一区二区在线观看av| 九色成人免费人妻av| 啦啦啦中文免费视频观看日本| 热re99久久国产66热| 美女国产高潮福利片在线看| 国产乱人偷精品视频| 青春草视频在线免费观看| 午夜福利乱码中文字幕| 午夜视频国产福利| 少妇高潮的动态图| 人成视频在线观看免费观看| 亚洲精品,欧美精品| 亚洲国产av新网站| www.熟女人妻精品国产 | 欧美日本中文国产一区发布| 国产免费福利视频在线观看| 亚洲熟女精品中文字幕| av又黄又爽大尺度在线免费看| 黄片播放在线免费| 性色avwww在线观看| 日韩一区二区三区影片| 精品人妻一区二区三区麻豆| 秋霞伦理黄片| 在线天堂中文资源库| 亚洲欧美精品自产自拍| 哪个播放器可以免费观看大片| 美女国产视频在线观看| 国产高清国产精品国产三级| 日韩欧美精品免费久久| 国产乱来视频区| 夜夜爽夜夜爽视频| 成人免费观看视频高清| 男女边摸边吃奶| 七月丁香在线播放| 国产在视频线精品| 高清av免费在线| 精品少妇内射三级| 亚洲精品成人av观看孕妇| 在线观看人妻少妇| 伦精品一区二区三区| 国产熟女欧美一区二区| 人成视频在线观看免费观看| 国产麻豆69| 国产国拍精品亚洲av在线观看| 啦啦啦视频在线资源免费观看| 亚洲国产精品成人久久小说| 国产一级毛片在线| videos熟女内射| 国产欧美亚洲国产| 国产极品天堂在线| 中国三级夫妇交换| 啦啦啦中文免费视频观看日本| 国产精品嫩草影院av在线观看| 超碰97精品在线观看| 青春草视频在线免费观看| 久久久久国产网址| 精品人妻偷拍中文字幕| 成人国语在线视频| 少妇猛男粗大的猛烈进出视频| 秋霞在线观看毛片| 在线观看一区二区三区激情| 看十八女毛片水多多多| 视频在线观看一区二区三区| 精品午夜福利在线看| 亚洲欧美日韩卡通动漫| 久久人人爽人人片av| videos熟女内射| 国产一区二区激情短视频 | 久久久久久久大尺度免费视频| 少妇的逼水好多| 插逼视频在线观看| 又大又黄又爽视频免费| 成人漫画全彩无遮挡| 最后的刺客免费高清国语| 成人二区视频| 蜜桃在线观看..| 天天操日日干夜夜撸| 最近最新中文字幕免费大全7| 国产成人免费无遮挡视频| 三级国产精品片| 久久国产精品男人的天堂亚洲 | 视频中文字幕在线观看| 黄色视频在线播放观看不卡| 午夜影院在线不卡| 成人亚洲欧美一区二区av| 制服诱惑二区| 丰满迷人的少妇在线观看| 国产精品一区www在线观看| 在线亚洲精品国产二区图片欧美| 亚洲人成网站在线观看播放| 制服丝袜香蕉在线| 精品一区二区三区四区五区乱码 | 最新中文字幕久久久久| 青春草亚洲视频在线观看| 99热全是精品| 久久精品熟女亚洲av麻豆精品| 国产成人精品在线电影| 亚洲美女黄色视频免费看| 久久人人爽人人爽人人片va| 一区二区三区乱码不卡18| 久久99热6这里只有精品| 成年动漫av网址| 亚洲一码二码三码区别大吗| 少妇人妻久久综合中文| 亚洲精品av麻豆狂野| 久久精品久久久久久久性| 国产日韩欧美亚洲二区| 亚洲欧美成人精品一区二区| 91午夜精品亚洲一区二区三区| 丰满乱子伦码专区| 美女内射精品一级片tv| 亚洲欧美一区二区三区国产| 精品亚洲乱码少妇综合久久| 亚洲精品一二三| 日本免费在线观看一区| 欧美bdsm另类| 精品少妇久久久久久888优播| 欧美日韩国产mv在线观看视频| 欧美亚洲日本最大视频资源| 