• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鋁熱反應(yīng)法制備雙股類螺旋Zn2SnO4單晶納米帶

    2012-12-11 09:35:02厲建龍張建平
    物理化學(xué)學(xué)報 2012年10期
    關(guān)鍵詞:張建平光致發(fā)光單晶

    王 煜 陳 靜 廖 清 孫 偉 厲建龍,* 張建平 吳 凱,*

    (1北京大學(xué)化學(xué)與分子工程學(xué)院,北京分子科學(xué)國家實驗室,北京100871;2中國科學(xué)院化學(xué)研究所,北京100190; 3中國人民大學(xué)化學(xué)系,北京100872)

    鋁熱反應(yīng)法制備雙股類螺旋Zn2SnO4單晶納米帶

    王 煜1陳 靜1廖 清2孫 偉1厲建龍1,*張建平3吳 凱1,*

    (1北京大學(xué)化學(xué)與分子工程學(xué)院,北京分子科學(xué)國家實驗室,北京100871;2中國科學(xué)院化學(xué)研究所,北京100190;3中國人民大學(xué)化學(xué)系,北京100872)

    綜合利用化學(xué)氣相沉積、鋁熱反應(yīng)法、汽-液-固生長法、極性面融合和穩(wěn)態(tài)湍流動力學(xué)控制來大量制備雙股類螺旋Zn2SnO4單晶納米帶.該材料屬于面心立方尖晶石型透明半導(dǎo)體,在光伏器件和濕度與可燃?xì)怏w傳感器中有著廣泛的應(yīng)用.掃描電鏡、透射電鏡、電子衍射、X射線衍射、拉曼光譜以及光發(fā)射等技術(shù)分析表明所得的雙股類螺旋納米帶是由兩個獨立的Zn2SnO4納米帶通過扭曲糾纏和融合而成.該雙股類螺旋納米帶實際上是在軸向具有周期性的超晶格材料.光致發(fā)光測量表明該納米帶在326.1 nm處出現(xiàn)強發(fā)射峰,線寬約為1.5 nm.本研究所采用的綜合制備法中的鋁熱反應(yīng)法和穩(wěn)態(tài)湍流微擾法可能有助于類似材料的控制制備.

    雙股類螺旋納米帶;Zn2SnO4;鋁熱反應(yīng)法;光致發(fā)光

    1 Introduction

    Controlling morphology and structure of nanomaterials plays a central role in tuning their properties for various applications.1-4Various types of one-dimensional(1D)inorganic nanomaterials5-14with different morphologies and structures have been fabricated in the past decade by using strategies like energy minimization,12lattice match-up,13and dislocation.14Nature is absolutely the master for designing and forming unique structures.One of its great masterpieces is the creation of bifilar or double-stranded helix DNA.People have been imitating nature?s trick to synthesize helix-like materials due to their unique structures that possess chirality.In nanofabrication, many studies are related to unifilar or singe-stranded zigzag and helix-like inorganic nanowires and nanobelts,5-14and few works have focused on bifilar helix-like nanostructures.Developing a facile and efficient approach to synthesizing the bifilar helix-like nanostructures in a controlled manner is apparently a tough challenge.

    Meanwhile,controlling the composition of the prepared inorganic nanomaterials is another big task in materials science.15-20Chemical reactions between oxides with cations of double and triple valence states frequently yield spinel and/or garnet composite oxides.When doped with some functional materials including rare earth elements and some transition metal ingredients,these composite oxides can be very useful in optics,electromagnetics,piezoelectrics and sensor.4In this research field, we have developed the interfacial reaction growth(IRG)approach21to growing integrated face-centered cubic(FCC)crystalline ZnAl2O4nanotube/nanonet22on porous alumina template and later on,crystalline ZnO(zinc spinel)nanonet on the grown ZnAl2O4nanonet by epitaxial growth.23,24Zn2SnO4(ZTO, zinc stanate),belonged to the FCC spinel,is an important transparent semiconductor with a band gap of 3.6 eV.25,26With high electron mobility,high electric conductivity,and low absorptivity of visible light,it is very useful in photovoltaic devices and sensors for humidity and various combustible gases.27-32Sparsely zigzagged Zn2SnO4nanowires were previously reported by employing thermal evaporation of ZnO/Sn powders under argon or nitrogen gas.33

    Here we report the preparation in large quantity of 1D bifilar helix-like ZTO nanobelt(BHZN)consisting of two twisted zigzag nanobelts that merged together to form a single crystal. Each nanobelt was 50-70 nm wide and 20-30 nm thick and alternately grew along theanddirections.The chiral single crystal BHZN extended along the axial directionIts fabrication was realized by a strategy combining aluminothermal reaction approach,34vapor-liquid-solid (VLS) growth,polar-plane mergence,and steady-state turbulent gas flow control.Photoluminescence(PL)measurements showed that it had a strong light emission feature centered at about 326 nm with a line width of about 1.5 nm.

    2 Experimental

    2.1 Sample preparation and structural characterization

    The applied aluminothermal reaction approach has been described in detail in a recent report.34In brief,mixed powder of ZnO,SnO2,and Al in a molar ratio of 1:2:12-1:4:12 was put in the front of an alumina boat,and a piece of Si wafer(4 mm×8 mm)coated with a thin gold layer of 20-40 nm in thickness was placed behind the mixed powder by a separation of 0.3-0.5 cm in the boat.The boat was then put into the constant temperature segment of a chemical vapor deposition(CVD) furnace.After purged by 100 cm3·min-1(standard state)high purity(>99.99%)N2flow(that flowed downstream from the mixed powder to the Si wafer)for 20 min,the boat was heated from room temperature(RT)to 950°C in 50 min in 30 cm3· min-1N2flow that was afterwards switched to two gas flows of 80 cm3·min-1N2and 20 cm3·min-1Ar through a 3-way gas valve.The boat was kept at 950°C for 30 min and then cooled in 30 cm3·min-1N2down to RT.The Si wafer was finally coated with a thin white layer of products that were directly used for morphology observations by scanning electron microscopy (SEM,Strata DB235,FEI and S4800,Hitachi)and environmental SEM(ESEM,Quanta 200F,FEI).The Si wafer was ultrasonicated in alcohol for 3 min and the suspension was dropped onto a copper grid for structural analyses by high-resolution transmission electron microscopy(HRTEM,Tecnai F30, Philips,300 kV).

    2.2 Photoluminescence and Raman measurements

    The samples used in the PL measurement were the as-prepared Zn2SnO4/Si wafer that was also mixed with a small amount of ZnO nanobelts and nanosaws.The as-prepared sample was optically pumped by the fourth harmonics of a Nd: YAG laser(266 nm in wavelength,4 Hz in frequency,5 ns in pulse time)at an incident angle of 45°.The light emission was collected along the sample surface normal direction with a polychromator(Spectropro 550i,Acton)equipped with a charge-coupled device(CCD)detector(SPEC-10-400B/LN, Roper Scientific)cooled with liquid nitrogen.Raman spectroscopy was also carried out on the same sample used for PL experiment.In Raman,an Ar+laser(488 nm in wavelength)was used as the excitation source and light reflected from the sample surface was collected by the CCD.

