• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    新型螺吡喃衍生物:離子傳感和分子水平的信息處理

    2012-12-11 09:34:40李穎若張洪濤齊傳民郭雪峰
    物理化學(xué)學(xué)報(bào) 2012年10期
    關(guān)鍵詞:吡喃信息處理吸收光譜

    李穎若 張洪濤 齊傳民,* 郭雪峰,3,*

    (1北京師范大學(xué)化學(xué)學(xué)院,放射性藥物教育部重點(diǎn)實(shí)驗(yàn)室,北京100875;2北京大學(xué)化學(xué)與分子工程學(xué)院,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,分子動(dòng)態(tài)與穩(wěn)態(tài)結(jié)構(gòu)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100871;3北京大學(xué)工學(xué)院先進(jìn)材料與納米技術(shù)系,北京100871)

    新型螺吡喃衍生物:離子傳感和分子水平的信息處理

    李穎若1張洪濤2齊傳民1,*郭雪峰2,3,*

    (1北京師范大學(xué)化學(xué)學(xué)院,放射性藥物教育部重點(diǎn)實(shí)驗(yàn)室,北京100875;2北京大學(xué)化學(xué)與分子工程學(xué)院,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,分子動(dòng)態(tài)與穩(wěn)態(tài)結(jié)構(gòu)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100871;3北京大學(xué)工學(xué)院先進(jìn)材料與納米技術(shù)系,北京100871)

    為實(shí)現(xiàn)金屬離子檢測(cè)和分子水平的信息處理,合成了一類(lèi)新型的含有功能配位基團(tuán)的螺吡喃衍生物(SP1-SP4).研究發(fā)現(xiàn):在沒(méi)有UV光照的條件下,金屬離子可以促進(jìn)螺吡喃(SP2和SP4)開(kāi)環(huán)并形成穩(wěn)定可逆的絡(luò)合物(MC-Mn+).紫外-可見(jiàn)吸收光譜研究表明,在UV光照前加入不同的金屬離子會(huì)引起SP2和SP4的光學(xué)性質(zhì)的特征變化,因此提供了一種簡(jiǎn)易的通過(guò)裸眼就能辨別金屬離子的比色方法.熒光光譜研究表明,這類(lèi)化合物能夠高靈敏高選擇性地檢測(cè)鋅離子.此外,基于吸收光譜和熒光光譜的變化,這類(lèi)螺吡喃衍生物可以用于構(gòu)建組合的邏輯門(mén),執(zhí)行分子水平的信息處理,從而展現(xiàn)了其在化學(xué)或環(huán)境傳感和未來(lái)的分子計(jì)算機(jī)領(lǐng)域的潛在應(yīng)用前景.

    螺吡喃;化學(xué)傳感;邏輯門(mén);紫外-可見(jiàn)吸收光譜;熒光光譜

    1 Introduction

    Photochromic compounds have been extensively investigated in recent years for their high potential applications in optically rewritable storage,1optical switching,2chemical3and biological4sensings.In particular,considerable attention has been paid to spiropyran molecules,one of the most promising families of photochromic compounds,because of their unique optical and physical properties.5-10The stimulus-induced transformation of the ring-closed structure of spiropyrans(SPs)into their fully π-conjugated isomeric merocyanine forms(MCs)results not only in the variations of absorption spectra,but also in the profound alterations of other physical and chemical properties of the system,such as the dipole moments,nonlinear optic properties,emission spectra,and macroscopic properties (for example,conductance,rheological property,and surface wettability).By taking advantage of these remarkable characteristics of SPs,a number of spiropyran derivatives containing diverse functional groups have so far been designed and used as molecular sensors and molecular switches.11-17

    Among the remarkable characteristics of SPs,one unique feature is that the photogenerated open merocyanine form processes the charge-separated zwitterionic state with a free negatively-charged oxygen atom,which can further interact with external stimuli through dipole-dipole interactions and coordination chemistry(Scheme 1).Recently,several groups have successfully utilized this for the purpose of optically detecting metal ions,18-20anions,21nucleobases,22amino acids,23and DNA,24etc.In this study,a new class of spirobenzopyrans SP2 and SP4 bearing electron-donating―OMe group and pyridine or quinoline moiety as binding sites were designed and synthesized(Scheme 1).We will explore the changes in their chemical and physical properties upon addition of different metal ions before and after UV irradiation and show the capability of selectively detecting metal ions with high sensitivity and constructing logic gates for information processing at the molecular level.25-31

    2 Experimental

    Functional spirobenzopyran derivatives SP1-SP4 were synthesized as shown in Scheme 2.Compounds 2-1 and 2-2 were prepared by modification of the procedure reported by Raymo and Giordani32bearing―OH as a functional group for the following reaction step.The pyridine or quinoline moiety was then linked to compounds 2-1 and 2-2 using EDCI/DMAP (EDCI:1-ethyl-3-(3-dimethylaminopropyl)carbodiimide,DMAP: 4-dimethylaminopyridine)esterification reaction to give SP1-SP4 as yellow crystals in high yield(~90%).

    2.1 1-(2-hydroxyethyl)-2,3,3-trimethylindoliumbromide(1)

    Under nitrogen atmosphere,a mixture of 2,3,3-trimethyl-3H-indole(4.77 g,30.0 mmol)and 2-bromoethanol(4.50 g, 36.0 mmol)in dry CH3CN(30 mL)was heated under reflux for 12 h.Removal of CH3CN and excess of 2-bromoethanol under the reduced pressure gave a dark purple residue.Repeated washing with anhydrous ether gave compound 1(7.85 g, 92.1%)as a white solid.All the reagents used areAR grade.

    1H NMR(DMSO-d6,400 MHz):1.55(s,6H),3.38(s,3H), 3.87(t,2H,J=6.8 Hz),4.60(t,2H,J=6.8 Hz),7.60-7.64(m, 2H),7.84-7.87(m,1H),7.94-7.98(m,1H).Fourier transform mass spectroscopy(FTMS):m/z=204.1,[M-Br]+.

    2.2 2-(3?,3?-dimethyl-6-nitrospiro[chromene-2,2?-indolin]-1?-yl)ethanol(2-1)

    Scheme 1 Illustrations of the reversible structural transformations of SP2 and SP4 in responses to light,heat,and metal ions

    Under nitrogen atmosphere,Compound 1(1.14 g,4.0 mmol) and 2-hydroxy-5-nitrob-enzaldehyde(0.80 g,4.8 mmol)were dissolved in dry tetrahydrofuran(THF)(25 mL).The solution was heated to reflux then triethylamine(0.49 g,4.8 mmol)in THF(5 mL)was added dropwise.The mixture was refluxed for 4 h.The solvent was removed by evaporation under reduced pressure.The crude residue was recrystallized from absolute ethanol giving compound 2-1(1.30 g,92.2%)as red purple crystals.

    Scheme 2 Synthesis of spirobenzopyrans SP1-SP4

    1H NMR(CDCl3,400 MHz):1.20(s,3H),1.29(s,3H), 3.33-3.50(m,2H),3.68-3.77(m,2H),5.89(d,1H,J=13.6 Hz),6.67(d,1H,J=10.4 Hz),6.76(d,1H,J=12.4 Hz), 6.87-6.93(m,2H),7.10(d,1H,J=9.0 Hz),7.20(t,1H,J=10.0 Hz),7.99-8.04(m,2H).FTMS:m/z=353.1,[M+H]+.

    2.3 2-(8-methoxy-3?,3?-dimethyl-6-nitrospiro [chromene-2,2?-indolin]-1?-yl)ethanol(2-2)

    Compound 2-2 was prepared according to a procedure similar to compound 2-1.After column chromatography on silica gel with ethyl acetate/petroleum(60-90°C)(1:1,V/V)as eluent,compound 2-2 was obtained as dark blue crystals(3.82 g, 91.6%).

    1H NMR(CDCl3,400 MHz):1.18(s,3H),1.29(s,3H), 3.35-3.43(m,2H),3.51-3.63(m,2H),3.78(s,3H),5.82(d, 1H,J=14.0 Hz),6.65(d,1H,J=10.4 Hz),6.84-6.90(m,2H), 7.08(d,1H,J=10.0 Hz),7.15-7.21(m,1H),7.63(d,1H,J=3.6 Hz),7.69(d,1H,J=3.6 Hz).FTMS:m/z=383.2,[M+H]+.

