• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    凝膠燃燒法合成Li1.07Mn1.93O4納米片及其高倍率放電和循環(huán)穩(wěn)定性

    2012-12-21 06:33:04代克化翟玉春
    物理化學(xué)學(xué)報(bào) 2012年2期
    關(guān)鍵詞:高倍率倍率凝膠

    毛 景 代克化 翟玉春

    (東北大學(xué)材料與冶金學(xué)院,沈陽110004)

    凝膠燃燒法合成Li1.07Mn1.93O4納米片及其高倍率放電和循環(huán)穩(wěn)定性

    毛 景 代克化*翟玉春*

    (東北大學(xué)材料與冶金學(xué)院,沈陽110004)

    利用聚乙烯吡咯烷酮(PVP)作為聚合物配位劑和燃料,通過凝膠-燃燒法合成了Li1.07Mn1.93O4納米片.采用熱重/差熱分析(TG/DTA)研究了凝膠的燃燒過程.采用X射線多晶衍射(XRD)分析了材料的結(jié)構(gòu),結(jié)果表明合成的Li1.07Mn1.93O4結(jié)晶完整,無雜質(zhì)相.掃描電鏡(SEM)結(jié)果顯示材料的二次形貌為厚度約100 nm的片狀,由大小約100 nm的一次顆粒構(gòu)成.充放電測(cè)試表明Li1.07Mn1.93O4納米片具備極佳的倍率放電性能和優(yōu)秀的循環(huán)性能.0.5C(1C=120 mA·g-1)倍率的初始放電容量為115.4 mAh·g-1,即使倍率增大到40C,放電容量仍有105.3 mAh·g-1.在10C倍率的放電條件下,循環(huán)850次容量保持率為81%.電化學(xué)阻抗譜(EIS)測(cè)試表明Li1.07Mn1.93O4納米片的界面電荷轉(zhuǎn)移電阻(Rct)遠(yuǎn)小于同類商業(yè)材料.

    鋰離子電池;錳酸鋰;燃燒合成;倍率性能;循環(huán)性能

    1 Introduction

    The rapid development of electric vehicles requires advanced lithium ion batteries with higher power density and longer cycling life.Spinel LiMn2O4is at present a very prospective candidate for the cathode material due to its low cost, good safety,environmental friendliness,and relatively high voltage.1Enhancing the rate capability and cycling stability of LiMn2O4has recently become one of the most attractive topics of both scientific and industrial interests.2-12

    Nanosized particles provide short diffusion pathways for both Li-ions and electrons,resulting in an improvement in Li-ion intercalation kinetics,which should allow for a higher charge-discharge rate and minimize the structural distortion at the surface of the cathode grains.13-15Recently,nanostructured LiMn2O4with various morphologies has been extensively prepared trying to improve the rate capability.A variety of synthetic routes have been chosen such as ball milling,16,17room-temperature solid-state coordination process,18,19sol-gel,20,21flame spray pyrolysis,22,23hard-template route,24-26electrochemical precipitation,27self-assembly process,28biomimetic synthetic process,29and hydrothermal method.3,8,12,30-32However,most of these methods involve several steps and some are quite complicated or expensive.

    Combustion method has been known as a simple,fast,and energetically economic method that yields high purity products.33Urea,34triethanolamine(TEA)-starch,35starch,36hexamethylenetetramine(HMTA),33polyacrylic acid(PAA),37polyvinylalcohol(PVA),38citric acid/glycol,39and glycine40have been chosen as fuels to synthesize LiMn2O4with high capacity, but the rate capability was not reported or was poor.Rojo et al.41,42reported a sucrose-aided combustion method and synthesized doubly doped LiMn1.99-yLiyM0.01O4(M=Al3+,Ni2+,Cr3+,Co3+; y=0.01,0.06)spinels.Among them the LiMn1.93Li0.06Co0.01O4can deliver 105 and 101 mAh·g-1at 0.2C and 5C rates between 3.1 and 4.4 V,respectively.

    The choice of fuel has a significant impact on structure,morphology,and performance of the synthesized materials.In this study,Li1.07Mn1.93O4(nLi/nMn=0.55,molar ratio)nanoflakes were synthesized by a gel-combustion method using polyvinylpyrrolidone(PVP)as the polymer chelating agent and fuel.PVP was employed due to its low toxicity and high aqueous solubility.It has been extensively used as a stabilizer and a structure-directing agent in nanotechnology because of its excellent adsorption ability.43,44Fu et al.44prepared PVP/LiCoO2nanofibers using an electrospinning route.Kanamura et al.45-48prepared Li4Ti5O12,LiCoO2,and LiMn2O4thin films by introducing PVP to a sol. The authors have synthesized sub-micron LiNi0.5Mn1.5O4with excellent high rate performance by the PVP-assisted gel-combustion method.49It is naturally guessed that PVP also can be used to prepare lithium manganese oxide nano-powders with high electrochemical performance.The molar ratio of Li/Mn(0.55)was chosen because Li doping has been proved to be a simplest but effective strategy to enhance the intrinsic structure stability during Li-ion insertion and extraction from the spinel framework.50,51

