• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    貴金屬原子與點(diǎn)缺陷石墨烯的鍵增強(qiáng)作用

    2012-12-05 02:27:52解鵬洋莊桂林呂永安王建國李小年
    物理化學(xué)學(xué)報 2012年2期
    關(guān)鍵詞:點(diǎn)缺陷空位物理化學(xué)

    解鵬洋 莊桂林 呂永安 王建國 李小年

    (浙江工業(yè)大學(xué)化學(xué)工程與材料學(xué)院,杭州310014)

    貴金屬原子與點(diǎn)缺陷石墨烯的鍵增強(qiáng)作用

    解鵬洋 莊桂林*呂永安 王建國*李小年

    (浙江工業(yè)大學(xué)化學(xué)工程與材料學(xué)院,杭州310014)

    通過密度泛函理論研究了Ag、Au、Pt原子在完美和點(diǎn)缺陷(包括N摻雜、B摻雜、空位點(diǎn)缺陷)石墨烯上的吸附以及這些體系的界面性質(zhì).研究表明Ag、Au不能在完美的石墨烯上吸附,N、B摻雜增強(qiáng)了三種金屬與石墨烯之間的相互作用.而空位點(diǎn)缺陷誘發(fā)三種金屬在石墨烯上具有強(qiáng)化學(xué)吸附作用.通過電子結(jié)構(gòu)分析發(fā)現(xiàn),N摻雜增強(qiáng)了Au、Pt與C形成的共價鍵,而Au、Ag與B形成了化學(xué)鍵.空位點(diǎn)缺陷不僅是金屬原子的幾何固定點(diǎn),同時也增加了金屬原子和碳原子之間的成鍵.增強(qiáng)貴金屬原子和石墨烯相互作用的順序是:空位點(diǎn)缺陷>>B摻雜>N摻雜.

    密度泛函理論; 石墨烯;金;鉑;銀

    1 Introduction

    Graphene,as an emerging material,has attracted tremendous attention in different research fields since 2004.1-9Noble metal nanoparticles10-13are of great interests due to their unique catalytic properties.Metal nanoparticles supported on graphene nanocomposites,14-20feature the characteristics of both grahpene and metal nanoparticles,particularly notable because they not only inherit their intrinsic properties but also extract some unique cooperative properties,which exhibit promising applications in nanobiotechnology,nanoelectronics,energy storage,catalysis,etc.Therefore,understanding of the interaction between graphene and metal nanoparticles is the first step to realize these applications.21Meanwhile,the interaction between metal adatoms/clusters and graphene also depends on the preparation methods and determines the properties of the formed nanocomposites.

    For metal clusters/low dimensional carbon(such as carbon nanotubes,graphene,fullerene),chemical or physical methods are commonly used to prepare metal/carbon nanocomposities.22-28For the chemical methods,organic compounds or functional groups25,28,29adsorbed on the surface of carbon materials can serve as the anchoring site of these metal clusters.Therefore,the metal nanoparticles adhere to the graphene via these“l(fā)inkers”.The metal/graphene nanocomposites are generally prepared by depositing metal particles on graphene/graphite oxide23or the chemical functionlized graphene30-36sheets.The physical methods are to grow or deposit metal nanoparticles directly onto the carbon nanotubes(CNTs)or grahite/graphene surface via electron beam evaporation,37or thermal evaporation.38,39At present,few experimental studies have been reported on the preparation of metal/graphene nanocomposites with the physical methods.Independent of the preparation methods, the ultimate purpose of these methods is to modify the inert properties of pristine CNTs/grahene,which can be attributed to two types of modifications.One is to modify the properties by the surface species,36and the other is to substitute the lattice carbon with foreign elements33,40-47or form various vacancies.48-50It is well-known that N,B atoms are the only two foreign elements incorporated into an sp2carbon network of CNTs42,51-54or graphene55,56without significantly affecting their geometric structures.

    Several theoretical studies57-62have been conducted on the interaction between metal adatoms or small clusters and the pristine graphene or the graphene with vacancies.These studies show the ionic bonding for metal adatoms of groups I-III elements and covalent bonding for transition metal atoms with d valence electrons,noble metals,and group IV elements58on the pristine graphene.The very weak interaction between Ag,Au and graphene is identified from the previous study.57

    To the best of our knowledge,no systematic theoretical studies of noble metal adatoms or clusters on the point defected, which include B-,N-doping and a single vacancy defect,graphene have been reported.In this study,we investigated the interactions between three typical noble metal adatoms(Ag,Au, and Pt)and point defected graphene by means of density functional theory(DFT)calculations,which is further compared with these on the pristine graphene.

    2 Calculation methods

    All calculations were carried out under the generalized gradient approximation(GGA)with the Perdew-Burke-Ernzerhof (PBE)63functional,within a plane wave-pseudopotential scheme,by using the PWSCF package in Quantum ESPRESSO.64The ultrasoft pseudopotentials65were used to describe electron-ion interactions.The kinetic energy cutoffs for the smooth part of the electronic wave function and the augmented electron density were 25 and 200 Ry(1 Ry=13.6056923 eV), respectively.In this study,by using the(6,6)graphene,the point-defect concentration is about 2.7% (molar fraction), which represents realistic experimental conditions.The pristine,N-,B-doping graphene,and graphene with vacancies are termed as Gr,N-Gr,B-Gr,and vac-Gr,respectively.The Brillouin zone integration was performed with the k points generated for 6×6×1 Monkhorst-Pack grid,66which were convergent by using 8×8×1,10×10×1,and 12×12×1 Monkhorst-Pack grids.All the atoms involved in calculations were fully relaxed until each component of the residual force on each atom was smaller than 0.3 eV·nm-1.

    The binding energy(Eb)of metal adatom on the graphene was typically calculated as follows:

    where EM1,EGr,and E(M1+Gr)represent the energies of the most stable gas phase metal adatom,the graphene,and the combined systems of metal adatom and graphene,respectively.