    2.4 2-(3?,3?-dimethyl-6-nitrospiro[chromene-2,2?-indolin]-1?-yl)ethylpicolinate(SP1)

    Under nitrogen atmosphere,compound 2-1(0.35 g,1.0 mmol),picolinic acid(0.12 g,1.0 mmol),EDCI(0.38 g,2.0 mmol),DMAP(0.01 g,0.1 mmol)were dissolved into dry dichloromethane(15 mL).The reaction mixture was stirred at room temperature overnight.Evaporation of the solvent gave a brown tar.The obtained brown tar was dissolved into ethyl acetate,washed with H2O three times,and dried over anhydrous magnesium sulfate.Evaporation of the solvent gave a light brown residue.The crude residue was recrystallized from ethyl acetate/n-hexane giving SP1(0.82 g,90.5%)as a light yellow crystals.

    1H NMR(CDCl3,400 MHz):1.15(s,3H),1.29(s,3H), 3.55-3.63(m,1H),3.68-3.74(m,1H),4.55-4.58(m,2H), 5.96(d,1H,J=10.4 Hz),6.73(d,1H,J=8.4 Hz),6.79(d,1H, J=8.0 Hz),6.87-6.92(m,2H),7.09(d,1H,J=6.4 Hz), 7.19-7.23(m,1H),7.46-7.49(m,1H),7.80-7.84(m,1H), 7.95-7.98(m,2H),8.06(d,1H,J=7.2 Hz),8.74(d,1H,J=4.8 Hz).13C NMR(CDCl3,100 MHz):165.05,159.32,149.87, 147.72,146.46,141.06,137.03,135.75,128.41,127.92, 127.05,125.92,125.19,122.76,121.86,121.83,119.97, 118.45,115.53,106.78,106.49,63.30,52.87,42.21,25.86, 19.85.FTMS:m/z=458.15,[M+H]+.

    2.5 2-(8-methoxy-3?,3?-dimethyl-6-nitrospiro [chromene-2,2?-indolin]-1?-yl)ethyl picolinate (SP2)

    SP2 was prepared according to a procedure similar to SP1. Compound 2-2 was used instead of compound 2-1.SP2 was obtained as yellow crystals(0.64 g,88.9%).

    1H NMR(CDCl3,400 MHz):1.15(s,3H),1.27(s,3H), 3.58-3.66(m,1H),3.73(s,3H),3.74-3.80(m,1H),4.56(t, 2H,J=6.6 Hz),5.93(d,1H,J=10.4 Hz),6.78(d,1H,J=7.6 Hz),6.83-6.90(m,2H),7.08(d,1H,J=6.4 Hz),7.17-7.21 (m,1H),7.45-7.48(m,1H),7.56(d,1H,J=2.8 Hz),7.66(d, 1H,J=2.4 Hz),7.65-7.66(m,1H),8.02(d,1H,J=7.6 Hz), 8.73(d,1H,J=5.6 Hz).13C NMR(CDCl3,100 MHz):164.10, 149.84,149.03,147.73,147.33,146.42,140.45,136.99, 135.79,128.36,127.73,126.99,125.15,121.88,121.84, 119.68,118.18,115.30,107.72,106.70,106.33,63.27,56.12, 52.84,41.97,25.98,19.79.FTMS:m/z=488.19,[M+H]+.

    2.6 2-(3?,3?-dimethyl-6-nitrospiro[chromene-2,2?-indolin]-1?-yl)ethylisoquinol-ine-3-carboxylate (SP3)

    SP3 was prepared according to a procedure similar to SP1. Quinoline-2-carboxylic was used instead of acid picolinic acid. SP3 was obtained as light yellow crystals(0.69 g,90.6%).

    1H NMR(CDCl3,400 MHz):1.20(s,3H),1.40(s,3H), 3.45-3.54(m,1H),3.81-3.91(m,1H),4.64-4.69(m,2H), 6.37(d,1H,J=14.4 Hz),6.77(d,1H,J=10.4 Hz),6.85-6.90 (m,2H),7.08(d,1H,J=10.0 Hz),7.15-7.19(m,1H),7.22(d, 1H,J=11.6 Hz),7.66-7.71(m,1H),7.81-7.87(m,1H), 7.89-7.93(m,2H),8.02(d,1H,J=4.0 Hz),8.16(d,1H,J= 11.6 Hz),8.28-8.33(m,2H).13C NMR(CDCl3,100 MHz): 165.37,159.41,147.67,147.57,146.46,141.00,137.29, 135.78,130.58,130.44,129.34,128.79,128.28,127.93, 127.64,125.87,122.72,122.27,121.88,120.95,119.94, 118.54,115.52,106.75,106.65,63.54,52.97,42.30,25.88, 19.88.FTMS:m/z=508.17,[M+H]+.

    2.7 2-(8-methoxy-3?,3?-dimethyl-6-nitrospiro [chromene-2,2?-indolin]-1?-yl)ethyl isoquinoline-3-carboxylate(SP4)

    SP4 was prepared according to a procedure similar to SP1. Compound 2-2 was used instead of compound 2-1 and quinoline-2-carboxylic was used instead of acid picolinic acid.SP4 was obtained as yellow crystals(0.72 g,90.1%).

    1H NMR(CDCl3,400 MHz):1.17(s,3H),1.27(s,3H), 3.65-3.70(m,1H),3.72(s,3H),3.80-3.87(m,1H), 4.58-4.66(m,2H),6.10(d,1H,J=10.4 Hz),6.82(d,1H,J= 7.6 Hz),6.86(d,1H,J=10.4 Hz),6.88(t,1H,J=7.4 Hz),7.08 (d,1H,J=6.4 Hz),7.21(t,1H,J=7.6 Hz),7.53(d,1H,J=2.4 Hz),7.64(d,1H,J=2.4 Hz),7.67(t,1H,J=8.0 Hz),7.81(t, 1H,J=7.6 Hz),7.88(d,1H,J=9.2 Hz),8.09(d,1H,J=8.8 Hz), 8.27(d,2H,J=8.4 Hz).13C NMR(CDCl3,100 MHz):165.31, 149.12,147.70,147.54,147.32,146.42,140.40,137.22, 135.82,130.56,130.39,129.28,128.73,128.26,127.73, 127.60,122.33,121.86,120.92,119.64,118.28,115.28, 107.68,106.67,106.51,63.50,56.11,52.95,42.05,25.97, 19.79.FTMS:m/z=538.17,[M+H]+.

    3 Results and discussion

    3.1 Photochromic properties

    Previous reports demonstrated that the introduction of an electron-withdrawing group(e.g.,―NO2,―CF3)into the benzene ring enhances the stability of the open form of SPs33,34whereas an electron-donating group(e.g.,―t-Bu,―OMe)produces a more stable photostationary closed form.35,36To gather the kinetic data of SP1-SP4 to evaluate the effect of―OMe on the properties of spiropyrans,we monitored the evolutions of the absorption spectra and the time dependence of absorbance at λmax(maximum absorption wavelength)of SP1-SP4 in ethanol solution upon UV irradiation,visible irradiation and in the dark(Figs.S1-S4(Supporting Information)).The kinetic of each process can be fit with a single exponential.Using the method from literature,32,11the rate constants and the percent conversions(χe)were calculated and summarized in Table 1. As expected,the rate constants for the conversions of MC2 to SP2 and MC4 to SP4 in the dark were determined to be~(1.4± 0.1)×10-2s-1,which is much larger than those for MC1 to SP1 (~(1.3±0.1)×10-3s-1)and MC3 to SP3(~(1.7±0.1)×10-3s-1). This indicates that MC2 and MC4 can thermally isomerize back to the corresponding SP2 and SP4 faster than the cases of SP1 and SP3.Visible irradiation can accelerate the conversion from MC to SP.Consistently,the rate constants for MC2 to SP2(~(1.1±0.1)×10-1s-1)and MC4 to SP4(~(8.9±0.1)×10-2s-1)under visible irradiation are still larger than those for MC1 to SP1(~(7.2±0.1)×10-3s-1)and MC3 to SP3(~(7.1±0.1)×10-3s-1),separately.On the basis of kinetic data listed in Table 1, the calculated conversions(χe)of SP2 and SP4 are 6.7%and 8.7%,respectively,which are much smaller than the cases for SP1 and SP3(56.4%and 50.3%,respectively),indicating that the introduction of―OMe apparently shifts the SP/MC equilibrium to favor the closed form of spiropyrans and thus decrease the stability of the open form most likely due to the increase of the electron density of the phenoxide ion unit affected by the electron-donating―OMe group.19