    3 Results and discussion

    The final products widely spread on a Si wafer that was about 3-4 mm away from the mixed precursor pile consisting of ZnO,SnO2and Al(for details of the products collection,refer to Fig.S1(a)in Supporting Information).Under our experimental conditions,the main part of the product on the Si wafer was Zn2SnO4and the left part was ZnO.This was verified by X-ray diffraction(XRD)measurements(Fig.S2(b)in Supporting Information).Normally these two kinds of products, Zn2SnO4and ZnO,mainly stayed in different collection zones, but the Zn2SnO4product could be also mixed with a small amount of ZnO.

    Fig.1 Large-scale(a)and magnified(b)ESEM images ofthe as-prepared BHZN on Si wafer.(c)TEM image(top view), (d)SAED pattern(with the e-beam perpendicular to the wire)and (e)enlarged TEM image(top view)of a BHZN.(f)EDX analysis of the BHZN in(e)The inset in(b)is the proposed side-view 3D model.Arrows in(c)and (e)mark the growth directions.The Cu signal in(f)was from the Cu grid used for the sample preparation.

    The SEM image in Fig.1(a)demonstrates that 1D spindle-like nanowires with a periodicity along their axes were successfully synthesized.A closer look at a particular spindle-like nanowire(Fig.1(b))showed that it had a regular shape and was helix-like.Inset in Fig.1(b)is a possible 3-dimensional(3D) model for this helix-like nanowire(side view).TEM measurements(Figs.1(c)and 1(e))suggested the spindle-like nanowire actually contained two twisted zigzag nanobelts whose contacting parts merged together.The segments pointing lower right were longer than those pointing upper left(Fig.1(c),top view), implying that the growth directions of the two different segments might be with different lattice orientations(see Fig.2 and Supporting Information).Selected-area electron diffraction (SAED,Fig.1(d))with the e-beam perpendicular to the wire displayed a sharp pattern,indicating that it was a single crystal. By indexing the SAED pattern,the growth direction and individual crystal planes of the produced zigzag nanobelt could be deduced.Energy-dispersive X-ray(EDX)analysis in Fig.1(f) showed that it was made of three elements,Zn,Sn,and O,with a stoichiometric ratio of about 2:1:4.No Al signal was detected within the EDX measurement limit(about 5%).All of these measurements pointed out that the helix-like nanobelts were an FCC Zn2SnO4crystal,growing alternately along the[022],anddirections.The merged BHZN was~100 nm in diameter.

    Fig.2 (a)HRTEM image of the lattice structure at the contacting part of the two ZTO nanobelts.(b)and(c)Atomic crystal models explaining the lattice structure shown in(a). (d)HRTEM image of another contacting section,showing the lattice dislocation indicated by the arrows.(e)TEM images of the endings of the BHZNs.(f)EDX analysis of the circled particle in(e)In(e),the rectangular cross-section(see the enlarged picture in the inset)of the ZTO nanobelt withAu particles attached can be clearly seen.Shorter arrow points the rectangular cross-sectional end of a ZTO nanobelt in the BHZN and the longer one indicates the ZTO nanobelt whose end actually curled.

    To understand its structural details,HRTEM was used to image the lattice structures of a particular nanobelt along the nanobelt axis at different spots.The results(see Supporting Information)indicated that both nanobelts were single crystal. The lattice constant of the nanobelt along its own axis was about 0.50 nm(Fig.2(a)),corresponding to the inter-plane distance of theplanes.The lattice constant of the other along thedirection was 0.31 nm(Fig.2(a)),the inter-plane distance of theplanes.In consideration of the SAED patterns and the HRTEM fast Fourier transform(FFT) patterns(see Supporting Information),the growth direction of either nanobelt was deduced to be along

    The existence of lattice dislocation(Fig.2(d))substantiated that the BHZN was indeed formed by two independent nano-belts.The possible formation mechanism of the BHZN was further studied with HRTEM.Figs.2(a)and 2(d)show the lattice structures and orientations around the merging section and the possible atomic structure models are given in Figs.2(b)and 2(c),respectively.Tentative analyses indicated that the BHZN grew along thedirection.The Zn,Sn,and O atoms in the side plane ofare symmetrically distributed,meaning that this plane is a non-polar one.However,when the same ZTO nanobelt changed its growth direction toits side direction waswhose corresponding face was theplane in which the Zn,Sn,and O atoms were asymmetrically distributed(Fig.2(c))and hence the side plane was polar(Fig.1(c)). Polar plane is not stable and tends to facet into non-polar planes in order to reduce the energy.This happened around the merging places of the two ZTO nanobelts.Although one of the polar side planes of each ZTO nanobelt still remained after merging,the BHZN energy was already substantially released during the merging process.Similar mechanism was previously reported for the merging of ZnO polar planes into a nanoring by Wang et al.35Fig.2(e)showed the situation where the twisting of the two ZTO nanobelts terminated or interrupted.In Fig.2(e),one could clearly see the rectangular cross section (pointed out by the shorter arrow in the inset in Fig.2(e))of the nanobelt end(Fig.2(e)).It?s from this rectangular cross-section that the thickness of a single ZTO nanobelt in BHZN was estimated to be around 20-30 nm.The width of the ZTO nanobelt was 50-70 nm(Fig.3(c)given below).In Fig.2(e),the belt width at the end was substantially larger than those in other parts,due to that the two nanobelts merged into one side by side[thefaces merged together]and their twisting ended. EDX measurement(Fig.2(f))of the circled particle on top of the BHZN in Fig.2(e)indicated that its main chemical composition was Au,implying that the ZTO nanobelt was grown through the VLS mechanism.It should be mentioned thatand its equivalent planes are highly indexed planes with high surface energy.To reduce this high surface energy,the end planeof the ZTO nanobelt could facet,which we might not detect with TEM or SEM due to technical limitation.However,a highly indexed face may also be stabilized by adsorbing foreign atoms/molecules or by coating with a layer of foreign film that has small surface energy.We feel that the latter may happen in our case because,as indicated by Figs.2(e)and 2(f), the end of the ZTO nanobelt was attached with a fairly large Au particle.

    Figs.3(a)and 3(b)are the SEM and TEM images of isolated single ZTO nanobelts.In Fig.3(b),the electron diffraction pattern(with the e-beam perpendicular to the ZTO nanobelt) shows the same diffraction pattern as that shown in Fig.1(d) for the BHZN(Fig.1(c)),meaning that the ZTO nanobelt has the same lattice structure and growth orientation as those in the BHZN.Moreover,we could observe by TEM a BHZN with a“normal”splitting end after its growth was interrupted.This is shown in Fig.3(c).One can see that the two ZTO nanobelts forming the BHZN split again,as indicated by the arrow in Fig.3(c).All these strongly support that the BHZN is composed of two ZTO nanobelts.