    3 Results and discussion

    3.1 Electronic properties of graphene

    In order to investigate the effect of point defect on the electronic properties of graphene,the band structures,density of states(DOS),and charge differences were calculated,as shown in Fig.1.Inspecting of the band structures and DOS of Fig.1,it can be found that the electronic bands of B-,N-doped graphene feature similar dispersive characteristics to that of pristine one,but both of the Fermi levels are shifted up by-0.57 and+0.53 eV.The obtained band gaps of B-and N-Gr are still zero.Therefore,the B-and N-Gr can be attributed to p-type and n-type semiconductors,comparable to those in the reported studies.67On the other hand,vac-Gr shows different electronic characteristics from others,in which the band gap rises from zero to 0.77 eV.This may be due to that the broken sp2configuration in vac-Gr induces the impurity states consisting of dangling sp3orbitals of carbons,which slightly shift upto conduction band.The charge density differenceswhere the doping is the boron,nitrogen,and carbon of B-,N-Gr and pristine graphene;orwhere c2 is the 2-coordinate carbon in vac-Gr,respectively)induced by the B-or N-doping and vacancies are also shown in Fig.1. The red and blue colors represent the electron accumulation and depletion,respectively.It can be seen that the B,N show the electron deficiency and accumulation.And B-,N-doping also induce the charge redistribution on the graphene,which can be confirmed from L?wdin analysis.The charges of B and N are 0.12e and-0.02e,which is consistent with the analysis of DOS.On the pristine graphene,the charge is uniformly distributed on the carbon atoms.While for vac-Gr,the charge is depleted around the carbon vacancies.

    3.2 Binding of metal adatoms on grapheme

    As the reference systems,we also investigated the adhesion of Ag,Au,and Pt adatoms on the pristine graphene.Due to the very similar adhesion properties of Ag and Au,Fig.2 only shows the binding energies and optimized configurations of the most and the second stable structures of Au and Pt on the investigated graphene.We found that Ag(Eb=0.02 eV)and Au(Eb= 0.20 eV)adatoms are very weakly bound on the pristine graphene,which are in agreement with the available literature.68The geometries of graphene have no obvious changes after the adsorption of Au and Ag.In contrast,Pt shows much stronger adhesion properties.The most and the second stable binding sites are the bridge of two carbons(Eb=1.90 eV)and a top of one carbon(Eb=1.76 eV),respectively.It can be seen that the weak bonding between metal clusters(especially Ag and Au) and graphene must be strengthened in order to utilize these composited nanomaterials.In this study,two kinds of methods, including removing one carbon and substituting one carbon by the B,N elements,have been taken into account.

    Fig.1 Band structures and total density of states(A)and charge density differences(B)of(a)Gr,(b)N-Gr,(c)B-Gr,and(d)vac-Gr

    Fig.2 Optimized geometries and binding energies(in the parentheses)of the most and second stable structures ofAu and Pt adatoms on(a)Gr,(b)N-Gr,(c)B-Gr,and(d)vac-Gr

    3.3 Binding of metal adatoms on N-,B-,vac-Gr

    It can be seen that the weak bonding between Au,Ag and pristine graphene is caused by the inert electronic properties of graphene.On the other hand,the electronic properties of graphene can be modified by the B-,N-doping and vacancies.In this section,we further investigated the adhesion and binding of noble metal adatoms on the B-,N-,and vac-Gr.For N-Gr, the most favorable binding site is the top of o-carbon atoms (ortho-carbon)rather than nitrogen,in which the binding energies are 0.13 and 0.84 eV for Ag and Au adatoms,respectively.For Au adatoms,the physisorption on the pristine graphene turns to weak chemisorption on the N-Gr,in which the distances between Au and carbon are 0.320 and 0.224 nm.The most and the second stable binding sites of Pt adatoms on N-Gr are both bridge of two carbon atoms.The most favorable binding site of Pt1on N-Gr is the bridge of o-and p-carbon atoms(paracarbon)of N.The second favorable binding site of Pt1on N-Gr is the bridge of p-and m-carbon(meta-carbon)atoms of N. The binding energies are 2.25 and 2.05 eV for the most and the second Pt adatoms,which are about 0.35 and 0.15 eV larger than that on pristine graphene,respectively.For Ag and Au on B-Gr,the most favorable binding sites are both top of boron atoms,in which the binding energies are 1.11 and 1.29 eV,re-spectively.For Pt on B-Gr,the most and the second favorable sites prefer the bridge of B and o-carbon and the top of B with the binding energies of 2.65 and 2.43 eV,respectively.On vac-Gr,the most favorable binding sites of metal adatoms are all located directly at the vacancies,in which metal adatoms bond with three carbon atoms.The corresponding bond lengths of M―C(M:metal adatoms)are 0.230,0.209,and 0.194 nm for Ag,Au,and Pt adatoms,respectively.The binding energies of Ag,Au,and Pt adatoms are 1.80,2.36,and 7.53 eV,respectively,which increase at least about four times larger than those on pristine graphene.

    It is observed that the binding energies for the most and the second stable noble metal adatoms on N-,B-,and vac-Gr increase compared with that on the pristine graphene(Fig.2). Moreover,the initial geometries on the different sites of N-, B-,and vac-Gr(as depicted in Fig.3(b))were taken into account,and the resulting binding energies are shown in Fig.3(a). Firstly,we found that the binding energies of these metal adatoms are nearly same when they are located at the forth carbon away from the B,N,and vacancies,which is nearly the same as that on the pristine graphene.Secondly,on the B-and vac-Gra,Au and Pt always move back into the favorable binding site,even when they are initially located at the sites slightly away from the B-and vacancy about two carbons.

    The most stable binding energies of the three kinds of noble metal on four different types of graphene are shown in Fig.4.It can be seen that N-,B-doping,and vacancy enhance bonding between metal adatoms and graphene.The enhanced role increases according to this order:N-doping,B-doping,and vacancy.For Ag and Au,the weak physisorption on the pristine graphene becomes the chemisorption by these modifications. Especially,the point defects(vacancies)increase the binding energies of the three kinds of metal adatoms at least four times larger than that on the pristine graphene.

    Fig.3 (a)Binding energy ofAu and Pt adatoms on the different sites of N-Gr,B-Gr,and vac-Gr;(b)illustration of different binding sites of N-Gr,B-Gr,and vac-Gr

    Fig.4 Binding energy of the most stableAg,Au,and Pt adatoms on the Gr,N-Gr,B-Gr,and vac-Gr

    3.4 Different mechanisms to enhance the bonding of metal adatoms on N-,B-,vac-Gr

    The interactions between three noble metal adatoms and graphene can be enhanced by the B-,N-doping and point-defected carbon vacancy.But the most favorable sites and the enhanced degree are very different.Therefore,it is necessary to investigate the binding mechanisms of the three kinds of metal adatoms on different forms of graphene.