中国美白少妇内射xxxbb| 欧美日韩视频精品一区| 卡戴珊不雅视频在线播放| 国产在线一区二区三区精| 日产精品乱码卡一卡2卡三| 亚洲综合精品二区| 夫妻性生交免费视频一级片| 日日摸夜夜添夜夜爱| 日韩欧美一区视频在线观看| 精品一区二区三区四区五区乱码 | 久久人妻熟女aⅴ| 亚洲 欧美一区二区三区| 久久毛片免费看一区二区三区| 日韩欧美一区视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 自线自在国产av| 91国产中文字幕| 在现免费观看毛片| 美女脱内裤让男人舔精品视频| 天美传媒精品一区二区| 国产又色又爽无遮挡免| 国产激情久久老熟女| av在线app专区| 午夜av观看不卡| 九色亚洲精品在线播放| 国产福利在线免费观看视频| 大香蕉97超碰在线| 亚洲成人av在线免费| 黄片播放在线免费| 尾随美女入室| 成人18禁高潮啪啪吃奶动态图| 国产又爽黄色视频| 日韩三级伦理在线观看| 午夜福利视频在线观看免费| 久久久久久伊人网av| 国产精品蜜桃在线观看| 波多野结衣一区麻豆| 最近2019中文字幕mv第一页| 精品福利永久在线观看| 热99国产精品久久久久久7| 久久精品人人爽人人爽视色| av国产精品久久久久影院| 免费看不卡的av| 午夜激情久久久久久久| 乱人伦中国视频| 成人黄色视频免费在线看| 少妇人妻精品综合一区二区| 精品福利永久在线观看| 男人爽女人下面视频在线观看| 久久国产精品大桥未久av| 天美传媒精品一区二区| 99re6热这里在线精品视频| 国产片内射在线| 免费少妇av软件| 日本vs欧美在线观看视频| 晚上一个人看的免费电影| 欧美亚洲 丝袜 人妻 在线| a级毛片黄视频| 国产av精品麻豆| 亚洲欧美日韩卡通动漫| 亚洲国产日韩一区二区| 亚洲 欧美一区二区三区| 尾随美女入室| 国产精品女同一区二区软件| 国产伦理片在线播放av一区| 黑人欧美特级aaaaaa片| 久久av网站| 亚洲精品国产色婷婷电影| 精品视频人人做人人爽| 日韩av免费高清视频| 国产精品久久久av美女十八| 各种免费的搞黄视频| 亚洲av在线观看美女高潮| 欧美日韩精品成人综合77777| 天堂俺去俺来也www色官网| 交换朋友夫妻互换小说| a 毛片基地| 亚洲欧美一区二区三区黑人 | 在线观看人妻少妇| 一本—道久久a久久精品蜜桃钙片| av线在线观看网站| 亚洲综合色惰| 免费黄频网站在线观看国产| 精品久久蜜臀av无| 欧美97在线视频| 各种免费的搞黄视频| 男女午夜视频在线观看 | 午夜免费观看性视频| 久久久久视频综合| 日韩视频在线欧美| 国产亚洲欧美精品永久| 亚洲三级黄色毛片| 亚洲内射少妇av| 亚洲第一av免费看| 久久人人爽人人爽人人片va| 成人综合一区亚洲| 国产激情久久老熟女| 亚洲国产看品久久| 国国产精品蜜臀av免费| 80岁老熟妇乱子伦牲交| 成人影院久久| 欧美人与善性xxx| 黄片播放在线免费| 国产一区二区三区综合在线观看 | 日本免费在线观看一区| 亚洲av免费高清在线观看| 中文字幕人妻丝袜制服| 在现免费观看毛片| 美女大奶头黄色视频| 欧美日韩av久久| 亚洲av欧美aⅴ国产| 久久久久精品性色| 亚洲一码二码三码区别大吗| 国产成人aa在线观看| 国产永久视频网站| 国产日韩欧美视频二区| 国产精品一国产av| 亚洲精品国产av蜜桃| 