    Fig.3 (a)SEM and(b)TEM images of isolated single zigzag ZTO nanobelts.The inset in(b)is the ED pattern of the ZTO nanobelt with the e-beam perpendicular to the zigzag ZTO nanobelt. (c)TEM image of a BHZN,showing that its end split into two ZTO nanobelts again after the growth was interrupted.

    Since the possibility of forming either left-handed(Fig.4(b)) or right-handed(Fig.4(c))structure is equal and hence,we could find both of them in the as-prepared samples.Obviously, the BHZN structure in Fig.4(c)can only be obtained by a mirror operation of the structure in Fig.4(b).Figs.4(a)and 4(d)are the proposed top-view 3D models(projected perpendicular to the axial directionfor the BHZN structures in Figs.4(b) and 4(c),respectively.The BHZN structure is quite similar to that of DNA,except for that the two ZTO nanobelts were bound together by lattice merging rather than the hydrogen bonds between the base pairs in DNA.

    The involved chemical reactions in the CVD device can be written as:

    Fig.4 Two zigzag ZTO nanobelts twisted into one.The twisting could happen in two ways,ending up with either left-handed BHZN(b)or right-handed BHZN(c).(a)and(d)are the corresponding top-view 3D models for(b)and(c),respectively. (e)Perspective-view SEM image and(f)3D model of a tilted BHZN.(g)Side-view 3D model of the BHZN

    Without Al,we did not obtain any BHZNs under our experimental conditions.Moreover,no Al signal was detected in the final products on the Si wafer,meaning that Al served as a reductant and its reaction with ZnO and SnO2to form Al2O3via reactions(1),(2),and(2?)also released a large amount of local heat spurring following reactions.The oxygen came from the residual gas in CVD.In our experiments,Au layer on the Si wafer was employed.Without the Au layer,no Zn2SnO4products were detected,indicating that Au might serve as a catalyst for the Zn2SnO4formation via the so-called VLS mechanism. In Fig.2(e),Au particles clearly existed at the ends of both ZTO nanobelts,supporting the VLS mechanism proposal.

    To verify the above deductions,we carried out a series of control experiments.Without the Au layer on Si wafer,no BHZNs were synthesized under our experimental conditions. On the other hand,under the same experimental conditions without the precursors,the Au layer on the Si wafer shrank into many small nanoparticles ranging from 60 to 80 nm in diameter(see Supporting Information),in good agreement with the Au size detected at the BHZN end shown in Fig.2(e).If we put the precursors in,raised the temperature to 950°C in 50 min in 30 cm3·min-1N2and then swiftly cooled the sample down to RT,observed were some short nanowires on top of which the Au particles were seated(Supporting Information).This further supports the VLS growth mechanism.Under the same experimental conditions as for Figs.1(a)and 1(b),single zigzag ZTO nanobelt was also identified(Fig.3).However,if 100 cm3· min-1N2was introduced into the CVD system instead of 80 cm3·min-1N2and 20 cm3·min-1Ar,no zigzag nanostructure or BHZN was synthesized,showing that the turbulent flow is a must for the appearance of the zigzag nanobelt and BHZN.

    To understand the role of the turbulent flow gas,we added a gas reservoir(acting as a gas buffer)between the 3-way gas valve and the CVD device so that the gases were thoroughly pre-mixed before entering the CVD tube.With such a modification,no BHZN was detected,indicating that the two independent gas flows played an important role in tuning the morphology of the products.The two independent gas flows might form a wave-like turbulence in CVD that affects the structure orientation of BHZN separated out of the Zn,Sn,and Au alloy on the Si wafer.

    To further verify the attribution of the chemical composition of the BHZN,Raman measurement was taken.Since the Si wafer substrate had a resonant feature at about 520 nm,the experimentally measured Raman spectroscopy was calibrated by subtracting the Si signal.The calibrated Raman spectroscopy is shown in Fig.5(a).Four sharp Raman features at about 666.4, 526.6,225.3,and 110.3 cm-1can be clearly identified.The 666.4 cm-1feature is the main one.According to the literature,26,32these four features can be assigned to the Raman resonances of Zn2SnO4.The sharpness of the measured Raman features in our experiment suggested that the BHZN was in good crystallinity.26Again,the Raman result evidenced that the chemical composition of the prepared BHZN was fcc spinel Zn2SnO4.

    Putting all above experimental facts together,we can now work out a picture for the growth of the BHZN under our experimental conditions.Initially,ZnO and SnO2were reduced by Al to produce Zn and Sn vapor,meanwhile the Au layer on Si wafer shrank into small Au particles.At 950°C,the Zn and Sn vapor dissolved into liquid Au particles.After exceeding the saturation concentration,solid Zn and Sn crystallized out of the liquid and immediately reacted with residual oxygen to yield ZTO nanobelts via reactions(3)and(3?).Under the disturbance of a steady-state turbulent gas flow of N2and Ar,the growth directions of the ZTO nanobelts would be perturbed to produce the zigzag structures(Figs.3(b)and 3(c)).With time going on at such a high temperature,these zigzagged ZTO nanobelts would twist(Fig.4)and finally merged at their contacting sections(Figs.2(a)and 2(d)).Fig.4(f)is a perspective-view 3D model for the produced BHZN in Fig.4(e).The two zigzag ZTO nanobelts grow along the[022],[111],and [422]directions,alternately.Their side planes including the polar(111)and non-polar(011)planes would merge together at high temperatures.To enhance visibility,we use two colors to discriminate each zigzag ZTO nanobelt in the BHZN in the 3D models.In reality,any contacting parts between the two zigzag ZTO nanobelts merge into an integrated one.Fig.4(g)displays a side-view 3D model for the BHZN,showing the up-anddown fluctuation of both ZTO nanobelts in the BHZN.This means that these ZTO nanobelts are actually in zigzag form projected along both the top-view(Fig.4(a)or Fig.4(d))and the side-view(Fig.4(g))directions.

    Fig.5 (a)Raman spectroscopy and(b)PLmeasurement of the as-prepared sampleIn(a),the Si background was deducted by using bare Si wafer as the blank experimental sample.The energy densities of the incident pump laser for traces 1 through 9 in(b)were 3.1,5.3,11,25,38,66,120,240, and 510 mJ·cm-2,respectively.

    ZTO is a transparent semiconductor oxide,so its PL measurement should be interesting.This is shown in Fig.5(b).With the energy density increase of the pump laser,a feature at 326.1 nm first appeared and followed by the features at 333.5, 317.6,and 380.0 nm.Since in our experimental conditions,a small portion of ZnO nanobelts could also exist(supporting information),the 380.0 nm feature is much likely due to the presence of ZnO nanostructures and similar to the PL feature from ZnO nanonet reported in our previous study.23The reported band gap of Zn2SnO4 was about 3.6 eV,25,26corresponding to a light wavelength of about 344 nm.The main feature at 326.1 nm in PL can be attributed to the characteristic emission of Zn2SnO4.The blue shift of the main feature might be due to the quantum confinement effect.There could be other factors that may cause the blue shift of the main feature,but this needs further investigation.