    Projected density of states(PDOS)of metal adatoms and the atoms directly bonded with metal on pristine,N-Gr,B-Gr,and graphene with vacancies are shown in Fig.5.For the case of pristine graphene,there is no overlap between Au and carbon, while some hybridization between p band of carbon and d band of Pt is found at 1.8 eV above Fermi level.Furthermore, inspection of the PDOS of Au or Pt/N-Gr reveals that the dangling 2p bands of nitrogen anchor at the vicinity of Fermi level.Compared with that on pristine graphene,there is little influence of nitrogen on the PDOS of Pt and carbon.While nitrogen induces some hybridization between carbon p orbital and Au d orbital.It is interesting to observe that there is no overlap between the bands of boron and Au at Fermi level,while the 2p band of boron at Fermi level can overlap with the d band of Pt. It may be explained that the binding energy of Pt/B-Gr is larger than that of Au/B-Gr.In addition,scrutinizing PDOS of Au or Pt/vac-Gr can find that strong hybridization between p band of the carbon and d band of Au or Pt exists on the vac-Gr,resulting in the strong adhesion of metal adatoms.The PDOS differences of Au and Pt/vac-Gr at the Fermi level lead to larger binding energy of Pt/vac-Gr than that of Au/vac-Gr.Generally, it can be concluded that(1)doping N atom,B atom or vacancy defect acting as anchoring site can effectively enhance the interaction between Au or Pt and graphene;(2)among three types of adsorption case,Pt exhibits much stronger interaction with doped graphene than that ofAu.

    The charge density differences induced by the adsorbed metal adatoms on pristine graphene,N-Gr,B-Gr,and graphene with vacancy are shown in Fig.6.We find that Ag adatoms have very similar properties to Au ones.Therefore,only the charge differences of Au/graphene and Pt/graphene system have been shown in Fig.6.Firstly,there are no charge transfers between Au and pristine graphene.The covalent bond is formed between Pt and carbon of pristine graphene.Secondly, N-doping does not change the bond characters between Pt and graphene,but enhances the interaction a little bitter.However, for Au,N-,B-doping plays a more important role than Pt.The covalent bond between Au and o-carbon of N is formed on N-Gr.The bond between Au and B is formed on B-Gr.The formation of these bonds changes the adhesion properties of Au on graphene,which results from the very weak physisorption to moderate chemisorption of Au.Thirdly,the role of vacancies on the enhanced bonding between metal adatoms and graphene is much stronger than N-,B-doping.It is observed that vacancies are not only the geometrically anchoring site but also the electron redistribution sites.However,the N-,B-doping mainly only induces the electron redistribution within the graphene.

    Fig.5 Projected density of states of metal(d orbital)and the bonded atoms(carbon,nitrogen,or boron) (p orbital)in metal adatoms/grapheneZero mark is Fermi level.

    Fig.6 Charge density differences of metal/graphene induced byAu and Pt adatomsThe red and blue colors represent for the electron accumulation and depletion,respectively.

    4 Conclusions

    By means of density functional theory calculations,our study demonstrates that the adhesion of noble metal(Au,Ag, and Pt)adatoms on the graphene can be enhanced either by the N-,B-doping or by the vacancies.For the same metal,the enhanced role in the binding energy increases in this order: N-doping,B-doping,and vacancies.The N-,B-doping leads to the enhancement of the covalent bond between Au and carbon atoms and formation of the chemical bond between Au or Ag and B,respectively.While point vacancies mainly act as the geometrically anchoring sites of metal adatoms and the electron reservoir.On the same graphene,the binding energies of the three kinds of metal adatoms increase in this order:Ag,Au, and Pt.The enhanced bonding between noble metal clusters and graphene will play a vital role in the application of noble metal clusters/graphene composite materials.

    (1) Novoselov,K.S.;Geim,A.K.;Morozov,S.V.;Jiang,D.; Zhang,Y.;Dubonos,S.V.;Grigorieva,I.V.;Firsov,A.A. Science 2004,306,666.

    (2) Li,H.;Ma,X.Y.;Dong,J.;Qian,W.P.Anal.Chem.2009,81, 8916.

    (3) Li,Y.F.;Zhou,Z.;Shen,P.W.;Chen,Z.F.ACS Nano 2009,3, 1952.

    (4) Saha,B.;Shindo,S.;Irle,S.;Morokuma,K.ACS Nano 2009,3, 2241.

    (5) Xu,X.L.;Zhou,G.L.;Li,H.X.;Liu,Q.;Zhang,S.;Kong,J. L.Talanta 2009,78,26.

    (6)Yang,Y.H.;Sun,H.J.;Peng,T.J.;Huang,Q.Acta Phys.-Chim. Sin.2011,27,736.[楊勇輝,孫紅娟,彭同江,黃 橋.物理化學(xué)學(xué)報,2011,27,736.]

    (7) Hu,Y.J.;Jin,J.;Zhang,H.;Wu,P.;Cai,C.X.Acta Phys.-Chim.Sin.2010,26,2073.[胡耀娟,金 娟,張 卉,吳 萍,蔡稱心.物理化學(xué)學(xué)報,2010,26,2073.]

    (8) Xu,N.;Kong,F.J.;Wang,Y.Z.Acta Phys.-Chim.Sin.2011, 27,559.[徐 寧,孔凡杰,王延宗.物理化學(xué)學(xué)報,2011,27, 559.]

    (9) Sun,D.L.;Peng,S.L.;Ouyang,J.;Ouyang,F.P.Acta Phys.-Chim.Sin.2011,27,1103.[孫大立,彭盛霖,歐陽俊,歐陽方平.物理化學(xué)學(xué)報,2011,27,1103.]

    (10) Zhang,J.;Sasaki,K.;Sutter,E.;Adzic,R.R.Science 2007,315, 220.

    (11)Yoon,B.;Hakkinen,H.;Landman,U.;Worz,A.S.;Antonietti, J.M.;Abbet,S.;Judai,K.;Heiz,U.Science 2005,307,403.

    (12) Matthey,D.;Wang,J.G.;Wendt,S.;Matthiesen,J.;Schaub,R.; Laegsgaard,E.;Hammer,B.;Besenbacher,F.Science 2007, 315,1692.

    (13) DeVries,G.A.;Brunnbauer,M.;Hu,Y.;Jackson,A.M.;Long, B.;Neltner,B.T.;Uzun,O.;Wunsch,B.H.;Stellacci,F. Science 2007,315,358.

    (14) Park,S.;Lee,K.S.;Bozoklu,G.;Cai,W.;Nguyen,S.T.;Ruoff, R.S.ACS Nano 2008,2,572

    (15) Lightcap,I.V.;Kosel,T.H.;Kamat,P.V.Nano Lett.2010,10, 577.

    (16)Li,B.;Lu,G.;Zhou,X.Z.;Cao,X.H.;Boey,F.;Zhang,H. Langmuir 2009,25,10455.