    Table 1 Calculated rate constants and conversions of SP1-SP4 at 293 K

    3.2 Sensing properties

    Fig.1 Absorption spectra of SP1(a)and SP2(b)after addition of 1 equivalent of different metal ions in the darkconcentrations of SP1 and SP2:5.0×10-5mol·L-1,solvent:ethanol, temperature:293 K

    Fig.1 and Fig.S5(Supporting Information)show the absorption spectra of SP1-SP4(5.0×10-5mol·L-1)in ethanol in the absence and the presence of 1 equivalent(equiv.)of different metal ions before and after UV irradiation.Interestingly,we found that the spectra for the solutions of SP2 and SP4 after addition of metal ions were significantly changed depending on the kind of metal ions(Figs.1b and S5a)whereas no obvious spectral changes were observed for control compounds SP1 and SP3(Figs.1a and S5b)before UV irradiation.In contrast, after further UV irradiation,SP1/SP3 showed the obvious absorption changes in the presences of different metal ions(Fig. S5(c,d))whereas SP2/SP4 showed the negligible spectral changes(data not shown).Tables 2 and S1 give a summary of the maximum absorption wavelength(λmax)of SP1-SP4 in the absence and the presence of different metal ions after UV irradiation and the corresponding changes in maximum absorption wavelengths(Δλmax).

    On the basis of data in Tables 2 and S1,we found that the absorbance maxima of SP1 and SP3 in the presence of metal ions after UV irradiation showed the hyperchromatic shifts to different extents depending on different metal ions(Summaries of some important parameters for different metal ions can be found in Table S2 and Fig.S6).After separate additions of Fe3+, Cr3+,Cu2+,and Pb2+,the shoulder peaks at~400-450 nm with the large hypsochromic shifts of>100 nm appeared due to the formation of MC-Mn+complexes(Scheme 1),showing that the interactions between metal ions and MC are very strong.In the cases of Zn2+,Ni2+,Co2+,and Cd2+,only slight hypsochromic shifts of 9-14 nm were observed after addition of them,reflecting that the interactions between metal ions and MC are moderate.However,the maximum absorption wavelength(λmax)of MC did not change at all upon addition of Ca2+and Mg2+,showing that the interactions between Ca2+/Mg2+and MC are quite weak.Fig.S7(a,b)shows the corresponding photographs of SP1 upon addition of 1 equiv.of metal ions before and after UV irradiation,respectively,from which the observed color changes are consistent with UV-Vis absorption studies discussed above.Further irradiation of the UV-irradiated solutionsof SP1 and SP3 with visible light can turn all of them back to the original.In conjunction with UV-Vis studies before UV irradiation in Figs.1a and S5b,these results demonstrate that only the addition of metal ions can not lead to the conversion of SP1 and SP3 from the close form to the open form and that upon UV irradiation,metal ions can reversibly interact with the photoreleased negatively-charged phenolate oxygen with the different strengths and form MC-Mn+complexes.

    Table 2 Summaries of the maximum absorption wavelengths (λmax)of SP1 and SP2 in ethanol solution in the absence and presence of different metal ions and the corresponding changes in λmax(Δλmax)after UV irradiation

    Remarkably,we found that only addition of metal ions led to the ring-opening isomerization of SP2 and SP4 with distinct color changes as shown in Figs.1b and S5a.For example,addition of Fe3+and Cr3+produced an immediate color changes from colorless to brilliant yellow.Correspondingly,a shoulder at about 420 nm,a significant hypsochromic shift in comparison with the open form,37was observed,which should be ascribed to MC-Mn+complexes as demonstrated above.Irradiating the colored solution with visible light did not liberate metal ions with regeneration of the original absorbance,showing the strong interactions between metal ions and MC.It is well known that metal ions with high charge density(Z2/r,where Z is the ion charge and r is the ionic radius)tend to form firm combinations with ligands.19,38-40Among metal ions studied here,both Cr3+and Fe3+possessing more charges and relatively smaller ionic radii afford a higher charge density,consistent with the experimental observation.In comparison with SP1 and SP3,we hypothesize that the metal-generated ring opening of SP should be ascribed to the synergistic effect of the strong affinity between metal ions and SP and the presence of the―OMe group that favors the formation of stable chelate complexes(MC-Mn+).When transition metals,such as Cu2+, Zn2+,Ni2+,Co2+and an IVA group metal ion Pb2+were used,the hypsochromic shifts in absorbance maxima in the range of 60-96 nm were detected.From Fig.S6,we can see that these metal ions have smaller but approximate charge density,thus resulting in the moderate binding between metal ions and MC that affords the reversible photochromism upon exposure to visible light.These also led to different hypsochromic shifts of λmaxof the resulted MC-Mn+complexes with the different colors that can be differentiated by a naked eye(Fig.S7(c,d)).For example,an orange color was observed for the Cu2+and Pb2+complexes with λmaxof 490 and 480 nm,respectively,while a pink color was observed for Ni2+and Co2+complexes with λmaxof 512 and 516 nm,respectively.The absorbance maxima of Zn2+complex(497 nm)was situated between them with a pink-orange color.In contrast,in the presence of Ca2+,Mg2+,and Cd2+, the absorption spectra change only slightly whenever spiropyran molecules were closed or open,reflecting that the interactions between metal ions and molecules are weak.For the alkaline-earth metal ions Mg2+and Ca2+,the missing of d electrons may decrease the coordination ability of metal ions with SP. Cd2+is another metal ion of group IIB similar to Zn2+,but the hypsochromic shift in absorbance maxima of Cd2+is smaller than that observed with Zn2+probably because of the larger size of Cd2+(ionic radius=97 pm)relative to Zn2+(ionic radius= 74 pm).The findings demonstrate that the interactions of metal ions with SP2 and SP4 are highly metal ion-dependent,thus potentially providing a useful colorimetric approach for detecting different metal ions with high sensitivity.

    To further detect the capability of ion sensing,we investigated the emission properties of SP1-SP4.When excited at the maximum absorption wavelength of SP1-SP4/MC1-MC4,it was found that the closed forms SP1-SP4 had no emission while the zwitterionic opened forms MC1-MC4 fluoresced with the maximum absorption wavelengths of ca 626,650, 636,and 660 nm(Fig.2a),respectively,consistent with the previous report.41Importantly,addition of 1 equiv.of Zn2+to the SP2 solution led to a dramatic increase in emission intensity at 600 nm excited at λ=493 nm.Similar results were obtained with SP4(Fig.S8).The fluorescence increase is majorly due to the coordination of Zn2+with―OMe and fluorophores(pyridine or quinoline moiety)together with phenolate oxygen.The coordination can decrease the electron densities of the―OMe and the phenolate oxygen and thus increase the π-conjugation degree of the complex.On the other hand,the coordination of the ligands with the diamagnetic Zn2+containing a closed-shell d10electronic configuration would shut down the photoinduced electron-transfer pathway of the excited free ligand upon Zn2+coordination42-44and thus turn on the fluorescence.Another possibility is that the coordination would inhibit the photoinduced tautomerization of the phenolate moiety which leads to nonradiative deexcitation and thus improve the fluorescence by reducing the probability of radiationless relaxation.45,46

    Addition of metal ions such as Pb2+,Mg2+,Cd2+to the solution of SP2 or SP4 also resulted in the fluorescence enhancement.However,the magnitude of the fluorescent enhancement of SP2 or SP4 in the presence of them is smaller than that observed with Zn2+,which could be attributed to the different binding affinities of pyridine and quinoline with them.Ca2+cannot turn on the fluorescence because of the larger ionic size (ionic radius=99 pm)and relative lower ionic electronegativity (1.01).Other metal ions studied,such as Fe3+,Cr3+,Cu2+,Co2+, and Ni2+,were unable to turn on the fluorescent signal of SP2 or SP4,which may be attributed to the proximity of the paramagnetic metal ions to the unpaired electrons of the ligands which lead to spin-orbit coupling and intersystem crossing.47To further explore the selectivity of Zn2+,competition experiments were also conducted in which solutions of SP2 or SP4 was first added with 1 equiv.of other metal ions separately and Zn2+was then added to the mixture.As shown in Figs.2d and S8b,the fluorescence of SP2 or SP4 after addition of Zn2+dramatically increased,demonstrating the excellent selectivity of Zn2+detection.It should be noted that the fluorescence increase was relatively small when Zn2+was added to the solution of SP2 in the presence of 1 equiv.of Fe3+,Cr3+,and Cu2+.This may be ascribed to the stronger coordination of the metal ions with the ligands as is already clear from the absorption spectra analysis.Finally,the bingding mode of the complex was studied by Job?s plot analysis.Fig.3a shows the typical UV-Vis spectroscopic responses of a SP2 ethanolic solution containing Zn2+with the increasing concentrations.The absorbance at 576 nm decreased and the absorbance at 350 and 497 nm increased with the concentration increase.The stoichiometry of the zinc complex has been investigated via Job?s method(Figs.3b and S9)and it has been found to be 1:1.Note that the detection of metal ions should be also performed in water or other polar solvents since SP1-SP4 could be readily soluble in these solvents with aid of ethanol.