69精品国产乱码久久久| 国产爽快片一区二区三区| 久久久久精品久久久久真实原创| 18禁观看日本| 七月丁香在线播放| 国产免费又黄又爽又色| 一边亲一边摸免费视频| 久久久欧美国产精品| 搡老乐熟女国产| 熟女av电影| 免费大片18禁| 成年人免费黄色播放视频| 亚洲精品av麻豆狂野| 精品酒店卫生间| 国产免费视频播放在线视频| 99精国产麻豆久久婷婷| 在现免费观看毛片| 亚洲精品乱码久久久久久按摩| 欧美xxxx性猛交bbbb| 婷婷色麻豆天堂久久| 日韩一区二区三区影片| 哪个播放器可以免费观看大片| 18禁动态无遮挡网站| 成人国产麻豆网| 日日啪夜夜爽| 亚洲综合色网址| 久久婷婷青草| 精品一区在线观看国产| 99re6热这里在线精品视频| 啦啦啦中文免费视频观看日本| 大香蕉久久网| 欧美日韩国产mv在线观看视频| 国产熟女欧美一区二区| 曰老女人黄片| 婷婷色麻豆天堂久久| 性色av一级| 观看av在线不卡| 久久人人97超碰香蕉20202| 一区二区av电影网| 国产一区有黄有色的免费视频| 欧美精品国产亚洲| 蜜桃在线观看..| 欧美日韩视频高清一区二区三区二| 亚洲精品美女久久久久99蜜臀 | 丰满饥渴人妻一区二区三| 欧美精品一区二区免费开放| a级毛色黄片| 永久网站在线| 热99国产精品久久久久久7| 交换朋友夫妻互换小说| 激情视频va一区二区三区| 免费观看a级毛片全部| 久久久久久久国产电影| 国产精品国产三级国产av玫瑰| 日本欧美视频一区| 中文字幕最新亚洲高清| 国产欧美亚洲国产| 日韩免费高清中文字幕av| 免费观看在线日韩| 少妇 在线观看| 蜜臀久久99精品久久宅男| 亚洲精品中文字幕在线视频| 久久精品久久久久久噜噜老黄| 日日啪夜夜爽| 免费久久久久久久精品成人欧美视频 | 插逼视频在线观看| 美国免费a级毛片| 国产免费一级a男人的天堂| 在线免费观看不下载黄p国产| 国产一区二区三区av在线| 免费黄网站久久成人精品| 一级毛片 在线播放| 久久狼人影院| 青青草视频在线视频观看| 少妇高潮的动态图| 99久久精品国产国产毛片| 精品人妻偷拍中文字幕| 999精品在线视频| 久久这里只有精品19| 午夜影院在线不卡| 在线观看国产h片| www.av在线官网国产| 精品国产国语对白av| 大话2 男鬼变身卡| 天堂俺去俺来也www色官网| 26uuu在线亚洲综合色| 极品少妇高潮喷水抽搐| 国产精品欧美亚洲77777| 伦精品一区二区三区| av卡一久久| 寂寞人妻少妇视频99o| 久久精品夜色国产| 国产熟女午夜一区二区三区| 日本91视频免费播放| 多毛熟女@视频| 亚洲在久久综合| 9191精品国产免费久久| 人成视频在线观看免费观看| 亚洲av综合色区一区| 菩萨蛮人人尽说江南好唐韦庄| 国产xxxxx性猛交| 搡老乐熟女国产| 国产成人精品福利久久| www日本在线高清视频| 免费高清在线观看视频在线观看| 高清毛片免费看| 欧美精品国产亚洲| 成人漫画全彩无遮挡| 国产在线视频一区二区| 精品久久久精品久久久| 男女免费视频国产| 亚洲成人一二三区av| 国产精品秋霞免费鲁丝片| 欧美97在线视频| 成人国产麻豆网| av线在线观看网站| 亚洲欧洲日产国产| 久久久久国产网址| 最后的刺客免费高清国语| 亚洲人成77777在线视频| 日韩中文字幕视频在线看片| 亚洲欧洲日产国产| 午夜福利视频在线观看免费| 