    2 Experimental

    Synthesis of Li1.07Mn1.93O4nanoflakes was carried out by dissolving PVP(AR),LiCH3COO·2H2O(AR),and Mn(CH3COO)2· 4H2O(AR)in deionized water with a Li/Mn molar ratio of 0.55.The molar ratio of PVP to total metal ions was fixed at 2.0.HNO3(AR)was added to the solution until the pH value of 3 was achieved.The mixture was stirred and heated at 90°C until viscous,and then the gel was dried at 110°C for 2 h.The resulting dried gel was heated in air on an electric hot plate to ignite a combustion reaction in several minutes.The obtained black powders were heated at 400°C for 3 h then calcinated at 700°C for 6 h to obtain well crystallized Li1.07Mn1.93O4.Finally, Li1.07Mn1.93O4was ground and passed through 300-mesh sieve.

    Simultaneous thermogravimetric and differential thermal analyses(TG/DTA)measurements of the dried gel were carried out in America TA Instrument SDT 2960 Simultaneous DTA-TGA.Crucibles of alumina were used both for the specimen and for the reference material.The samples(about 10 mg) were heated from room temperature to 700°C in flowing air, with a heating rate of 10°C·min-1.

    Powder X-ray diffraction measurement was performed on a Japan Rigaku D/Max-2500PC X-ray diffractometer using Cu Kαradiation.Morphological study was conducted using a FEI Nova NanoSEM 430 scanning electron microscope(SEM,Europe).To determine the chemical composition,Li and Mn concentrations in the lithium manganese oxide were measured by inductively coupled plasma(ICP,Optima 4300DV,PE Ltd.).

    The electrochemical performance of the Li1.07Mn1.93O4nanoflakes as cathode was evaluated using a CR2025 coin cell with a lithium metal anode.The cathode was a mixture of active material/acetylene black/polyvinylidene fluoride(PVDF)with mass ratio of 80:10:10.The average loading density of active material was about 5 mg·cm-2.Celgard 2400 was used as separator and the electrolyte was 1 mol·dm-3LiPF6in a 1:1:1(volume ratio)mixture of ethylene carbonate(EC),dimethyl carbonate(DMC),and ethyl methyl carbonate(EMC).The cells were assembled in an argon filled glovebox.For comparison,a commercial material(produced by CITIC GUOAN Mengguli) with the same chemical composition was chosen and assembled similarly.Charge and discharge tests were performed at various current densities between 3.3 and 4.3 V by a LAND CT2001A battery test system at ambient temperature.Electrochemical impedance spectroscopy(EIS)studies were performed on the coin cell by a Princeton Applied Research PARSTAT2273 electrochemical measurement system.The cells were charged to 3.9 V and balanced for 12 h before EIS tests. The frequency ranged from 100 kHz to 0.1 Hz and the acoscillation amplitude was 10 mV.

    3 Results and discussion

    The pyrolysis process of the dried gel precursor was investigated by TG and DTA(Fig.1).The mass loss below 160°C can be ascribed to the evaporation of residual water.The small exothermic peak between 200 and 250°C can probably be explained by pyrolysis of acetates,and the broad exothermic peak between 250 and 350°C can probably be associated with pyrolysis of PVP.The precursor bloated and charred with giving out brown smoke along with the pyrolysis of PVP and then the polymer precursor automatically ignited and burned violently.This combustion reaction corresponds to the strong exothermic peak at about 400°C in the DTA curve and distinct mass loss in the TG curve.Because the metal ions had been mixed evenly at atomic level by chelating of PVP,the metal precursor formed basic spinel phase in situ during the combustion reaction.The combustion reaction was accompanied by violent gas evolution and the volume of the mixture bloomed up quickly.It means that the newly formed particles are compacted loosely which can prevent the particle growth in the subsequent heat treatment.No obvious mass loss is found after the combustion peak.However,for more gel precursor the remains of the combustion still needed to be calcinated at 400°C for 3 h for complete removal of the organic residue.Heat treating at 700°C is needed to improve the crystallinity and the electrochemical property of the as-prepared nanoparticles.

    Fig.1 TG and DTAcurves of the dried gel precursors

    The prepared and commercial lithium manganese oxides were analyzed by ICP and both identified as Li1.07Mn1.93O4(nLi/ nMn=0.55).