    3.3 Combinational logic circuits

    As mentioned above,SP2 and SP4 response to the stimuli of metal ions and visible light,accompanying significant changes in physical and chemical properties.By taking use of these features,logic gates and combinational logic circuits can be constructed.It is well known that,the three basic types of logic gates are NOT,AND,and OR gates.The NOT gate is often called inverter which can converts the input signal(I)of 1 into the output signal(O)of 0 and vice versa.In the instant of AND gate,output O is 1 only when both inputs I1and I2are 1.The OR gate also combines the two inputs I1and I2into the output O,when I1and/or I2is 1,O is 1.Combinational logic circuits are assembled connecting NOT,AND,and OR gates.The inhibit(INH)gates are basicAND gates with one of the inputs inverted through a NOT function.Several examples of INH gate based on molecules have been reported in recent years.48-50Fig.4 illustrates that SP2(or SP4)can work as an INH logic gate upon the stimulation of metal ions and visible light.The two inputs signals are I1(Zn2+)and I2(Vis)and the output is O, the absorbance maxima of the complex(A497)or the fluorescence emission intensity at 600 nm(F600).According to the results of the spectral study,the increase in the absorbance maxima of the complex or the emission intensity at 600 nm is observed only in the presence of Zn2+and the absence of visible light.That is to say,only when I1=1 and I2=0,the output signal O=1.O is always 0 in other cases.

    In particular,using the new photochromic compounds SP2 and SP4,we can develop more complicated combinational logic circuits to convert three inputs into two outputs.In the case of the combinational logic circuit shown in Fig.5,the three inputs signals are I1(Zn2+),I2(Ni2+),and I3(Vis)and the two outputs are O1(A497)and O2(F600).Binary digits can be encoded on each signal applying positive logic conventions(low=0,high= 1).Consequently,SP2(or SP4)can read a string of three binary inputs and write two specific optical outputs.The corresponding truth table and equivalent logic circuit are demonstrated in Fig.5.One portion of this logic circuit converts the three inputs I1,I2,and I3into the output O1through OR,NOT, and AND operations.The other fragment transduces the inputs of I1and I3into the output O2through NOT and AND operations.The optical output O1is high(O1=1)when only the input I1is applied(I1=1,I2=0,I3=0)or when only the input I2is ap-plied(I1=0,I2=1,I3=0)or when only the input I3is not applied (I1=1,I2=1,I3=0)(Fig.S10a).The optical output O2is high(O2= 1)when only the input I1is applied(I1=1,I2=0,I3=0)or when only the input I3is not applied(I1=1,I2=1,I3=0).The combinational logic circuit shows that all three inputs determine the output O1,while only I1and I3control the value of O2.

    Fig.2 (a)Fluorescence emission spectra of SP1-SP4/MC1-MC4;(b)fluorescence emission spectra(λex=493 nm)of SP2(5.0×10-5mol·L-1, ethanol,293 K)upon addition of 1 equiv.of metal ions(Zn2+,Fe3+,Cr3+,Cu2+,Ni2+,Co2+,Cd2+,Ca2+,Mg2+,and Pb2+);(c)changes in fluorescence emission spectra(λex=493 nm)of SP2(5.0×10-5mol·L-1,ethanol,293 K)upon addition of different concentrations of Zn2+; (d)detection selectivity of SP2(5.0×10-5mol·L-1,ethanol,293 K)in the presence of various metal ions(λex=493 nm):(black bars) fluorescence emission intensity at 600 nm in the presence of 1 equiv.of Fe3+,Cr3+,Cu2+,Pb2+,Ni2+,Co2+,Cd2+,Ca2+,Mg2+,and Zn2+; (red bars)fluorescence emission intensity at 600 nm after further addition of 1 equiv.of Zn2+

    Fig.3 (a)UV-Vis spectroscopic response of SP2 ethanolsolution containing Zn2+with the increasing concentrations; (b)Job?s plot of SP2 with Zn2+in ethanol solution(b)Total concentration of[SP2]+[Zn2+]was kept constant.The absorbance at 497 nm was used.

    As mentioned above,in the combinational logic circuit illustrated in Fig.5,one of the output O2was not affected by the input I2,while in the instance of the logic circuit shown in Fig.6, both the outputs O1and O2are dependent on the three inputs I1, I2,and I3.The combinational logic circuit also consists of three inputs,two of which are chemical inputs I1(Zn2+)and I2(Cu2+) and the other is optical input I3(Vis),the two outputs are O1(A497)and O2(F600).When positive conventions are applied to all signals,the two independent optical outputs(O1and O2)can be modulated by stimulating the molecular switch(SP2 or SP4) with the three terminal inputs(I1,I2,and I3).According to the fluorescence spectral study,addition of Cu2+to the solution of SP2(or SP4)containing 1 equiv.Zn2+can cause the fluorescence quenching.Then,the output O2is closely related to the presence and the absence of Cu2+.Therefore,the output O2is high when only the input I1is applied(I1=1,I2=0,I3=0),and both I2and I3are inhibiting factors to O2.As for the other output O1,the absorbance maximum of the complex is high upon addition of Zn2+and 1 equiv.Cu2+in the absence of visible light (Fig.S10b).Accordingly,O1is high(O1=1)when only I1is applied(I1=1,I2=0,I3=0)or when only I2is applied(I1=0,I2=1,I3= 0)or when only I3is not applied(I1=1,I2=1,I3=0).It can be seen from the truth table and the corresponding logic circuit, the inputs I1,I2and I3are transmitted into output O1through OR,NOT,and AND operations while the output O2through NOT andAND operations.

    Fig.4 Truth table(bottom)and INH logic gate with two inputs and one output(up)

    Fig.5 Truth table(bottom)and corresponding combinational logic circuits with three inputs and two outputs(up)The three inputs are I1(Zn2+),I2(Ni2+),and I3(Vis)and the two outputs are O1(A497)and O2(F600).

    Fig.6 Truth table(bottom)and the equivalent logic circuits based on SP2 or SP4(up)The three inputs are I1(Zn2+),I2(Cu2+)and I3(Vis)and the two outputs are O1(A497)and O2(F600).

    4 Conclusions

    In this work,we demonstrate the use of spiropyran derivatives incorporating the chelating sites,such as the pyridine or quinoline moiety and methoxy group,into their backbones for creating chemical sensors with high sensitivity and selectivity and combinational logic gates for information processing at the molecular level.The coordination of metal ions with―OMe and pyridine or quinoline moiety facilitates the photoisomerization of spiropyran molecules from the closed form to the open merocyanine form with and even without UV irradiation,accompanying with the significant changes in their chemical and physical properties.UV-Vis absorption studies demonstrated that SP2 and SP4 showed the metal ion-dependent reversible binding affinities that led to the different hypsochromic shifts of the absorption of MC-Mn+complexes with different colors. The color changes can be recognized by a naked eye,thus offering an easy colorimetric method for metal ion detection.On the other hand,the fluorescence measurements proved the unique property of SP2 and SP4 for selectively detecting Zn2+with high sensitivity.In combination with both UV-Vis absorption and fluorescence changes under external stimuli,molecular systems based on SP2 and SP4 have been configured to mimic the functions of several integrated logic gates,suggesting attractive prospects in detecting,elaborating,and transmitting signals at the molecular level or even future molecular computing.