    (17) Klusek,Z.;Dabrowski,P.;Kowalczyk,P.;Kozlowski,W.; Olejniczak,W.;Blake,P.;Szybowicz,M.;Runka,T.Appl.Phys. Lett.2009,95,113114.

    (18) Li,Y.X.;Wei,Z.D.;Zhao,Q.L.;Ding,W.;Zhang,Q.;Chen,S. G.Acta Phys.-Chim.Sin.2011,27,858.[李云霞,魏子棟,趙巧玲,丁 煒,張 騫,陳四國.物理化學(xué)學(xué)報,2011,27,858.]

    (19) Wu,X.Q.;Zong,R.L.;Mu,H.J.;Zhu,Y.F.Acta Phys.-Chim. Sin.2010,26,3002.[吳小琴,宗瑞隆,牟豪杰,朱永法.物理化學(xué)學(xué)報,2010,26,3002.]

    (20)Wen,Z.L.;Yang,S.D.;Song,Q.J.;Hao,L.;Zhang,X.G.Acta Phys.-Chim.Sin.2010,26,1570.[溫祝亮,楊蘇東,宋啟軍,郝 亮,張校剛.物理化學(xué)學(xué)報,2010,26,1570.]

    (21) Sutter,P.;Hybertsen,M.S.;Sadowski,J.T.;Sutter,E.Nano Lett.2009,9,2654.

    (22)Xu,C.;Wang,X.;Zhu,J.W.J.Phys.Chem.C 2008,112,19841.

    (23) Jasuja,K.;Berry,V.ACS Nano 2009,3,2358.

    (24) Fullam,S.;Cottell,D.;Rensmo,H.;Fitzmaurice,D.Adv.Mater. 2000,12,1430.

    (25) Carrillo,A.;Swartz,J.A.;Gamba,J.M.;Kane,R.S.; Chakrapani,N.;Wei,B.Q.;Ajayan,P.M.Nano Lett.2003,3, 1437.

    (26) Li,J.;Moskovits,M.;Haslett,T.L.Chem.Mater.1998,10, 1963.

    (27)Azamian,B.R.;Coleman,K.S.;Davis,J.J.;Hanson,N.; Green,M.L.H.Chem.Commun.2002,366.

    (28) Marsh,D.H.;Rance,G.A.;Whitby,R.J.;Giustiniano,F.; Khlobystov,A.N.J.Mater.Chem.2008,18,2249.

    (29)Liu,L.;Wang,T.X.;Li,J.X.;Guo,Z.X.;Dai,L.M.;Zhang, D.Q.;Zhu,D.B.Chem.Phys.Lett.2003,367,747.

    (30) Li,J.;Liu,C.Y.Eur.J.Inorg.Chem.2010,8,1244.

    (31) Pasricha,R.;Gupta,S.;Srivastava,A.K.Small 2009,5,2253.

    (32) Shen,J.F.;Shi,M.;Li,N.;Yan,B.;Ma,H.W.;Hu,Y.Z.;Ye, M.X.Nano Res.2010,3,339.

    (33)Wen,Y.Q.;Xing,F.F.;He,S.J.;Song,S.P.;Wang,L.H.; Long,Y.T.;Li,D.;Fan,C.H.Chem.Commun.2010,46,2596.

    (34) Liu,S.;Wang,J.Q.;Zeng,J.;Ou,J.F.;Li,Z.P.;Liu,X.H.; Yang,S.R.J.Power Sources 2010,195,4628.

    (35)Liu,W.C.;Lin,H.K.;Chen,Y.L.;Lee,C.Y.;Chiu,H.T.ACS Nano 2010,4,4149.

    (36)Kim,Y.K.;Na,H.K.;Min,D.H.Langmuir 2010,26,13065.

    (37) Zhang,Y.;Franklin,N.W.;Chen,R.J.;Dai,H.J.Chem.Phys. Lett.2000,331,35.

    (38) Gingery,D.;Buhlmann,P.Carbon 2008,46,1966.

    (39) Bittencourt,C.;Felten,A.;Douhard,B.;Ghijsen,J.;Johnson,R. L.;Drube,W.;Pireaux,J.J.Chem.Phys.2006,328,385.

    (40)Wei,D.C.;Liu,Y.Q.;Wang,Y.;Zhang,H.L.;Huang,L.P.;Yu, G.Nano Lett.2009,9,1752.

    (41)Ghosh,K.;Kumar,M.;Maruyama,T.;Ando,Y.J.Mater.Chem. 2010,20,4128.

    (42) Liang,Y.X.;Shui,M.;Li,R.S.Acta Phys.-Chim.Sin.2007, 23,1647.[梁云霄,水 淼,李榕生.物理化學(xué)學(xué)報,2007,23, 1647.]

    (43) Chi,M.;Zhao,Y.P.Comp.Mater.Sci.2009,46,1085.

    (44) Kang,J.;Deng,H.X.;Li,S.S.;Li,J.B.J.Phys.:Condens. Matter 2011,23,346001.

    (45) Jung,N.;Kim,B.;Crowther,A.C.;Kim,N.;Nuckolls,C.; Brus,L.ACS Nano 2011,5,5708.

    (46)Lv,Y.A.;Zhuang,G.L.;Wang,J.G.;Jia,Y.B.;Xie,Q.Phys. Chem.Chem.Phys.2011,13,12472.

    (47) Geng,D.S.;Yang,S.L.;Zhang,Y.;Yang,J.L.;Liu,J.;Li,R. Y.;Sham,T.K.;Sun,X.L.;Ye,S.Y.;Knights,S.Appl.Surf. Sci.2011,257,9193.

    (48) Carlsson,J.M.;Hanke,F.;Linic,S.;Scheffler,M.Phys.Rev. Lett.2009,102,166104.

    (49) Jack,R.;Sen,D.;Buehler,M.J.J.Comput.Theor.Nanos.2010, 7,354.

    (50) Palacios,J.J.;Fernandez-Rossier,J.;Brey,L.Phys.Rev.B 2008,77,195428.

    (51) Liu,X.M.;Romero,H.E.;Gutierrez,H.R.;Adu,K.;Eklund,P. C.Nano Lett.2008,8,2613.

    (52) Williams,Q.L.;Liu,X.;Walters,W.;Zhou,J.G.;Edwards,T. Y.;Smith,F.L.Appl.Phys.Lett.2007,91,143116.

    (53)Lv,Y.A.;Cui,Y.H.;Xiang,Y.Z.;Wang,J.G.;Li,X.N.Comp. Mater.Sci.2010,48,621.