    Blue shift of the PL features for semiconductor materials has been frequently reported36-40as their sizes downsize from bulk to nanoscale.For example,the band gap of bulk GaN is about 3.40 eV,corresponding to 364.7 nm in wavelength.When the GaN material downsized to a nanostructure of 40 nm in thickness and 120 nm in diameter,its PL feature centered at about 3.472 eV(357.1 nm),with a shift of about 7.6 nm in wavelength.Further decrease of its size led to a PL feature at about 3.581 eV(346.3 nm),corresponding to a shift in wavelength as large as 18.4 nm.39Therefore,our observation of the blue shift for the BHZN by 18 nm from that for bulk Zn2SnO4is not unusual.In fact,Palmer and Poeppelmeier25had reported the diffuse reflectance(approximate transmission)spectra of Zn2SnO4whose starting edge was about 330-340 nm,also in agreement with our result.Therefore,the main feature at 326.1 nm is attributed to the light emission from the BHZN.Since the line width(FWHM,full width at half maximum)was quite narrow (about 1.5 nm)and there existed an energy density threshold for the pump laser,this emission was likely to be the stimulated emission rather than the spontaneous one.

    At both sides of the main feature appeared new features at 333.5 and 317.6 nm were quite puzzling.Due to the strong intensity(as high as 7000 cps in experiment)and narrow line width(about 1.5 nm,its full width at half maximum)of the main feature,the main PL emission feature may act as a new excitation light.If this were true,then the main Raman resonance in Fig.5(a)could appeared as Stokes and anti-Stokes lines.Since the main Raman resonance wave number is 666.4 cm-1,corresponding to about 0.083 eV in energy,the wavelengths of the Stokes and anti-Stokes Raman lines around the 326.1 nm feature would be 333.4 and 319.1 nm,respectively. These calculated wavelength values are in good agreement with our measured ones in Fig.5(b).An alternative possible explanation of the two small features around the main one in PL could be distortion of the energy band caused by the lattice distortion and dislocation in the BHZN.The origin of the weak feature at about 303 nm is unclear at the moment.We did observe a big lump feature between 400-600 nm.This was ascribed to the vacancy or surface states or defects in the crystal.32

    4 Conclusions

    To conclude,we have successfully prepared bifilar helix-like single crystalline Zn2SnO4nanobelt(BHZN)by exploiting the aluminothermal reaction,VLS growth mode with Au,the merging of polar planes and kinetic control with steady-state turbulent gas flow.The BHZN was formed by the twisting of two ZTO nanobelts.Each ZTO nanobelt alternately grew along the [022],[111],and[422]directions.They finally merged into one nanobelt at 950°C whose axial direction was[111]and diameter was about 100 nm.The BHZN displayed a periodicity along the axial direction,forming an actual super-lattice structure whose side faces were still polar.The PL measurements showed a strong light emission at 326.1 nm from the BHZN sample with a line width of about 1.5 nm.The combined approach used in this study,in particular its aluminothermal reaction and steady-state turbulent gas flow perturbation steps,may be helpful in preparing other materials.The BHZN structure may have potential applications in piezoelectrics,optoelectrics, and gas sensors.

    Supporting Information:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    (1)Wang,Z.L.Dekker Encyclopedia of Nanoscience and Nanotechnology 2004,1773.

    (2) Chen,J.Y.;Benjamin,W.;Joseph,M.;Xiong,Y.J.;Li,Z.Y.; Xia,Y.N.Nano Lett.2005,5,2058.doi:10.1021/nl051652u

    (3) Kuang,Q.;Jiang,Z.Y.;Xie,Z.X.;Lin,S.C.;Lin,Z.W.;Xie, S.Y.;Huang,R.B.;Zheng,L.S.J.Am.Chem.Soc.2005,127, 11777.doi:10.1021/ja052259t

    (4) Benjamin,D.Y.;David,O.Z.;Peter,J.P.;He,R.R.;Yang,P.D. Angew.Chem.Int.Edit.2006,45,420.doi:10.1002/(ISSN) 1521-3773

    (5) Zhang,H.F.;Wang,C.M.;Wang,L.S.Nano Lett.2002,2,941. doi:10.1021/nl025667t

    (6)Zhang,D.Q.;Abdullah,A.;Han,H.G.;Hasan,M.;McIlroy,D. N.Nano Lett.2003,3,983.doi:10.1021/nl034288c

    (7)Vardhan,B.;Dai,L.M.;Toshiyuki,O.J.Am.Chem.Soc.2004, 126,5070.doi:10.1021/ja031738u

    (8) Zhang,G.Y.;Jiang,X.;Wang,E.G.Appl.Phys.Lett.2004,84, 2646.doi:10.1063/1.1695198

    (9) Gao,R.P.;Wang,Z.L.;Fan,S.S.J.Phys.Chem.B 2000,104, 1227.doi:10.1021/jp9937611

    (10)Tang,Y.H.;Zhang,Y.F.;Wang,N.;Lee,C.S.;Han,X.D.; Bello,I.;Lee,S.T.J.Appl.Phys.1999,85,7981.doi:10.1063/ 1.369389

    (11) Duan,J.H.;Yang,S.G.;Liu,H.W.;Gong,J.F.;Huang,H.B.; Zhao,X.N.;Zhang,R.;Du,Y.W.J.Am.Chem.Soc.2005,127, 6180.doi:10.1021/ja042748d

    (12) Yang,R.S.;Ding,Y.;Wang,Z.L.Nano Lett.2004,4,1309. doi:10.1021/nl049317d

    (13) Bae,S.Y.;Lee,J.Y.;Jung,H.S.;Park,J.H.;Ahn,J.P.J.Am. Chem.Soc.2005,127,10802.doi:10.1021/ja0534102

    (14) Zhan,J.H.;Bando,Y.;Hu,J.Q.;Xu,F.F.;Golberg,D.Small 2005,1,883.doi:10.1002/(ISSN)1613-6829

    (15) Zarur,A.J.;Ying,J.Y.Nature 2000,403,65.doi:10.1038/ 47450

    (16) Shen,S.C.;Kus,H.;Liya,E.Y.;Sibudjing,K.Adv.Mater. 2004,16,541.doi:10.1002/(ISSN)1521-4095

    (17) Chen,Y.C.;Chang,Y.H.;Tsai,B.S.Mater.Trans.2004,45, 1684.doi:10.2320/matertrans.45.1684

    (18)vander Laaga,N.J.;Snela,M.D.;Magusinb,P.C.M.M.;de With,G.J.Eur.Cer.Soc.2004,24,2417.doi:10.1016/ j.jeurceramsoc.2003.06.001

    (19) Lou,Z.D.;Hao,J.H.Thin Solid Films 2004,450,334.doi: 10.1016/j.tsf.2003.11.294

    (20) Zawadzki,M.;Wrzyszcz,J.;Strek,W.;Hreniak,D.J.Alloy. Compd.2001,323-324,279.