    (1) Irie,M.Chem.Rev.2000,100,1685.doi:10.1021/cr980069d

    (2) Irie,M.;Fukaminato,T.;Sasaki,T.;Tamai,N.;Kawai,T.Nature 2002,420,759.doi:10.1038/420759a

    (3) de Silva,A.P.;Gunaratne,H.Q.N.;Gunnlaugsson,T.;Huxley, A.J.M.;McCoy,C.P.;Rademacher,J.T.;Rice,T.E.Chem. Rev.1997,97,1515.doi:10.1021/cr960386p

    (4) Kocer,A.;Walko,M.;Meijberg,W.;Feringa,B.L.Science 2005,309,755.doi:10.1126/science.1114760

    (5) Berkovic,G.;Krongauz,V.;Weiss,V.Chem.Rev.2000,100, 1741.doi:10.1021/cr9800715

    (6) Guo,X.;Zhang,D.;Zhu,D.Adv.Mater.2004,16,125.doi: 10.1002/adma.200306102

    (7) Kawata,S.;Kawata,Y.Chem.Rev.2000,100,1777.doi: 10.1021/cr980073p

    (8) Delaire,J.A.;Nakatani,K.Chem.Rev.2000,100,1817.doi: 10.1021/cr980078m

    (9)Tamai,N.;Miyasaka,H.Chem.Rev.2000,100,1875.doi: 10.1021/cr9800816

    (10)Guo,X.;Zhang,D.;Yu,G.;Wan,M.;Li,J.;Liu,Y.;Zhu,D. Adv.Mater.2004,16,636.doi:10.1002/adma.200305792

    (11) Shen,Q.;Wang,L.;Liu,S.;Cao,Y.;Gan,L.;Guo,X.; Steigerwald,M.L.;Shuai,Z.;Liu,Z.;Nuckolls,C.Adv.Mater. 2010,22,3282.doi:10.1002/adma.201000471

    (12)Guo,X.;Huang,L.;O?Brien,S.;Kim,P.;Nuckolls,C.J.Am. Chem.Soc.2005,127,15045.doi:10.1021/ja054335y

    (13) Lee,H.Y.;Diehn,K.K.;Sun,K.;Chen,T.;Raghavan,S.R. J.Am.Chem.Soc.2011,133,8461.doi:10.1021/ja202412z

    (14) Vlassiouk,I.;Park,C.D.;Vail,S.A.;Gust,D.;Smirnov,S. Nano Lett.2006,6,1013.doi:10.1021/nl060313d

    (15) Guo,X.;Zhang,D.;Tao,H.;Zhu,D.Org.Lett.2004,6,2491. doi:10.1021/ol0494111

    (16) Zhang,H.;Guo,X.;Hui,J.;Hu,S.;Xu,W.;Zhu,D.Nano Lett. 2011,11,4939.doi:10.1021/nl2028798

    (17) Jiang,G.;Song,Y.;Guo,X.;Zhang,D.;Zhu,D.Adv.Mater. 2008,20,2888.doi:10.1002/adma.200800666

    (18)Shao,N.;Zhang,Y.;Cheung,S.;Yang,R.;Chan,W.;Mo,T.;Li, K.;Liu,F.Anal.Chem.2005,77,7294.doi:10.1021/ac051010r (19)Sakamoto,H.;Takagaki,H.;Nakamura,M.;Kimura,K.Anal. Chem.2005,77,1999.doi:10.1021/ac048642i

    (20)Inouye,M.;Akamatsu,K.;Nakazumi,H.J.Am.Chem.Soc. 1997,119,9160.doi:10.1021/ja9707668

    (21) Shiraishi,Y.;Adachi,K.;Itoh,M.;Hirai,T.Org.Lett.2009,11, 3482.doi:10.1021/ol901399a

    (22)Takase,M.;Inouye,M.Chem.Commun.2001,2432.

    (23) Shao,N.;Jin,J.Y.;Cheung,S.M.;Yang,R.H.;Chan,W.H.; Mo,T.Angew.Chem.Int.Edit.2006,45,4944.doi:10.1002/ anie.200600112

    (24)Andersson,J.;Li,S.;Lincoln,P.;Andréasson,J.J.Am.Chem. Soc.2008,130,11836.doi:10.1021/ja801968f

    (25) de Silva,A.P.;Gunaratne,H.Q.N.;McCoy,C.P.Nature 1993, 364,42.doi:10.1038/364042a0

    (26)de Silva,A.P.;Gunaratne,H.Q.N.;McCoy,C.P.J.Am.Chem. Soc.1997,119,7891.doi:10.1021/ja9712229

    (27)de Silva,A.P.;McClenaghan,N.D.J.Am.Chem.Soc.2000, 122,3965.doi:10.1021/ja994080m

    (28) Guo,X.;Zhang,D.;Zhou,Y.;Zhu,D.J.Org.Chem.2003,68, 5681.doi:10.1021/jo034243w

    (29) Raymo,F.M.Adv.Mater.2002,14,401.doi:10.1002/1521-4095(20020318)14:6<401::AID-ADMA401>3.0.CO;2-F

    (30) Guo,X.;Zhang,D.;Zhang,G.;Zhu,D.J.Phys.Chem.B.2004, 108,11942.doi:10.1021/jp047706q

    (31)Guo,X.;Zhang,D.;Wang,T.;Zhu,D.Chem.Commun.2003, 914.

    (32)Raymo,F.M.;Giordani,S.J.Am.Chem.Soc.2001,123,4651. doi:10.1021/ja005699n

    (33) Hirano,M.;Osakada,K.;Nohira,H.;Miyashita,A.J.Org. Chem.2001,67,533.

    (34) Guo,X.;Zhou,Y.;Zhang,D.;Yin,B.;Liu,Z.;Liu,C.;Lu,Z.; Huang,Y.;Zhu,D.J.Org.Chem.2004,69,8924.doi:10.1021/ jo0487799

    (35) Shao,N.;Jin,J.;Wang,H.;Zheng,J.;Yang,R.;Chan,W.; Abliz,Z.J.Am.Chem.Soc.2009,132,725.

    (36) Natali,M.;Soldi,L.;Giordani,S.Tetrahedron 2010,66,7612. doi:10.1016/j.tet.2010.07.035

    (37) Fries,K.H.;Driskell,J.D.;Samanta,S.;Locklin,J.Anal. Chem.2010,82,3306.doi:10.1021/ac1001004

    (38) Paramonov,S.V.;Lokshin,V.;Fedorova,O.A.J.Photochem. Photobiol.C:Photochem.Rev.2011,12,209.doi:10.1016/j. jphotochemrev.2011.09.001

    (39) Poonia,N.S.;Bajaj,A.V.Chem.Rev.1979,79,389.doi: 10.1021/cr60321a002

    (40)Abdullah,A.;Roxburgh,C.J.;Sammes,P.G.Dyes and Pigments 2008,76,319.doi:10.1016/j.dyepig.2006.09.002

    (41) Ipe,B.I.;Mahima,S.;Thomas,K.G.J.Am.Chem.Soc.2003, 125,7174.doi:10.1021/ja0341182

    (42) Nolan,E.M.;Lippard,S.J.Accounts Chem.Res.2008,42,193.

    (43) Huang,S.;Clark,R.J.;Zhu,L.Org.Lett.2007,9,4999.doi: 10.1021/ol702208y

    (44) Kowalczyk,T.;Lin,Z.;Voorhis,T.V.J.Phys.Chem.A 2010, 114,10427.

    (45)Winkler,J.D.;Bowen,C.M.;Michelet,V.J.Am.Chem.Soc. 1998,120,3237.doi:10.1021/ja974181p

    (46) Zhao,J.;Nelson,D.J.J.Inorg.Biochem.2005,99,383.doi: 10.1016/j.jinorgbio.2004.10.005

    (47)Torrado,A.;Walkup,G.K.;Imperiali,B.J.Am.Chem.Soc. 1998,120,609.doi:10.1021/ja973357k

    (48) Saghatelian,A.;V?lcker,N.H.;Guckian,K.M.;Lin,V.S.Y.; Ghadiri,M.R.J.Am.Chem.Soc.2002,125,346.