免费播放大片免费观看视频在线观看| 飞空精品影院首页| 国产在线视频一区二区| 国产片内射在线| 国产不卡av网站在线观看| 美女国产视频在线观看| 欧美 亚洲 国产 日韩一| 少妇人妻精品综合一区二区| 亚洲国产精品成人久久小说| 赤兔流量卡办理| 岛国毛片在线播放| 亚洲国产av影院在线观看| 在线 av 中文字幕| 国产成人一区二区在线| 国产一区二区三区av在线| 国语对白做爰xxxⅹ性视频网站| 18禁国产床啪视频网站| 久久久久久伊人网av| 久久精品久久久久久久性| av.在线天堂| 亚洲欧洲精品一区二区精品久久久 | 欧美国产精品一级二级三级| 亚洲欧美日韩另类电影网站| 亚洲美女搞黄在线观看| 在线看a的网站| 亚洲国产av影院在线观看| 成年人午夜在线观看视频| 亚洲在久久综合| 国产精品成人在线| 午夜福利视频精品| 久久精品国产亚洲av天美| 日本免费在线观看一区| 国产免费视频播放在线视频| www.av在线官网国产| 亚洲精品久久午夜乱码| 韩国av在线不卡| 波野结衣二区三区在线| 在线观看三级黄色| 9热在线视频观看99| 午夜福利,免费看| 少妇高潮的动态图| 亚洲av中文av极速乱| 亚洲综合色网址| 一边摸一边做爽爽视频免费| 免费高清在线观看日韩| 夫妻午夜视频| 国产老妇伦熟女老妇高清| 日韩成人伦理影院| 永久免费av网站大全| 亚洲国产日韩一区二区| 制服诱惑二区| 亚洲国产精品成人久久小说| 亚洲国产精品一区二区三区在线| 亚洲综合精品二区| 久久久久久久久久人人人人人人| 亚洲婷婷狠狠爱综合网| 亚洲少妇的诱惑av| 99国产综合亚洲精品| 亚洲精品色激情综合| 人妻少妇偷人精品九色| 成人免费观看视频高清| 久久久国产一区二区| 国产精品久久久久久精品古装| 永久网站在线| 精品少妇久久久久久888优播| 日韩视频在线欧美| 久久久精品94久久精品| 久久精品人人爽人人爽视色| 熟女人妻精品中文字幕| 日韩伦理黄色片| 欧美97在线视频| 啦啦啦视频在线资源免费观看| 高清黄色对白视频在线免费看| 如何舔出高潮| 久久人人爽人人爽人人片va| 伦理电影大哥的女人| 亚洲欧美中文字幕日韩二区| 看非洲黑人一级黄片| 日韩欧美一区视频在线观看| 91精品国产国语对白视频| 欧美精品一区二区大全| 久久久久久久国产电影| 精品久久国产蜜桃| 国产白丝娇喘喷水9色精品| 亚洲精品第二区| 菩萨蛮人人尽说江南好唐韦庄| a级片在线免费高清观看视频| 咕卡用的链子| 超色免费av| 久久久国产欧美日韩av| 国产综合精华液| 永久免费av网站大全| 高清毛片免费看| 丰满乱子伦码专区| 国产男女超爽视频在线观看| 一级黄片播放器| 亚洲av男天堂| 色5月婷婷丁香| 大香蕉97超碰在线| 一区在线观看完整版| 国产一区有黄有色的免费视频| 综合色丁香网| 高清黄色对白视频在线免费看| 中文字幕免费在线视频6| 国产精品三级大全| 99精国产麻豆久久婷婷| 久久精品久久久久久久性| 久久久国产一区二区| 久久精品人人爽人人爽视色| 青春草国产在线视频| 爱豆传媒免费全集在线观看| 免费看光身美女| 亚洲欧美一区二区三区国产| 精品一区二区免费观看| a级片在线免费高清观看视频| 欧美国产精品va在线观看不卡| 一区在线观看完整版| 国产av一区二区精品久久| 久久精品国产综合久久久 | www日本在线高清视频| 99香蕉大伊视频|