    (21)Yu,J.F.;Wang,F.;Wang,Y.;Gao,H.;Li,J.L.;Wu,K.Chem. Soc.Rev.2010,39,1513.doi:10.1039/b812787p

    (22)Wang,Y.;Wu,K.J.Am.Chem.Soc.2005,127,9686.doi: 10.1021/ja0505402

    (23)Wang,Y.;Liao,Q.;Lei,H.;Zhang,X.P.;Ai,X.C.;Zhang,J.P.; Wu,K.Adv.Mater.2006,18,943.doi:10.1002/(ISSN) 1521-4095

    (24)Liao,Q.;Wang,Y.;Li,J.L.;Wu,K.;Ai,X.C.;Zhang,J.P. Appl.Phys.Lett.2007,91,041103.doi:10.1063/1.2759473

    (25) Palmer,G.B.;Poeppelmeier,K.R.Solid State Sci.2002,4,317. doi:10.1016/S1293-2558(01)01258-4

    (26) Coutts,T.J.;Young,D.L.;Li,X.;Mulligan,W.P.;Wu,X. J.Vac.Sci.Technol.A 2000,18,2646.

    (27) Stambolova,I.;Konstantinov,K.;Kovacheva,D.;Peshev,P.; Donchev,T.J.Solid State Chem.1997,128,305.doi:10.1006/ jssc.1996.7174

    (28)Yamada,Y.;Seno,Y.;Masuoka,Y.;Yamashita,K.Sens.Actua. B-Chem.1998,49,248.doi:10.1016/S0925-4005(98)00135-X

    (29) Stambolova,I.;Konstantinov,K.;Khristova,M.;Peshev,P. Phys.Status Solid.-Appl.Res.1998,167,R11.

    (30) Jie,J.S.;Wang,G.Z.;Han,X.H.;Fang,J.P.;Yu,Q.X.;Liao, Y.;Xu,B.;Wang,Q.T.;Hou,J.G.J.Phys.Chem.B 2004,108, 8249.doi:10.1021/jp049230g

    (31)Chen,H.Y.;Wang,J.X.;Yu,H.C.;Yang,H.X.;Xie,S.S.;Li, J.Q.J.Phys.Chem.B 2005,109,2573.doi:10.1021/jp046125y

    (32)Wang,J.X.;Xie,S.S.;Gao,Y.;Yan,X.Q.;Liu,D.F.;Yuan,H. J.;Zhou,Z.P.;Song,L.;Liu,L.F.;Zhou,W.Y.;Wang,E.G. J.Cryst.Growth 2004,267,177.

    (33)Kim,H.S.;Hwang,S.O.;Myung,Y.;Park,J.;Bae,S.Y.;Ahn, J.P.Nano Lett.2008,8,551.doi:10.1021/nl072829i

    (34)Yu,J.F.;Wang,Y.;Wen,W.;Yang,D.H.;Huang,B.;Li,J.L.; Wu,K.Adv.Mater.2010,22,1479.doi:10.1002/adma. 200903656

    (35) Kong,X.Y.;Ding,Y.;Yang,R.S.;Wang,Z.L.Science 2004, 303,1348.doi:10.1126/science.1092356

    (36) Gates,B.;Mayers,B.;Cattle,B.;Xia,Y.N.Adv.Funct.Mater. 2002,12,219.doi:10.1002/1616-3028(200203)12:3<219:: AID-ADFM219>3.0.CO;2-U

    (37) Joo,J.;Son,J.S.;Kwon,S.G.;Yu,J.H.;Hyeon,T.J.Am. Chem.Soc.2006,128,5632.doi:10.1021/ja0601686

    (38) Goodwin,T.J.;Leppert,V.J.;Risbud,S.H.;Kennedy,I.M.; Lee,H.W.H.Appl.Phys.Lett.1997,70,3122.doi:10.1063/ 1.119109

    (39) Ramyall,P.;Tanaka,S.;Nomura,S.;Riblet,P.;Aoyagi,Y.Appl. Phys.Lett.1998,73,1104.doi:10.1063/1.122098

    (40) Hu,P.A.;Liu,Y.Q.;Fu,L.;Cao,L.C.;Zhu,D.B.J.Phys. Chem.B 2004,108,936.

    August 28,2012;Revised:September 10,2012;Published on Web:September 11,2012.

    Bifilar Helix-Like Nanobelt of Single Crystalline Zn2SnO4Fabricated by Aluminothermal Reaction Approach

    WANG Yu1CHEN Jing1LIAO Qing2SUN Wei1LI Jian-Long1,*ZHANG Jian-Ping3WU Kai1,*
    (1Beijing National Laboratory for Molecular Sciences,College of Chemistry and Molecular Engineering,Peking University, Beijing 100871,P.R.China;2Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,P.R.China;3Department of Chemistry,Remin Unversity of China,Beijing 100872,P.R.China)

    This paper reports the preparation in large quantity of bifilar helix-like nanobelts of single crystalline Zn2SnO4,a face-centered cubic spinel and transparent semiconductor that possesses wide applications in photovoltaic devices and sensors for humidity and combustible gases,by using a unique approach that combines chemical vapor deposition,aluminothermal reaction,vapor-liquid-solid growth, mergence of polar planes,and kinetic control by steady-state turbulent flow.The bifilar helix-like nanobelt was formed by the twisting and merging of two independent Zn2SnO4nanobelts,as analyzed by scanning electron microscopy,transmission electron microscopy,electron diffraction,X-ray diffraction,Raman spectroscopy,and photoluminescence.It had a periodicity along the axial direction and hence,is actually a super-lattice material.The photoluminescence measurements showed a strong light emission at 326.1 nm from the as-prepared sample with a line width of about 1.5 nm.The combined approach used in this study, in particular its aluminothermal reaction and steady-state turbulent gas flow perturbation steps,may be helpful in preparing other similar materials.

    Bifilar helix-like nanobelt;Zn2SnO4;Aluminothermal reaction approach; Photoluminescence

    10.3866/PKU.WHXB201209113

    ?Corresponding authors.WU Kai,Email:kaiwu@pku.edu.cn;Tel:+86-10-62754005.LI Jian-Long,Eamil:jlipku@pku.edu.cn; Tel:+86-10-62757062.

    The project was supported by the National Natural Science Foundation of China(20827002,20911130229)and National Key Basic Research Program of China(973)(2009CB929403,2011CB808702).