    (54) Lee,D.H.;Lee,W.J.;Kim,S.O.Nano Lett.2009,9,1427.

    (55) Late,D.J.;Ghosh,A.;Subrahmanyam,K.S.;Panchakarla,L. S.;Krupanidhi,S.B.;Rao,C.N.R.Solid State Commun.2010, 150,734.

    (56)Dai,X.Q.;Li,Y.H.;Zhao,J.H.;Tang,Y.N.Acta Phys.-Chim. Sin.2011,27,369.[戴憲起,李艷慧,趙建華,唐亞楠.物理化學(xué)學(xué)報,2011,27,369.]

    (57)Hu,L.B.;Hu,X.R.;Wu,X.B.;Du,C.L.;Dai,Y.C.;Deng,J. B.Phys.B-Condens.Matter 2010,405,3337.

    (58) Chan,K.T.;Neaton,J.B.;Cohen,M.L.Phys.Rev.B 2008,77, 235430.

    (59) Boukhvalov,D.W.;Katsnelson,M.I.Appl.Phys.Lett.2009, 95,023109.

    (60)Akturk,O.U.;Tomak,M.Phys.Rev.B 2009,80,085417

    (61) Valencia,H.;Gil,A.;Frapper,G.J.Phys.Chem.C 2010,114, 14141.

    (62) Rodriguez-Manzo,J.A.;Cretu,O.;Banhart,F.ACS Nano 2010, 4,3422.

    (63) Perdew,J.P.;Burke,K.;Ernzerhof,M.Phys.Rev.B 1996,77, 3865.

    (64) Giannozzi,P.;Baroni,S.;Bonini,N.;et al.J.Phys.:Condens. Matter 2009,21,395502.

    (65) Vanderbilt,D.Phys.Rev.B 1990,41,7892.

    (66) Monkhorst,H.J.;Pack,J.D.Phys.Rev.B 1976,13,5188.

    (67) Huang,B.Phys.Lett.A 2011,375,845.

    (68)Wang,J.G.;Lv,Y.A.;Li,X.N.;Dong,M.D.J.Phys.Chem.C 2009,113,890.

    July 22,2011;Revised:November 1,2011;Published on Web:November 2,2011.

    Enhanced Bonding between Noble Metal Adatoms and Graphene with Point Defects

    XIE Peng-Yang ZHUANG Gui-Lin*LU¨Yong-An WANG Jian-Guo*LI Xiao-Nian
    (College of Chemical Engineering and Materials Science,Zhejiang University of Technology,Hangzhou 310014,P.R.China)

    The adhesion of Ag,Au,and Pt adatoms on pristine graphene and that containing point defects including N-substitution,B-substitution,and a single vacancy,as well as the interfacial properties of these systems,were investigated using density functional theory.The calculations show that Ag and Au cannot bind to pristine graphene.In contrast,B and N-doping increase the interaction between Ag,Au,or Pt metal adatoms and graphene,while a vacancy defect leads to the strong chemisorption of metal adatoms on graphene.Based on electronic structural analysis,N-doping strengthens the covalent bond between Au or Pt and carbon atoms,while B-doping leads to the formation of a chemical bond between Au or Ag and B. The vacancy defect acts as an anchoring site for metal adatoms and increases the bonding between metal adatoms and carbon atoms.Therefore,three types of point defect can effectively enhance the interaction between noble metal adatoms and graphene in the sequence:vacancy defect>>B-doping>N-doping.

    Density functional theory;Graphene;Au;Pt;Ag

    10.3866/PKU.WHXB201111021www.whxb.pku.edu.cn

    *Corresponding authors.WANG Jian-Guo,Email:jgw@zjut.edu.cn.ZHUANG Gui-Lin,Email:glzhuang@zjut.edu.cn;Tel:+86-571-88871037. The project was supported by the National Natural Science Foundation of China(20906081).