    (49)Qu,D.H.;Ji,F.Y.;Wang,Q.C.;Tian,H.Adv.Mater.2006,18, 2035.doi:10.1002/adma.200600235

    (50) de Sousa,M.;Kluciar,M.;Abad,S.;Miranda,M.A.;de Castro, B.;Pischel,U.Photochem.Photobiol.Sci.2004,3,639.doi: 10.1039/b406415a

    March 31,2012;Revised:May 14,2012;Published on Web:May 15,2012.

    New Spiropyran Derivatives:Ion Sensing and Information Processing at the Molecular Level

    LI Ying-Ruo1ZHANG Hong-Tao2QI Chuan-Min1,*GUO Xue-Feng2,3,*
    (1Key Laboratory of Radiopharmaceuticals,College of Chemistry,Beijing Normal University,Beijing 100875,P.R.China;2Beijing National Laboratory for Molecular Sciences,State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P.R.China;3Department of Advanced Materials and Nanotechnology,College of Engineering,Peking University,Beijing 100871,P.R.China)

    We have designed and synthesized a new class of spiropyran derivatives(SP1-SP4)with functional chelating groups,such as pyridine or quinoline moieties and a methoxy group(―OMe),for use in metal ion sensing and information processing at the molecular level.It is notable that metal ions can favor coordination with chelating groups and facilitate the photoisomerization of spiropyran molecules from the closed form to the open merocyanine form without UV irradiation,thus leading to significant changes in their chemical and physical properties.UV-Vis absorption studies indicated that SP2 and SP4 exhibited metal ion-dependent reversible binding affinities that result in different hypsochromic shifts for the MC-Mn+complexes.These changes in color can be recognized by eye,thus offering an easy colorimetric method for metal ion detection.Further emission studies distinguished them as promising candidates for Zn2+detection with good sensitivity and selectivity.Moreover,on the basis of their absorption and fluorescence spectra,several combinational logic gates were constructed for information processing at the molecular level.These results demonstrate that spiropyran derivatives with desired functionalities show great potential not only for chemical or environmental sensors,but also for future molecular computing.

    Spiropyran;Chemical sensor;Logic gate;UV-Vis absorption spectrum;Fluorescent spectrum

    10.3866/PKU.WHXB201205155

    ?Corresponding authors.GUO Xue-Feng,Email:guoxf@pku.edu.cn.QI Chuan-Min,Email:qichuanmin@bnu.edu.cn.

    The project was supported by the National Key Basic Research Program of China(973)(2009CB623703,2012CB921404),National Natural Science Foundation of China(20833001,51121091,2112016,21071022),and Foundation for theAuthor of National Excellent Doctoral Dissertation of Higher Education,China(2007B21).

    國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃項(xiàng)目(973)(2009CB623703,2012CB921404),國(guó)家自然科學(xué)基金(20833001,51121091,2112016,21071022)及全國(guó)高等學(xué)校優(yōu)秀博士論文作者專(zhuān)項(xiàng)基金(2007B21)資助