    國家自然科學(xué)基金(20827002,20911130229)及國家重點基礎(chǔ)研究發(fā)展規(guī)劃項目(973)(2009CB929403,2011CB808702)資助

    O641

    猜你喜歡
    張建平光致發(fā)光單晶
    古詩集句(草書)
    光致發(fā)光與變色纖維發(fā)展趨勢
    買一片海愛你夠不夠,95后小情侶的勵志浪漫
    大尺寸低阻ZnO單晶襯弟
    大尺寸低阻ZnO單晶襯底
    書記愛“折騰”
    雙摻雜核殼結(jié)構(gòu)ZnS:Mn@ZnS:Cu量子點的水熱法合成及其光致發(fā)光性能
    大尺寸低阻ZnO 單晶襯底
    大尺寸低阻ZnO 單晶襯底
    One-pot facile synthesis of highly photoluminescent graphene quantum dots with oxygen-rich groups
    免费观看人在逋| 欧美精品啪啪一区二区三区| 69av精品久久久久久| 午夜免费观看网址| 国产三级中文精品| 九九在线视频观看精品| 在线国产一区二区在线| 99久久综合精品五月天人人| 成年免费大片在线观看| 久久性视频一级片| 欧美日韩乱码在线| 在线观看美女被高潮喷水网站 | 天堂网av新在线| 欧美丝袜亚洲另类 | 一区二区三区国产精品乱码| 欧美另类亚洲清纯唯美| 国产亚洲av嫩草精品影院| 九九热线精品视视频播放| 99国产极品粉嫩在线观看| 色老头精品视频在线观看| 日本一本二区三区精品| 99久久精品国产亚洲精品| 最近最新免费中文字幕在线| 国产黄a三级三级三级人| 色噜噜av男人的天堂激情| 亚洲中文字幕日韩| 国产熟女xx| 高清在线国产一区| 精品熟女少妇八av免费久了| 亚洲aⅴ乱码一区二区在线播放| 香蕉av资源在线| 国产三级中文精品| 黄色日韩在线| 高潮久久久久久久久久久不卡| 国产精品美女特级片免费视频播放器| 欧美性猛交╳xxx乱大交人| 丰满的人妻完整版| 欧美又色又爽又黄视频| 麻豆成人av在线观看| 精品国内亚洲2022精品成人| 亚洲精品乱码久久久v下载方式 | 法律面前人人平等表现在哪些方面| 好男人在线观看高清免费视频| 亚洲欧美一区二区三区黑人| 国产精品日韩av在线免费观看| 亚洲av美国av| 欧美bdsm另类| 日韩欧美 国产精品| 男人的好看免费观看在线视频| 久久精品国产自在天天线| 成年女人看的毛片在线观看| 久久久久久久久中文| 国产成人啪精品午夜网站| 一本一本综合久久| 亚洲欧美一区二区三区黑人| 天天添夜夜摸| 亚洲av日韩精品久久久久久密| 久久亚洲精品不卡| 国产精品久久久久久亚洲av鲁大| 日韩中文字幕欧美一区二区| 欧美不卡视频在线免费观看| 高潮久久久久久久久久久不卡| 欧美成人免费av一区二区三区| 亚洲精华国产精华精| 国产一区二区激情短视频| 热99在线观看视频| 成人国产一区最新在线观看| 成年版毛片免费区| 免费在线观看日本一区| 精品日产1卡2卡| 热99re8久久精品国产| 日韩av在线大香蕉| 露出奶头的视频| 深夜精品福利| 国产精品久久久久久精品电影| 国产一区二区在线观看日韩 | 黄片小视频在线播放| 午夜免费观看网址| 精华霜和精华液先用哪个| av天堂在线播放| 两个人的视频大全免费| 亚洲国产高清在线一区二区三| 国产黄片美女视频| 搞女人的毛片| 中文资源天堂在线| 欧美乱码精品一区二区三区| 怎么达到女性高潮| 天堂网av新在线| 久久国产精品人妻蜜桃| 精品久久久久久成人av| 91麻豆av在线| 婷婷丁香在线五月| 欧美色欧美亚洲另类二区| bbb黄色大片| a在线观看视频网站| 嫁个100分男人电影在线观看| 少妇裸体淫交视频免费看高清| 深夜精品福利| 国产主播在线观看一区二区| 1000部很黄的大片| 欧美区成人在线视频| 国产精品98久久久久久宅男小说| 国内精品一区二区在线观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲电影在线观看av| 国产精品亚洲一级av第二区| 熟妇人妻久久中文字幕3abv| 久久久久九九精品影院| 免费大片18禁| 天天添夜夜摸| 两个人视频免费观看高清| 亚洲欧美一区二区三区黑人| 狠狠狠狠99中文字幕| 桃红色精品国产亚洲av| 午夜精品久久久久久毛片777| 亚洲人成电影免费在线| 在线观看日韩欧美| 亚洲成人久久爱视频| 99精品久久久久人妻精品| 国产成人av教育| xxx96com| 久久精品亚洲精品国产色婷小说| 色老头精品视频在线观看| 国产精品一区二区三区四区免费观看 | 久久久久久九九精品二区国产| 中文亚洲av片在线观看爽| 亚洲电影在线观看av| 老汉色∧v一级毛片| ponron亚洲| 国产极品精品免费视频能看的| 成人av一区二区三区在线看| 国产精品综合久久久久久久免费| 免费在线观看影片大全网站| 日韩人妻高清精品专区| 久久欧美精品欧美久久欧美| 亚洲精品一区av在线观看| 最好的美女福利视频网| 欧美av亚洲av综合av国产av| 色噜噜av男人的天堂激情| 男女下面进入的视频免费午夜| 老司机深夜福利视频在线观看| 搞女人的毛片| 国产精品一区二区三区四区免费观看 | 亚洲一区高清亚洲精品| 欧美一级毛片孕妇| 成熟少妇高潮喷水视频| 高清在线国产一区| 天堂网av新在线| 少妇的逼水好多| 久久久久免费精品人妻一区二区| 中文资源天堂在线| 亚洲国产精品合色在线| 一个人看的www免费观看视频| 在线a可以看的网站| 亚洲成人免费电影在线观看| av在线蜜桃| 亚洲专区中文字幕在线| 久久国产乱子伦精品免费另类| 国产主播在线观看一区二区| 丝袜美腿在线中文| 法律面前人人平等表现在哪些方面| av专区在线播放| 久久精品人妻少妇| 九九热线精品视视频播放| 操出白浆在线播放| 99久久精品一区二区三区| 每晚都被弄得嗷嗷叫到高潮| av中文乱码字幕在线| 欧美一区二区国产精品久久精品| 欧美色视频一区免费| 久久久久精品国产欧美久久久| 黑人欧美特级aaaaaa片| 动漫黄色视频在线观看| 黄片小视频在线播放| 亚洲五月天丁香| 黄色丝袜av网址大全| 一个人看的www免费观看视频| 最新中文字幕久久久久| 