    國家自然科學(xué)基金(20906081)資助項(xiàng)目

    O641

    猜你喜歡
    點(diǎn)缺陷空位物理化學(xué)
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進(jìn)的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    金紅石型TiO2中四種點(diǎn)缺陷態(tài)研究
    Fe-Cr-Ni合金中點(diǎn)缺陷形成及相互作用的第一性原理研究
    GaN中質(zhì)子輻照損傷的分子動力學(xué)模擬研究
    Zn空位缺陷長余輝發(fā)光材料Zn1-δAl2O4-δ的研究
    Chemical Concepts from Density Functional Theory
    空位
    讀者欣賞(2014年6期)2014-07-03 03:00:48
    說者無心,聽者有意——片談?wù)Z言交際中的空位對舉
    語文知識(2014年2期)2014-02-28 21:59:21
    Origin of the cis-Effect:a Density Functional Theory Study of Doubly Substituted Ethylenes
    给我免费播放毛片高清在线观看| 国产成人影院久久av| 夜夜躁狠狠躁天天躁| 久久伊人香网站| 欧美成人一区二区免费高清观看 | 桃红色精品国产亚洲av| 国产成人精品无人区| 99久久精品国产亚洲精品| 欧美日韩中文字幕国产精品一区二区三区| 日本一区二区免费在线视频| 精品高清国产在线一区| 韩国av一区二区三区四区| 成人av一区二区三区在线看| 久热爱精品视频在线9| 国产真人三级小视频在线观看| 国产精品精品国产色婷婷| 国产真人三级小视频在线观看| 99国产综合亚洲精品| bbb黄色大片| 淫妇啪啪啪对白视频| 中文字幕最新亚洲高清| 全区人妻精品视频| 五月玫瑰六月丁香| 国产熟女午夜一区二区三区| 欧美一级a爱片免费观看看 | 女人被狂操c到高潮| 国产成人精品久久二区二区免费| av中文乱码字幕在线| 欧美一区二区国产精品久久精品 | 精品不卡国产一区二区三区| 99热只有精品国产| 在线观看免费日韩欧美大片| 欧美一级a爱片免费观看看 | 制服丝袜大香蕉在线| 99久久国产精品久久久| 欧美乱码精品一区二区三区| 一级a爱片免费观看的视频| 欧美性猛交╳xxx乱大交人| 午夜激情福利司机影院| 一级毛片精品| 男人舔奶头视频| 国产一区二区激情短视频| 1024手机看黄色片| 成人精品一区二区免费| 亚洲乱码一区二区免费版| 国产午夜精品久久久久久| 1024手机看黄色片| 成人精品一区二区免费| 国产三级在线视频| 少妇裸体淫交视频免费看高清 | 国产精品综合久久久久久久免费| 久久久久久大精品| 精品无人区乱码1区二区| 国产成人精品久久二区二区免费| 天天躁狠狠躁夜夜躁狠狠躁| 欧美在线一区亚洲| 级片在线观看| 不卡一级毛片| 午夜福利免费观看在线| 又爽又黄无遮挡网站| 又黄又粗又硬又大视频| 精品久久久久久,| 制服丝袜大香蕉在线| 国产单亲对白刺激| av免费在线观看网站| 亚洲片人在线观看| 久久久久九九精品影院| 可以在线观看毛片的网站| 国产高清视频在线播放一区| av有码第一页| 又爽又黄无遮挡网站| 熟妇人妻久久中文字幕3abv| 亚洲片人在线观看| 午夜精品在线福利| 怎么达到女性高潮| 亚洲真实伦在线观看| 嫩草影院精品99| 亚洲欧美激情综合另类| 成人高潮视频无遮挡免费网站| 少妇人妻一区二区三区视频| 欧美黑人巨大hd| 午夜成年电影在线免费观看| 亚洲熟女毛片儿| 欧美黄色片欧美黄色片| 无人区码免费观看不卡| 国产精品亚洲美女久久久| 女人高潮潮喷娇喘18禁视频| 国产成人精品无人区| √禁漫天堂资源中文www| 一二三四在线观看免费中文在| 欧美av亚洲av综合av国产av| cao死你这个sao货| 中文在线观看免费www的网站 | 免费在线观看成人毛片| 欧美日本视频| 久久这里只有精品中国| 日本免费a在线| 欧美成人免费av一区二区三区| 韩国av一区二区三区四区| 国产亚洲精品第一综合不卡| 亚洲aⅴ乱码一区二区在线播放 | 久久中文字幕一级| 精品日产1卡2卡| 国产午夜精品论理片| 妹子高潮喷水视频| 色综合亚洲欧美另类图片| 人成视频在线观看免费观看| 久久九九热精品免费| 欧洲精品卡2卡3卡4卡5卡区| 久久婷婷成人综合色麻豆| 亚洲精品粉嫩美女一区| 亚洲人成伊人成综合网2020| 欧美不卡视频在线免费观看 | 国产激情偷乱视频一区二区| www.自偷自拍.com| 日韩av在线大香蕉| 亚洲欧洲精品一区二区精品久久久| 一边摸一边做爽爽视频免费| 久久久久久国产a免费观看| 日本撒尿小便嘘嘘汇集6| 老司机深夜福利视频在线观看| 免费看a级黄色片| 日韩欧美免费精品| 高清在线国产一区| 18禁观看日本| 大型av网站在线播放| 国产片内射在线| 亚洲精品中文字幕在线视频| 欧美日韩乱码在线| 制服人妻中文乱码| 午夜视频精品福利| 少妇裸体淫交视频免费看高清 | 亚洲欧美日韩无卡精品| www.www免费av| 夜夜躁狠狠躁天天躁| 又粗又爽又猛毛片免费看| 俄罗斯特黄特色一大片| 亚洲第一电影网av| 国产三级中文精品| 日本 欧美在线| 黑人欧美特级aaaaaa片| 国产精品久久久久久亚洲av鲁大| 最近最新免费中文字幕在线| 国产99久久九九免费精品| 国产av在哪里看| 亚洲av熟女| 亚洲avbb在线观看| 国产高清视频在线播放一区| 人成视频在线观看免费观看| 国产1区2区3区精品| av天堂在线播放| 亚洲一码二码三码区别大吗| 精品国内亚洲2022精品成人| 午夜福利欧美成人| 成人av在线播放网站| 欧美日韩国产亚洲二区| 美女黄网站色视频| 免费看日本二区| 变态另类成人亚洲欧美熟女| a级毛片a级免费在线| 成人亚洲精品av一区二区| 亚洲 欧美 日韩 在线 免费| 日本免费a在线| 伦理电影免费视频| 亚洲美女黄片视频| 国产成人影院久久av| 国产av麻豆久久久久久久| 亚洲乱码一区二区免费版| 午夜福利在线观看吧| 日韩大尺度精品在线看网址| 97人妻精品一区二区三区麻豆| 精品久久久久久久末码| 亚洲午夜理论影院| 久久婷婷成人综合色麻豆| 亚洲狠狠婷婷综合久久图片| 最近最新中文字幕大全电影3| 