    O641

    猜你喜歡
    吡喃信息處理吸收光譜
    小分子螺吡喃光致變色化合物合成研究進(jìn)展*
    東營(yíng)市智能信息處理實(shí)驗(yàn)室
    基于Revit和Dynamo的施工BIM信息處理
    地震烈度信息處理平臺(tái)研究
    CTCS-3級(jí)列控系統(tǒng)RBC與ATP結(jié)合部異常信息處理
    原子吸收光譜分析的干擾與消除應(yīng)用研究
    淺析原子吸收光譜法在土壤環(huán)境監(jiān)測(cè)中的應(yīng)用
    茶油氧化過(guò)程中紫外吸收光譜特性
    3-疊氮基丙基-β-D-吡喃半乳糖苷的合成工藝改進(jìn)
    1-O-[3-(2-呋喃基)丙烯?;鵠-β-D-吡喃果糖的合成及應(yīng)用
    煙草科技(2015年8期)2015-12-20 08:27:14
    亚洲av国产av综合av卡| 大香蕉97超碰在线| 汤姆久久久久久久影院中文字幕| 嘟嘟电影网在线观看| eeuss影院久久| 国产毛片在线视频| 国模一区二区三区四区视频| 国产精品一区二区性色av| 午夜免费男女啪啪视频观看| 亚洲丝袜综合中文字幕| 久久99热这里只频精品6学生| 人妻夜夜爽99麻豆av| 高清毛片免费看| 18禁在线播放成人免费| 欧美三级亚洲精品| 尤物成人国产欧美一区二区三区| 亚洲一级一片aⅴ在线观看| 80岁老熟妇乱子伦牲交| 久久久久久国产a免费观看| 欧美日本视频| 国产成人免费无遮挡视频| 22中文网久久字幕| 国产中年淑女户外野战色| 一区二区av电影网| 看黄色毛片网站| 一区二区三区乱码不卡18| 国产精品福利在线免费观看| 午夜精品一区二区三区免费看| 一区二区三区四区激情视频| 精品人妻视频免费看| 日韩在线高清观看一区二区三区| 成人无遮挡网站| 日韩制服骚丝袜av| 久久久欧美国产精品| 男女那种视频在线观看| 国产精品爽爽va在线观看网站| 日韩一本色道免费dvd| 伊人久久国产一区二区| 不卡视频在线观看欧美| 六月丁香七月| 只有这里有精品99| 国产精品不卡视频一区二区| 夫妻午夜视频| 91午夜精品亚洲一区二区三区| 最近最新中文字幕大全电影3| 亚洲欧美日韩卡通动漫| 26uuu在线亚洲综合色| 国产成人精品福利久久| 免费黄网站久久成人精品| 麻豆成人午夜福利视频| 国产乱来视频区| 国产精品99久久99久久久不卡 | 亚洲无线观看免费| 成年免费大片在线观看| 下体分泌物呈黄色| 毛片女人毛片| 国产国拍精品亚洲av在线观看| www.色视频.com| 一本色道久久久久久精品综合| 色哟哟·www| 国产高清国产精品国产三级 | 国产精品成人在线| 身体一侧抽搐| 蜜臀久久99精品久久宅男| 岛国毛片在线播放| .国产精品久久| 午夜免费观看性视频| 亚洲精品国产av成人精品| 国产黄a三级三级三级人| 亚洲av免费在线观看| 精品久久国产蜜桃| 男女边摸边吃奶| 日韩在线高清观看一区二区三区| 国产欧美日韩一区二区三区在线 | 日本爱情动作片www.在线观看| 搡老乐熟女国产| 黑人高潮一二区| 自拍欧美九色日韩亚洲蝌蚪91 | 黑人高潮一二区| 欧美精品人与动牲交sv欧美| kizo精华| 精品亚洲乱码少妇综合久久| 麻豆成人午夜福利视频| 午夜亚洲福利在线播放| 色哟哟·www| 听说在线观看完整版免费高清| 久久精品久久久久久噜噜老黄| 亚洲欧美一区二区三区黑人 | 乱码一卡2卡4卡精品| 日韩亚洲欧美综合| 欧美性猛交╳xxx乱大交人| 麻豆国产97在线/欧美| 欧美区成人在线视频| 80岁老熟妇乱子伦牲交| 九九爱精品视频在线观看| 久久久久九九精品影院| 亚洲精品日本国产第一区| 精品久久久久久久末码| 亚洲内射少妇av| 国产黄频视频在线观看| 老司机影院毛片| 麻豆成人av视频| 国产大屁股一区二区在线视频| 天堂俺去俺来也www色官网| 日日摸夜夜添夜夜爱| 又粗又硬又长又爽又黄的视频| 国产真实伦视频高清在线观看| 少妇人妻一区二区三区视频| 少妇被粗大猛烈的视频| 亚洲欧美一区二区三区黑人 | 亚洲国产色片| 国产高清国产精品国产三级 | 插逼视频在线观看| 熟女av电影| 亚洲国产精品国产精品| 少妇 在线观看| 嫩草影院入口| 国国产精品蜜臀av免费| 亚洲欧美成人综合另类久久久| 久久热精品热| 熟女电影av网| 看免费成人av毛片| 国产成人午夜福利电影在线观看| 精品一区在线观看国产| 国产精品一区二区性色av| 国产精品不卡视频一区二区| 97超碰精品成人国产| 国产大屁股一区二区在线视频| 青春草国产在线视频| 色婷婷久久久亚洲欧美| 丝袜美腿在线中文| 欧美少妇被猛烈插入视频| 久久久成人免费电影| 国产精品偷伦视频观看了| 1000部很黄的大片| 国产精品一区二区在线观看99| 亚洲精品一二三| 久久久a久久爽久久v久久| 如何舔出高潮| 最近2019中文字幕mv第一页| 丰满少妇做爰视频| 欧美性猛交╳xxx乱大交人| 一级片'在线观看视频| 久久久久精品久久久久真实原创| 日韩人妻高清精品专区| 午夜福利在线观看免费完整高清在| 亚洲无线观看免费| 午夜视频国产福利| www.av在线官网国产| 国产午夜福利久久久久久| 久久久久久久久久成人| 久热这里只有精品99| 99久久人妻综合| 久久久久久久国产电影| 香蕉精品网在线| 又爽又黄无遮挡网站| 成人鲁丝片一二三区免费| 简卡轻食公司| 国产亚洲精品久久久com| 好男人视频免费观看在线| 我要看日韩黄色一级片| 日本猛色少妇xxxxx猛交久久| 日韩制服骚丝袜av| 久久久成人免费电影| 国产伦精品一区二区三区视频9| 精品久久久久久久久亚洲| 亚洲欧美精品自产自拍| 亚洲国产日韩一区二区| 亚洲国产精品999| 99久久精品一区二区三区| 国产一区二区三区综合在线观看 | 嫩草影院新地址| 亚洲精品久久午夜乱码| 在线观看国产h片| 69av精品久久久久久| 三级国产精品片| 亚洲av在线观看美女高潮| 久久久久久久国产电影| 91精品国产九色| 最近的中文字幕免费完整| 亚洲高清免费不卡视频| 亚洲欧美日韩卡通动漫| 国产精品女同一区二区软件| 男女边吃奶边做爰视频| 久久人人爽人人爽人人片va| 久久精品国产自在天天线| 亚洲欧美日韩无卡精品| 久久精品久久久久久噜噜老黄| 看非洲黑人一级黄片| 欧美潮喷喷水| 国产熟女欧美一区二区| kizo精华| 国产欧美日韩精品一区二区| 国产精品国产av在线观看| 在线播放无遮挡| 大香蕉久久网| 国产探花极品一区二区| 亚洲国产日韩一区二区| 国产毛片a区久久久久| 久久久久国产网址| 久久亚洲国产成人精品v| 可以在线观看毛片的网站| 99久久精品一区二区三区| 亚洲人成网站在线观看播放| 91精品一卡2卡3卡4卡| 亚洲欧美成人精品一区二区| kizo精华| 伊人久久精品亚洲午夜| 高清日韩中文字幕在线| 国内精品美女久久久久久| 一级毛片黄色毛片免费观看视频| 日本-黄色视频高清免费观看| 午夜福利在线观看免费完整高清在| 亚洲成人av在线免费| 十八禁网站网址无遮挡 | 十八禁网站网址无遮挡 | 精品人妻熟女av久视频| 日韩 亚洲 欧美在线| 建设人人有责人人尽责人人享有的 | 亚洲综合精品二区| 久久久久性生活片| 联通29元200g的流量卡| 大又大粗又爽又黄少妇毛片口| 亚洲人成网站高清观看| 亚洲丝袜综合中文字幕| 亚洲国产成人一精品久久久| 一本久久精品| 听说在线观看完整版免费高清| 中文精品一卡2卡3卡4更新| 成人特级av手机在线观看| av在线天堂中文字幕| 久久久久久久精品精品| 亚洲色图综合在线观看| 亚洲国产精品成人综合色| 男插女下体视频免费在线播放| 亚洲国产色片| 在线免费观看不下载黄p国产| 成人二区视频| 直男gayav资源| 联通29元200g的流量卡| 91精品一卡2卡3卡4卡| 成年版毛片免费区| 国产免费福利视频在线观看| 久久久亚洲精品成人影院| 久久国产乱子免费精品| 久久久久久伊人网av| 爱豆传媒免费全集在线观看| 国产亚洲午夜精品一区二区久久 | 精品99又大又爽又粗少妇毛片| 亚洲精品乱码久久久v下载方式| 亚洲三级黄色毛片| 天堂中文最新版在线下载 | 18禁在线播放成人免费| 免费大片18禁| 免费观看无遮挡的男女| 日韩三级伦理在线观看| 寂寞人妻少妇视频99o| 男女啪啪激烈高潮av片| 亚洲美女视频黄频| 最新中文字幕久久久久| 黄色日韩在线| 久热久热在线精品观看| 精品一区在线观看国产| 69人妻影院| 好男人视频免费观看在线| 日韩免费高清中文字幕av| 国产乱来视频区| 精品亚洲乱码少妇综合久久| 免费少妇av软件| 在线精品无人区一区二区三 | 丝袜喷水一区| 九九久久精品国产亚洲av麻豆| 国产精品一区二区性色av| 国产极品天堂在线| 精品人妻视频免费看| 亚洲美女视频黄频| 少妇的逼好多水| 久久久久久久精品精品| av国产久精品久网站免费入址| 男人和女人高潮做爰伦理| 免费黄色在线免费观看| 国产乱人偷精品视频| 美女被艹到高潮喷水动态| 伊人久久精品亚洲午夜| 国产免费福利视频在线观看| 深夜a级毛片| 亚洲av福利一区| 观看美女的网站| 日韩亚洲欧美综合| 在线亚洲精品国产二区图片欧美 | 亚洲欧美中文字幕日韩二区| 久久精品国产a三级三级三级| 秋霞伦理黄片| 亚洲色图av天堂| 精品人妻偷拍中文字幕| 99久久精品热视频| 