日韩av在线大香蕉| 精品久久久久久成人av| 国产精品一区二区三区四区免费观看 | 人人妻人人澡欧美一区二区| a级毛片a级免费在线| 精品久久久久久久末码| 成人av在线播放网站| 在线播放国产精品三级| 在线观看舔阴道视频| 精品不卡国产一区二区三区| 国产免费一级a男人的天堂| 丁香欧美五月| 久久婷婷人人爽人人干人人爱| 中文字幕熟女人妻在线| 一夜夜www| 亚洲五月婷婷丁香| 操出白浆在线播放| 久久精品国产99精品国产亚洲性色| 日日夜夜操网爽| 三级男女做爰猛烈吃奶摸视频| 亚洲av成人不卡在线观看播放网| 最好的美女福利视频网| 男女下面进入的视频免费午夜| 欧美黄色片欧美黄色片| 成人特级av手机在线观看| 搡老妇女老女人老熟妇| 午夜免费激情av| 在线免费观看不下载黄p国产 | ponron亚洲| 午夜福利18| 色综合亚洲欧美另类图片| 波多野结衣高清作品| 欧美一区二区亚洲| 久久天躁狠狠躁夜夜2o2o| 男人和女人高潮做爰伦理| 很黄的视频免费| 成人亚洲精品av一区二区| 亚洲人成网站高清观看| 欧美最黄视频在线播放免费| 91九色精品人成在线观看| 国产精品98久久久久久宅男小说| 国产一级毛片七仙女欲春2| 人人妻,人人澡人人爽秒播| 色噜噜av男人的天堂激情| 亚洲18禁久久av| 欧美日韩乱码在线| 高清毛片免费观看视频网站| 热99re8久久精品国产| 日韩欧美在线二视频| 国产探花在线观看一区二区| 国产精品亚洲美女久久久| 三级男女做爰猛烈吃奶摸视频| 国内少妇人妻偷人精品xxx网站| 丁香欧美五月| 欧美黑人欧美精品刺激| 黄色视频,在线免费观看| 99国产精品一区二区蜜桃av| 久久午夜亚洲精品久久| 在线看三级毛片| 高清在线国产一区| 中文字幕高清在线视频| 亚洲专区国产一区二区| 免费在线观看影片大全网站| 美女免费视频网站| 久久久久久久久久黄片| 一个人免费在线观看的高清视频| 岛国在线免费视频观看| 精品一区二区三区av网在线观看| 制服人妻中文乱码| 亚洲中文日韩欧美视频| 亚洲国产精品合色在线| 精品一区二区三区人妻视频| 亚洲精品日韩av片在线观看 | 国产伦人伦偷精品视频| 午夜福利视频1000在线观看| 99久久精品国产亚洲精品| 精品久久久久久久久久久久久| 国产av麻豆久久久久久久| 欧美不卡视频在线免费观看| 99久久久亚洲精品蜜臀av| 中文字幕人成人乱码亚洲影| АⅤ资源中文在线天堂| 日本免费a在线| 欧美成狂野欧美在线观看| 少妇的丰满在线观看| 天堂网av新在线| 久久久久国产精品人妻aⅴ院| 精品国产超薄肉色丝袜足j| 精品久久久久久,| 亚洲,欧美精品.| 亚洲欧美日韩卡通动漫| 亚洲成人久久爱视频| 国产久久久一区二区三区| 在线国产一区二区在线| 熟女电影av网| 亚洲自拍偷在线| 中文字幕人妻丝袜一区二区| 91在线精品国自产拍蜜月 | 国产精品一区二区三区四区免费观看 | 精品99又大又爽又粗少妇毛片 | 久久久国产精品麻豆| 最后的刺客免费高清国语| 桃色一区二区三区在线观看| 欧美一级a爱片免费观看看| 欧美绝顶高潮抽搐喷水| ponron亚洲| 色吧在线观看| 岛国在线免费视频观看| 99热6这里只有精品| 精品人妻一区二区三区麻豆 | 欧美色欧美亚洲另类二区| 久久久久久久亚洲中文字幕 | 欧美乱色亚洲激情| 日韩欧美 国产精品| 国产欧美日韩一区二区三| 免费观看人在逋| 国产单亲对白刺激| 一个人看的www免费观看视频| eeuss影院久久| or卡值多少钱| tocl精华| 精品久久久久久成人av| 在线观看舔阴道视频| 每晚都被弄得嗷嗷叫到高潮| 黄色女人牲交| 日本a在线网址| 精品一区二区三区视频在线 | 午夜福利在线在线| 亚洲18禁久久av| 国产精华一区二区三区| 欧美极品一区二区三区四区| 国产亚洲精品av在线| 我的老师免费观看完整版| 他把我摸到了高潮在线观看| 两个人视频免费观看高清| 夜夜夜夜夜久久久久| 看免费av毛片| 夜夜看夜夜爽夜夜摸| 日本 av在线| 18禁美女被吸乳视频| 国内精品久久久久久久电影| 啦啦啦韩国在线观看视频| 九九在线视频观看精品| 搡女人真爽免费视频火全软件 | 婷婷精品国产亚洲av在线| АⅤ资源中文在线天堂| 嫁个100分男人电影在线观看| 亚洲国产中文字幕在线视频| 久久久久免费精品人妻一区二区| 亚洲专区中文字幕在线| 亚洲国产欧洲综合997久久,| 日韩欧美精品免费久久 | 首页视频小说图片口味搜索| 午夜视频国产福利| 免费在线观看影片大全网站| 亚洲av美国av| 在线观看午夜福利视频| 法律面前人人平等表现在哪些方面| 一个人看视频在线观看www免费 | 久久性视频一级片| 级片在线观看| av天堂中文字幕网| 亚洲美女视频黄频| 亚洲黑人精品在线| 亚洲第一欧美日韩一区二区三区| 色综合婷婷激情| 欧美+亚洲+日韩+国产| 亚洲精品粉嫩美女一区| 国产成人系列免费观看| a级毛片a级免费在线| 国产麻豆成人av免费视频| 国产av麻豆久久久久久久| 老熟妇仑乱视频hdxx| 国产欧美日韩精品亚洲av| 高清毛片免费观看视频网站| 日本三级黄在线观看| 激情在线观看视频在线高清| 日韩欧美精品v在线| 欧美性感艳星| 日本黄色片子视频| 亚洲无线观看免费| 久久久久亚洲av毛片大全| 成人特级av手机在线观看| 欧美日韩一级在线毛片| 免费人成在线观看视频色| 亚洲成人久久性| 九九热线精品视视频播放| 无人区码免费观看不卡| 在线播放无遮挡| 国产三级在线视频| 免费观看人在逋| 91麻豆av在线| 99久久九九国产精品国产免费| 欧美bdsm另类| 母亲3免费完整高清在线观看| 色尼玛亚洲综合影院| 在线观看66精品国产| 18禁国产床啪视频网站| 黄片大片在线免费观看| 两个人看的免费小视频| av在线蜜桃| 久久久久久国产a免费观看| 三级毛片av免费| 9191精品国产免费久久| 婷婷精品国产亚洲av在线| 黄色视频,在线免费观看| 欧美黄色淫秽网站| 少妇高潮的动态图| 宅男免费午夜| 99热6这里只有精品| 国语自产精品视频在线第100页| 深夜精品福利| 日本撒尿小便嘘嘘汇集6| 国产伦一二天堂av在线观看| 久久精品夜夜夜夜夜久久蜜豆| 一本久久中文字幕| 国产欧美日韩精品一区二区| 最好的美女福利视频网| 69人妻影院| 欧美中文综合在线视频| 亚洲 欧美 日韩 在线 免费| 国产av不卡久久| 美女高潮的动态| 三级男女做爰猛烈吃奶摸视频| 国产高清视频在线观看网站| 国产美女午夜福利| 亚洲欧美日韩东京热| 国产91精品成人一区二区三区| 麻豆国产av国片精品| 日日摸夜夜添夜夜添小说| 欧美日本亚洲视频在线播放| 女人十人毛片免费观看3o分钟| 熟女少妇亚洲综合色aaa.