亚洲成人久久性| 极品教师在线免费播放| 成人18禁高潮啪啪吃奶动态图| 久久婷婷成人综合色麻豆| 俄罗斯特黄特色一大片| 精品国产乱子伦一区二区三区| 免费看a级黄色片| 久久天躁狠狠躁夜夜2o2o| 一级毛片女人18水好多| 久久亚洲精品不卡| 一进一出抽搐动态| 久久香蕉精品热| 欧美日韩中文字幕国产精品一区二区三区| 精品久久久久久久久久久久久| 老汉色∧v一级毛片| 国产精品爽爽va在线观看网站| 欧美中文综合在线视频| 动漫黄色视频在线观看| 香蕉丝袜av| 天堂影院成人在线观看| 最好的美女福利视频网| 一本一本综合久久| 午夜激情av网站| 19禁男女啪啪无遮挡网站| 中出人妻视频一区二区| 麻豆久久精品国产亚洲av| 最近视频中文字幕2019在线8| 午夜福利成人在线免费观看| 波多野结衣高清无吗| 啪啪无遮挡十八禁网站| 久久精品国产综合久久久| 草草在线视频免费看| 男人的好看免费观看在线视频 | 亚洲国产欧美一区二区综合| 欧美日本视频| 99在线人妻在线中文字幕| 欧美中文日本在线观看视频| 久久婷婷成人综合色麻豆| 久久精品国产亚洲av高清一级| 高潮久久久久久久久久久不卡| 午夜影院日韩av| 日韩高清综合在线| 成人高潮视频无遮挡免费网站| 长腿黑丝高跟| 在线播放国产精品三级| 村上凉子中文字幕在线| 亚洲精品久久国产高清桃花| 日本熟妇午夜| 嫩草影院精品99| 国产aⅴ精品一区二区三区波| 成人国产一区最新在线观看| 久久九九热精品免费| 两性午夜刺激爽爽歪歪视频在线观看 | 日本 av在线| 女警被强在线播放| 老司机在亚洲福利影院| 搡老妇女老女人老熟妇| 国产成人精品久久二区二区免费| 丰满人妻一区二区三区视频av | 亚洲精品中文字幕一二三四区| 亚洲人成网站高清观看| 18禁黄网站禁片免费观看直播| 好男人在线观看高清免费视频| 757午夜福利合集在线观看| 老汉色av国产亚洲站长工具| 国产人伦9x9x在线观看| 美女午夜性视频免费| 国产精品美女特级片免费视频播放器 | 亚洲 欧美 日韩 在线 免费| 一级片免费观看大全| 精品高清国产在线一区| 99在线人妻在线中文字幕| 精品久久久久久成人av| 久久欧美精品欧美久久欧美| 国产熟女午夜一区二区三区| 日本黄色视频三级网站网址| 老鸭窝网址在线观看| 男男h啪啪无遮挡| 久久99热这里只有精品18| 免费在线观看成人毛片| 妹子高潮喷水视频| 日韩高清综合在线| 亚洲最大成人中文| 最近视频中文字幕2019在线8| 九色国产91popny在线| 97人妻精品一区二区三区麻豆| 在线观看免费午夜福利视频| 久久国产精品影院| 亚洲一码二码三码区别大吗| 一本大道久久a久久精品| 十八禁网站免费在线| 亚洲人成伊人成综合网2020| 亚洲全国av大片| 国产成人影院久久av| www日本在线高清视频| 国产一区二区激情短视频| 欧美大码av| 中文字幕人成人乱码亚洲影| 99久久国产精品久久久| 午夜福利高清视频| 久久香蕉激情| 国产99白浆流出| 亚洲黑人精品在线| 亚洲中文日韩欧美视频| 琪琪午夜伦伦电影理论片6080| 午夜久久久久精精品| 在线视频色国产色| 在线看三级毛片| 妹子高潮喷水视频| 久久性视频一级片| 日本黄色视频三级网站网址| 丝袜人妻中文字幕| 亚洲欧美精品综合一区二区三区| 两个人视频免费观看高清| 中文字幕av在线有码专区| 国产精品一区二区三区四区久久| 制服人妻中文乱码| 国产精品一及| 亚洲国产中文字幕在线视频| 中文字幕人成人乱码亚洲影| 婷婷丁香在线五月| 啦啦啦免费观看视频1| 久久久精品国产亚洲av高清涩受| 999精品在线视频| 一边摸一边抽搐一进一小说| 国产精品1区2区在线观看.| 日韩欧美免费精品| 国产成人精品久久二区二区免费| 欧美日韩中文字幕国产精品一区二区三区| 国产av麻豆久久久久久久| 亚洲av美国av| 欧美久久黑人一区二区| 国产精品一及| 中文在线观看免费www的网站 | 日日爽夜夜爽网站| 久久精品影院6| 九色国产91popny在线| 久久精品国产亚洲av香蕉五月| 精品一区二区三区四区五区乱码| 97碰自拍视频| 国内精品久久久久久久电影| 神马国产精品三级电影在线观看 | 国产在线观看jvid| 又爽又黄无遮挡网站| 国产精品影院久久| 欧美色欧美亚洲另类二区| 男人舔女人的私密视频| 国产成人aa在线观看| 妹子高潮喷水视频| 高清毛片免费观看视频网站| 国产亚洲av高清不卡| 亚洲国产欧美一区二区综合| 欧美激情久久久久久爽电影| 午夜亚洲福利在线播放| 99国产精品一区二区三区| 黄色视频,在线免费观看| 一区二区三区国产精品乱码| 九九热线精品视视频播放| 亚洲 欧美一区二区三区| 亚洲av美国av| 人妻丰满熟妇av一区二区三区| 国产私拍福利视频在线观看| 观看免费一级毛片| 五月玫瑰六月丁香| 成人一区二区视频在线观看| 亚洲国产欧洲综合997久久,| 91九色精品人成在线观看| 欧美一区二区国产精品久久精品 | 精品乱码久久久久久99久播| 最近最新中文字幕大全电影3| 免费av毛片视频| 日韩欧美在线二视频| 男人舔女人下体高潮全视频| 亚洲国产中文字幕在线视频| 国产蜜桃级精品一区二区三区| 法律面前人人平等表现在哪些方面| 啦啦啦免费观看视频1| 可以免费在线观看a视频的电影网站| 国产亚洲精品第一综合不卡| 成年女人毛片免费观看观看9| 久久久国产欧美日韩av| 亚洲免费av在线视频| 人人妻人人澡欧美一区二区| 欧美中文日本在线观看视频| 日韩 欧美 亚洲 中文字幕| 老司机午夜福利在线观看视频| 国产av在哪里看| aaaaa片日本免费| 亚洲 国产 在线| 无人区码免费观看不卡| 国产野战对白在线观看| 久久久国产成人精品二区| 亚洲美女黄片视频| 色综合欧美亚洲国产小说| 午夜影院日韩av| 首页视频小说图片口味搜索| 五月伊人婷婷丁香| 法律面前人人平等表现在哪些方面| 国产主播在线观看一区二区| 欧美大码av| 国产91精品成人一区二区三区| 天堂影院成人在线观看| 天堂动漫精品| 波多野结衣巨乳人妻| 欧美性猛交黑人性爽| 精品高清国产在线一区| 国内毛片毛片毛片毛片毛片| 超碰成人久久| 亚洲精华国产精华精| 久热爱精品视频在线9| www.www免费av| 成人特级黄色片久久久久久久| 久久久久九九精品影院| 亚洲成人久久性| 欧美日韩福利视频一区二区| 国产精品影院久久| 中出人妻视频一区二区| 国产蜜桃级精品一区二区三区| 精品久久久久久久久久久久久| 