国产高清国产精品国产三级 | 国产精品爽爽va在线观看网站| 嫩草影院入口| 亚洲欧美日韩另类电影网站 | 激情 狠狠 欧美| 日本一二三区视频观看| 晚上一个人看的免费电影| 人妻 亚洲 视频| 国产老妇女一区| 国产亚洲5aaaaa淫片| 亚洲国产欧美在线一区| 国产精品久久久久久av不卡| 99热这里只有是精品在线观看| 国产成人精品一,二区| kizo精华| av在线蜜桃| 国产精品秋霞免费鲁丝片| 久久久精品欧美日韩精品| 插阴视频在线观看视频| 三级国产精品片| 日本一本二区三区精品| 免费大片黄手机在线观看| 男女边摸边吃奶| 亚洲一级一片aⅴ在线观看| 亚洲av电影在线观看一区二区三区 | 男人和女人高潮做爰伦理| 久久久久久久大尺度免费视频| 亚洲,欧美,日韩| 麻豆久久精品国产亚洲av| 3wmmmm亚洲av在线观看| 欧美另类一区| 中文乱码字字幕精品一区二区三区| 欧美成人精品欧美一级黄| 涩涩av久久男人的天堂| av在线亚洲专区| 成人毛片a级毛片在线播放| 3wmmmm亚洲av在线观看| 亚洲精品国产成人久久av| 亚洲四区av| 国产亚洲av片在线观看秒播厂| 大话2 男鬼变身卡| 又粗又硬又长又爽又黄的视频| 欧美xxxx黑人xx丫x性爽| 中文字幕亚洲精品专区| 免费观看在线日韩| 亚洲国产av新网站| 国精品久久久久久国模美| 日韩 亚洲 欧美在线| 国产乱人偷精品视频| 国产精品.久久久| 日韩欧美精品v在线| 精品一区在线观看国产| 五月天丁香电影| 国产日韩欧美亚洲二区| 大香蕉久久网| 免费高清在线观看视频在线观看| 亚洲精品乱久久久久久| 大片免费播放器 马上看| 男人狂女人下面高潮的视频| 国产精品不卡视频一区二区| 日韩不卡一区二区三区视频在线| 一区二区三区四区激情视频| 麻豆乱淫一区二区| 观看免费一级毛片| 亚洲经典国产精华液单| 99久久中文字幕三级久久日本| 欧美zozozo另类| 啦啦啦啦在线视频资源| 人妻一区二区av| 亚洲av欧美aⅴ国产| 国产精品人妻久久久影院| 最后的刺客免费高清国语| 18禁动态无遮挡网站| 久久精品国产亚洲av涩爱| 只有这里有精品99| 国产精品三级大全| 人妻少妇偷人精品九色| 国产高清三级在线| 美女脱内裤让男人舔精品视频| 国产精品av视频在线免费观看| 嫩草影院新地址| 国产精品一二三区在线看| 精品一区二区三卡| 人妻夜夜爽99麻豆av| 国产精品一及| 欧美xxxx黑人xx丫x性爽| 免费人成在线观看视频色| 亚洲成人中文字幕在线播放| 欧美激情在线99| 特级一级黄色大片| 九九久久精品国产亚洲av麻豆| 国产亚洲av嫩草精品影院| 欧美97在线视频| 少妇人妻一区二区三区视频| a级毛片免费高清观看在线播放| 高清欧美精品videossex| 在线亚洲精品国产二区图片欧美 | 久久99热6这里只有精品| 国产日韩欧美在线精品| 国产白丝娇喘喷水9色精品| av国产免费在线观看| 嫩草影院新地址| 在线亚洲精品国产二区图片欧美 | 亚洲国产精品国产精品| 久久久久久久久久人人人人人人| 免费看光身美女| 99视频精品全部免费 在线| 亚洲av.av天堂| 亚洲四区av| 在线观看一区二区三区激情| 天堂中文最新版在线下载 | 99热这里只有是精品在线观看| 天堂中文最新版在线下载 | 亚洲aⅴ乱码一区二区在线播放| 18禁动态无遮挡网站| 熟女av电影| 深夜a级毛片| 国产成人免费无遮挡视频| 特大巨黑吊av在线直播| 色5月婷婷丁香| 日韩大片免费观看网站| 三级国产精品片| 三级男女做爰猛烈吃奶摸视频| 丰满人妻一区二区三区视频av| 久久久久网色| 97超碰精品成人国产| 五月伊人婷婷丁香| 女人十人毛片免费观看3o分钟| 内地一区二区视频在线| 肉色欧美久久久久久久蜜桃 | 18禁动态无遮挡网站| 日韩国内少妇激情av| 又大又黄又爽视频免费| 大片免费播放器 马上看| 中文在线观看免费www的网站| 国内精品美女久久久久久| 丰满乱子伦码专区| 国产精品伦人一区二区| 成人亚洲精品一区在线观看 | 亚洲欧美成人精品一区二区| 亚洲自拍偷在线| 国模一区二区三区四区视频| 国产成人精品一,二区| 亚洲精品自拍成人| 久久6这里有精品| 精品亚洲乱码少妇综合久久| 午夜福利网站1000一区二区三区| 日韩强制内射视频| 嘟嘟电影网在线观看| 精品国产一区二区三区久久久樱花 | 亚洲天堂国产精品一区在线| 寂寞人妻少妇视频99o| 舔av片在线| 极品少妇高潮喷水抽搐| 麻豆久久精品国产亚洲av| 欧美性感艳星| 九九爱精品视频在线观看| 亚洲欧洲国产日韩| 国国产精品蜜臀av免费| 性色av一级| 欧美三级亚洲精品| 夫妻午夜视频| 狠狠精品人妻久久久久久综合| 全区人妻精品视频| a级毛片免费高清观看在线播放| 晚上一个人看的免费电影| 亚洲精品日韩在线中文字幕| 亚洲,一卡二卡三卡| 国产综合懂色| 中文字幕av成人在线电影| 久久99热这里只频精品6学生| 国产一区有黄有色的免费视频| 1000部很黄的大片| 偷拍熟女少妇极品色| av黄色大香蕉| 国产黄色免费在线视频| 亚洲精品影视一区二区三区av| 久久这里有精品视频免费| 亚洲熟女精品中文字幕| 卡戴珊不雅视频在线播放| 又黄又爽又刺激的免费视频.| 91久久精品电影网| 色视频在线一区二区三区| 国产亚洲av片在线观看秒播厂| 久久国产乱子免费精品| 水蜜桃什么品种好| 久久久久久久久久人人人人人人| 男女边吃奶边做爰视频| 久久精品久久久久久久性| 成年版毛片免费区| 免费大片18禁| 成人午夜精彩视频在线观看| 视频区图区小说| 国产人妻一区二区三区在| 国产毛片在线视频| 亚洲av免费在线观看| 热re99久久精品国产66热6| av.在线天堂| 日本av手机在线免费观看| 乱码一卡2卡4卡精品| 日韩人妻高清精品专区| 亚洲精品乱码久久久v下载方式| 欧美日韩视频精品一区| 麻豆乱淫一区二区| 熟女电影av网| 18禁在线播放成人免费| 久久精品国产鲁丝片午夜精品| 精品人妻偷拍中文字幕| 日韩成人av中文字幕在线观看| 老师上课跳d突然被开到最大视频| 永久免费av网站大全| 丝袜美腿在线中文| 80岁老熟妇乱子伦牲交| 久久久久精品久久久久真实原创| 国内精品宾馆在线| 亚洲国产日韩一区二区| 高清av免费在线| 蜜桃久久精品国产亚洲av| 国产成人精品久久久久久| 一区二区三区四区激情视频| 国产探花在线观看一区二区| 最新中文字幕久久久久| 天堂俺去俺来也www色官网| 免费观看在线日韩| 国精品久久久久久国模美| 亚洲人成网站在线观看播放| 少妇人妻久久综合中文| 男人狂女人下面高潮的视频| 大话2 男鬼变身卡| 91久久精品国产一区二区成人| 午夜精品一区二区三区免费看| 亚洲成人中文字幕在线播放| 国产精品99久久99久久久不卡 | 91久久精品电影网| 少妇猛男粗大的猛烈进出视频 | 日韩三级伦理在线观看| 国产精品久久久久久精品古装| 永久免费av网站大全| 女人十人毛片免费观看3o分钟| 一级毛片aaaaaa免费看小| 日本wwww免费看| 免费看日本二区| 国内少妇人妻偷人精品xxx网站| 18禁在线无遮挡免费观看视频| 人人妻人人爽人人添夜夜欢视频 | 女的被弄到高潮叫床怎么办| 中文天堂在线官网| 18禁裸乳无遮挡免费网站照片| 99re6热这里在线精品视频| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩欧美 国产精品| 亚洲欧美日韩卡通动漫| 免费看不卡的av| 亚洲国产欧美在线一区| 亚洲不卡免费看| 亚洲欧美精品专区久久| 老司机影院成人| 欧美最新免费一区二区三区| 国产成人精品婷婷| 亚洲精品456在线播放app| 国产av码专区亚洲av| av一本久久久久| 欧美极品一区二区三区四区| 国产黄片美女视频| 国产黄a三级三级三级人| 美女高潮的动态| 国产精品.久久久| 99热网站在线观看| 欧美极品一区二区三区四区| 少妇丰满av| 新久久久久国产一级毛片| 在线观看三级黄色| 高清在线视频一区二区三区| 99热国产这里只有精品6| 久久久久久久大尺度免费视频| 婷婷色综合大香蕉| av线在线观看网站| 亚洲精品视频女| 国产精品99久久99久久久不卡 | 亚洲高清免费不卡视频| 亚洲,欧美,日韩| 激情五月婷婷亚洲| 日韩欧美一区视频在线观看 | 欧美成人一区二区免费高清观看| 九草在线视频观看| 久久99热这里只频精品6学生| 人人妻人人爽人人添夜夜欢视频 | 亚洲国产色片| av在线蜜桃| 亚洲国产色片| 中文字幕av成人在线电影| 黄色视频在线播放观看不卡| 欧美精品人与动牲交sv欧美| 2021少妇久久久久久久久久久| 在线天堂最新版资源| 最后的刺客免费高清国语| 国产精品一区二区在线观看99| 丝袜美腿在线中文| 亚洲色图av天堂| 亚洲精品影视一区二区三区av| 网址你懂的国产日韩在线| 久久韩国三级中文字幕| 一个人看的www免费观看视频| 一个人观看的视频www高清免费观看| 特级一级黄色大片| 日本av手机在线免费观看| 在线精品无人区一区二区三 | 国产精品三级大全| 亚洲av中文字字幕乱码综合| 国产高清国产精品国产三级 | 青春草视频在线免费观看| 大片电影免费在线观看免费| 一级毛片aaaaaa免费看小| 亚洲欧洲日产国产| 波多野结衣巨乳人妻| 噜噜噜噜噜久久久久久91| 欧美老熟妇乱子伦牲交| 久久综合国产亚洲精品| 伦精品一区二区三区|