| 久久香蕉精品热| 免费高清视频大片| 色视频www国产| 岛国在线观看网站| 在线免费观看的www视频| bbb黄色大片| 国产毛片a区久久久久| 一进一出好大好爽视频| 麻豆国产av国片精品| 搡老熟女国产l中国老女人| 男女下面进入的视频免费午夜| 亚洲欧美日韩高清专用| av专区在线播放| 熟女电影av网| 国产欧美日韩精品亚洲av| 久久久色成人| av黄色大香蕉| 欧美日本亚洲视频在线播放| 亚洲精华国产精华精| 亚洲在线自拍视频| 一区福利在线观看| 国产欧美日韩一区二区精品| 在线国产一区二区在线| 中文字幕人成人乱码亚洲影| 欧美成狂野欧美在线观看| 人人妻人人看人人澡| 搡女人真爽免费视频火全软件 | 18禁黄网站禁片免费观看直播| 一边摸一边抽搐一进一小说| 国内精品久久久久精免费| 精品久久久久久,| 日本一二三区视频观看| 亚洲中文日韩欧美视频| 色噜噜av男人的天堂激情| 久久久久九九精品影院| 99久久99久久久精品蜜桃| 午夜a级毛片| 欧美日韩一级在线毛片| 色老头精品视频在线观看| 亚洲国产欧洲综合997久久,| 亚洲欧美激情综合另类| 变态另类成人亚洲欧美熟女| 内射极品少妇av片p| 亚洲自拍偷在线| 99riav亚洲国产免费| 中文资源天堂在线| 久久久久久久久大av| 美女 人体艺术 gogo| 亚洲色图av天堂| 久久香蕉国产精品| 老司机午夜福利在线观看视频| 中文亚洲av片在线观看爽| 国产一区二区三区在线臀色熟女| 色尼玛亚洲综合影院| 两个人的视频大全免费| 性色av乱码一区二区三区2| 中文在线观看免费www的网站| 欧美+亚洲+日韩+国产| 18美女黄网站色大片免费观看| 中文字幕av在线有码专区| 搡女人真爽免费视频火全软件 | 精品久久久久久久人妻蜜臀av| 18禁黄网站禁片免费观看直播| 久久久国产成人免费| 亚洲专区国产一区二区| 国内毛片毛片毛片毛片毛片| 久久人妻av系列| 日韩欧美精品v在线| 熟女人妻精品中文字幕| 亚洲人成网站在线播放欧美日韩| 欧美一区二区国产精品久久精品| 久久久久精品国产欧美久久久| 精品人妻1区二区| 一边摸一边抽搐一进一小说| 免费av观看视频| 美女黄网站色视频| 久久精品国产99精品国产亚洲性色| 在线天堂最新版资源| 国产黄色小视频在线观看| 免费在线观看日本一区| 男女下面进入的视频免费午夜| 一进一出抽搐动态| av福利片在线观看| 极品教师在线免费播放| 久久久久久久亚洲中文字幕 | 午夜福利在线观看免费完整高清在 | 免费看十八禁软件| 久久久久久久久中文| 91麻豆精品激情在线观看国产| 日本黄色片子视频| 夜夜看夜夜爽夜夜摸| 免费观看人在逋| 窝窝影院91人妻| 免费电影在线观看免费观看| av片东京热男人的天堂| 午夜福利在线观看免费完整高清在 | 成年人黄色毛片网站| 757午夜福利合集在线观看| 变态另类丝袜制服| 欧美中文综合在线视频| 欧美+亚洲+日韩+国产| 一边摸一边抽搐一进一小说| 国产亚洲精品一区二区www| 老汉色av国产亚洲站长工具| 亚洲国产精品久久男人天堂| 欧美日本亚洲视频在线播放| 精品欧美国产一区二区三| 国产精品国产高清国产av| 90打野战视频偷拍视频| 精品久久久久久久久久免费视频| 少妇人妻一区二区三区视频| 女警被强在线播放| 亚洲中文字幕一区二区三区有码在线看| 亚洲七黄色美女视频| 一区二区三区国产精品乱码| 欧美性猛交黑人性爽| 午夜视频国产福利| 黄片小视频在线播放| 色av中文字幕| 国产av在哪里看| 热99re8久久精品国产| 免费在线观看影片大全网站| 免费看十八禁软件| 亚洲欧美日韩东京热| 淫秽高清视频在线观看| 国产 一区 欧美 日韩| 亚洲美女视频黄频| 99久久综合精品五月天人人| 色在线成人网| 非洲黑人性xxxx精品又粗又长| 国产极品精品免费视频能看的| 久久天躁狠狠躁夜夜2o2o| 欧美不卡视频在线免费观看| 久久久久久大精品| a级一级毛片免费在线观看| 日韩欧美三级三区| svipshipincom国产片| 亚洲成人中文字幕在线播放| 亚洲一区高清亚洲精品| 18禁黄网站禁片免费观看直播| 精品午夜福利视频在线观看一区| 亚洲成人中文字幕在线播放| 色视频www国产| 97碰自拍视频| 成人av在线播放网站| 99久久久亚洲精品蜜臀av| 欧美乱妇无乱码| 精品国产亚洲在线| 最后的刺客免费高清国语| 黄色日韩在线| 69人妻影院| 日本熟妇午夜| 久久久国产精品麻豆| 少妇的丰满在线观看| 一区二区三区高清视频在线| 中亚洲国语对白在线视频| 国产精品电影一区二区三区| 午夜福利欧美成人| 人妻久久中文字幕网| 亚洲精品成人久久久久久| 首页视频小说图片口味搜索| 午夜影院日韩av| 在线看三级毛片| 村上凉子中文字幕在线| 欧美色欧美亚洲另类二区| 免费看a级黄色片| 女人被狂操c到高潮| 日韩成人在线观看一区二区三区| 久久久国产成人精品二区| 丁香欧美五月| 99久久综合精品五月天人人| 欧美在线黄色| 亚洲国产中文字幕在线视频| 久久这里只有精品中国| 成人18禁在线播放| 国产91精品成人一区二区三区| 午夜久久久久精精品| 在线免费观看的www视频| 亚洲在线自拍视频| 国产精品一区二区三区四区久久| 淫妇啪啪啪对白视频| 亚洲av美国av| 亚洲在线观看片| 有码 亚洲区| 欧美高清成人免费视频www| 俄罗斯特黄特色一大片| 在线十欧美十亚洲十日本专区| 一个人观看的视频www高清免费观看| 国产精品98久久久久久宅男小说| 久久九九热精品免费| 亚洲精品一区av在线观看| 日本三级黄在线观看| 国产精品一及| 日韩大尺度精品在线看网址| 琪琪午夜伦伦电影理论片6080| 色综合婷婷激情| 欧美一区二区亚洲| 国产精品乱码一区二三区的特点| 国产精品久久视频播放| 亚洲精品在线美女| 中文字幕精品亚洲无线码一区| 啦啦啦免费观看视频1| 国产又黄又爽又无遮挡在线| 亚洲无线在线观看|