91麻豆精品激情在线观看国产| 91大片在线观看| 五月玫瑰六月丁香| 成人精品一区二区免费| 国产亚洲精品久久久久5区| 老司机深夜福利视频在线观看| 亚洲精品中文字幕一二三四区| 国产精品一区二区三区四区免费观看 | 国产主播在线观看一区二区| 最新美女视频免费是黄的| 少妇被粗大的猛进出69影院| 午夜精品一区二区三区免费看| 19禁男女啪啪无遮挡网站| 成人精品一区二区免费| 国产亚洲精品久久久久5区| 757午夜福利合集在线观看| 夜夜爽天天搞| 国产99白浆流出| 日韩有码中文字幕| 日韩欧美精品v在线| 色综合欧美亚洲国产小说| 国产精品av视频在线免费观看| 久久久久国产精品人妻aⅴ院| 哪里可以看免费的av片| 看黄色毛片网站| 亚洲性夜色夜夜综合| 韩国av一区二区三区四区| 一夜夜www| 国产精品一区二区三区四区免费观看 | 婷婷六月久久综合丁香| 中文字幕最新亚洲高清| 国产黄a三级三级三级人| 精品高清国产在线一区| 亚洲七黄色美女视频| 亚洲欧美精品综合一区二区三区| tocl精华| 久久久久亚洲av毛片大全| www国产在线视频色| 国产精品香港三级国产av潘金莲| 精品第一国产精品| 久久久久久久午夜电影| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av成人一区二区三| 狠狠狠狠99中文字幕| 国产精品1区2区在线观看.| 久久性视频一级片| 国产精品久久久久久亚洲av鲁大| 老司机福利观看| 色噜噜av男人的天堂激情| 国产高清videossex| 十八禁网站免费在线| 久久久久久久久中文| 久久中文字幕人妻熟女| 亚洲av五月六月丁香网| 精品欧美国产一区二区三| 18禁观看日本| 久久精品国产99精品国产亚洲性色| 国内揄拍国产精品人妻在线| 黑人欧美特级aaaaaa片| 国产一区二区三区在线臀色熟女| 在线十欧美十亚洲十日本专区| 中国美女看黄片| 少妇粗大呻吟视频| 可以免费在线观看a视频的电影网站| 两个人免费观看高清视频| 久久人妻av系列| 国产一区二区激情短视频| 久久精品亚洲精品国产色婷小说| 欧美黑人巨大hd| 三级国产精品欧美在线观看 | 国产精品久久久av美女十八| www.熟女人妻精品国产| 国产av不卡久久| 亚洲成av人片在线播放无| 亚洲一码二码三码区别大吗| 国产一级毛片七仙女欲春2| 非洲黑人性xxxx精品又粗又长| 日韩欧美国产一区二区入口| 成人18禁高潮啪啪吃奶动态图| 亚洲国产欧美人成| 岛国在线观看网站| 成年人黄色毛片网站| 国产精品影院久久| 久久伊人香网站| 99在线人妻在线中文字幕| 成人永久免费在线观看视频| 久久人人精品亚洲av| 中出人妻视频一区二区| 亚洲男人天堂网一区| 亚洲av成人一区二区三| 亚洲精品久久成人aⅴ小说| 91大片在线观看| 国产三级黄色录像| 天天一区二区日本电影三级| 国产亚洲欧美在线一区二区| 在线十欧美十亚洲十日本专区| 十八禁人妻一区二区| 男人舔女人的私密视频| 成熟少妇高潮喷水视频| www.999成人在线观看| 高潮久久久久久久久久久不卡| 黄色视频,在线免费观看| 国语自产精品视频在线第100页| 香蕉国产在线看| 国产三级在线视频| 亚洲国产中文字幕在线视频| 九色成人免费人妻av| 熟妇人妻久久中文字幕3abv| 桃红色精品国产亚洲av| 又粗又爽又猛毛片免费看| 国产成人欧美在线观看| 日韩欧美一区二区三区在线观看| 可以在线观看毛片的网站| 18禁美女被吸乳视频| 午夜两性在线视频| 日本撒尿小便嘘嘘汇集6| 久久婷婷人人爽人人干人人爱| 怎么达到女性高潮| 狠狠狠狠99中文字幕| 妹子高潮喷水视频| 少妇的丰满在线观看| 宅男免费午夜| 欧美日本视频| 俺也久久电影网| 神马国产精品三级电影在线观看 | 日韩免费av在线播放| 精品日产1卡2卡| 国产精品,欧美在线| 91在线观看av| 一本久久中文字幕| 2021天堂中文幕一二区在线观| 午夜成年电影在线免费观看| 色综合站精品国产| 国产黄片美女视频| 午夜老司机福利片| 国产一区在线观看成人免费| 人妻丰满熟妇av一区二区三区| 国产伦人伦偷精品视频| 动漫黄色视频在线观看| 狂野欧美激情性xxxx| 88av欧美| 欧美精品啪啪一区二区三区| 香蕉国产在线看| 国产精品久久久av美女十八| 啦啦啦观看免费观看视频高清| 性色av乱码一区二区三区2| 日本黄色视频三级网站网址| 欧美3d第一页| 深夜精品福利| 亚洲欧美日韩东京热| 国产精华一区二区三区| 国产精品久久久av美女十八| 免费观看精品视频网站| 国产成人精品久久二区二区91| 欧美日韩黄片免| 91麻豆av在线| 久久精品影院6| 亚洲一区中文字幕在线| 操出白浆在线播放| 国产蜜桃级精品一区二区三区| 亚洲国产欧美网| 老鸭窝网址在线观看| 亚洲av成人不卡在线观看播放网| 高清在线国产一区| 久久中文字幕人妻熟女| 国产午夜福利久久久久久| 久久草成人影院| 亚洲精品美女久久av网站| 少妇熟女aⅴ在线视频| 一本一本综合久久| 国产不卡一卡二| 一级毛片精品| 1024视频免费在线观看| 村上凉子中文字幕在线| 人妻丰满熟妇av一区二区三区| 大型av网站在线播放| 男人舔女人的私密视频| 国产人伦9x9x在线观看| 91av网站免费观看| 身体一侧抽搐| 国产成人啪精品午夜网站| 亚洲av电影在线进入| 精品少妇一区二区三区视频日本电影| 大型av网站在线播放| 日本免费一区二区三区高清不卡| 亚洲欧美精品综合久久99| 国产欧美日韩精品亚洲av| 成年版毛片免费区| 老司机午夜十八禁免费视频| 久久精品国产清高在天天线| 国产免费男女视频| 99精品久久久久人妻精品| 国产高清激情床上av| 韩国av一区二区三区四区| 亚洲成av人片免费观看| 亚洲国产看品久久| 亚洲中文日韩欧美视频| 亚洲五月婷婷丁香| 美女午夜性视频免费| 精品高清国产在线一区| 在线观看免费日韩欧美大片| 日韩 欧美 亚洲 中文字幕| 看片在线看免费视频| 人成视频在线观看免费观看| 99国产极品粉嫩在线观看| 男女那种视频在线观看| 国产成人精品久久二区二区91| 97碰自拍视频| 99热这里只有是精品50| 99国产精品一区二区蜜桃av| 91字幕亚洲| 国内久久婷婷六月综合欲色啪| 久久中文字幕人妻熟女| 免费在线观看影片大全网站| 国产精品久久电影中文字幕| 琪琪午夜伦伦电影理论片6080| 全区人妻精品视频| 色av中文字幕| 国产精品精品国产色婷婷| 国产乱人伦免费视频|