    Fig.2 shows XRD patterns of the samples at different stages. It can be seen from Fig.2a that a spinel phase is formed by the combustion reaction of the gel precursor even in a very short period of time,though some impurities such as Mn3O4phase also exist.Fig.2b shows that very little impurities exist after calcination at 400°C for 3 h but the diffraction lines are still broad indicating a low crystallinity.After heat treatment at 700°C,the impurities completely disappear and the peaks become sharp indicating a higher crystallinity(Fig.2c).XRD analysis of the sample definitely indicates its spinel structure and the crystal structure is indexed to a cubic system with a lattice parameter a of 0.8227(2)nm,and then is defined to the space group Fd3m.

    Fig.2 XRD patterns of the precursor and samples(a)burned precursor;(b)sample after calcination at 400°C; (c)sample after calcination at 700°C

    Figs.3a and 3b show the SEM images of the as-prepared Li1.07Mn1.93O4with different magnifications.Under lower magnification,Fig.3a shows that most of the secondary particles are nanoflakes with several micrometers in size,about 100 nm in thickness and piled up loosely.Under higher magnification (Fig.3b),it can be seen that the nanoflakes consist of uniform nanocrystallites with a size of 100 nm or so.The unique thin flake-like morphology is different from those obtained via other methods.This may be related to good film-forming property of PVP.It may favor electrolyte penetration,thereby enabling better wetting of spinel cathode and faster Li-ion transfer at the interface.At the same time the nanosize of the primary crystallite makes the Li-ion and electron dissociating pathway inside the crystal shorter and then the cathode can behave better under high current densities.While the SEM images of the commercial Li1.07Mn1.93O4(Figs.3c&3d)demonstrate its secondary particle size of about 10 μm,and its primary particle size is about 300-500 nm,much bigger than that of the as prepared Li1.07Mn1.93O4.The subsequent electrochemical tests show that the Li1.07Mn1.93O4nanoflakes have excellent rate capability, which is much better than that of the commercial one.

    Fig.3 SEM images of Li1.07Mn1.93O4(a,b)the nano-Li1.07Mn1.93O4;(c,d)the commercial Li1.07Mn1.93O4

    The high rate capability of the Li1.07Mn1.93O4nanoflakes is presented in Fig.4 and Fig.5.Fig.4 shows the discharge curves of the Li1.07Mn1.93O4nanoflakes recorded at different discharge rates.The rate capability measurements were investigated by discharging from 0.5C to 40C.Charging was done at 1C for all the discharge rates except when discharging was done at 0.5C. In this case,charging was conducted at 0.5C.At 0.5C,4C, 10C,20C,and 40C,the discharge capacity was 115.4,115.3, 114.4,111.9,and 105.3 mAh·g?1,respectively.Moreover,the discharge profiles at high rates of 10C,20C,and 40C still have a relative flat discharge plateau.The maintained relative flat plateau in the high rate of 40C can sustain a constant output voltage.3

    Fig.4 Discharge profiles of the nano-Li1.07Mn1.93O4at different rates between 3.3 and 4.3 V1C=120 mA·g-1

    Fig.5 compares the rate capability of the Li1.07Mn1.93O4nanoflakes and the commercial Li1.07Mn1.93O4.The capacities of the Li1.07Mn1.93O4nanoflakes remain 99.9%at a discharge rate of 4C,99.1%at 10C,97.0%at 20C,and 91.2%at 40C,and those of the commercial Li1.07Mn1.93O4only remain 96.4%at discharge rate of 4C,92.0%at 10C,86.6%at 20C,and 74.9%at 40C,although the electrodes have approximate mass.The results indicate that the excellent rate capability of the as-prepared Li1.07Mn1.93O4nanoflakes is caused by the very small particle size but not by the thin electrode.

    Fig.6 Electrochemical impedance spectra of the nano-Li1.07Mn1.93O4(a)and the commercial Li1.07Mn1.93O4(b) Rs:ohmic resistance;Rct:charge-transfer resistance;CPE:constant phase-angleelement;ZW:Warburg impedance;Cint:insertion capacitance

    Fig.7 Cyclic performance of the nano-Li1.07Mn1.93O4at a high discharge rate of 10C

    The electrochemical impedance spectra(EIS)of the nano-Li1.07Mn1.93O4/Li cell and commercial Li1.07Mn1.93O4/Li cell after 3 cycles at 3.9 V are shown in Fig.6.The Nyquist plots of two samples in Fig.6 show a semicircle followed by a sloping line at low frequencies and they were fitted with the equivalent circuit depicted in the inset of Fig.6.The result of fitting indicates that the Rctof Li1.07Mn1.93O4nanoflakes is 9.7 Ω,which is much less than that of commercial Li1.07Mn1.93O4(60.5 Ω).This means that the lithium insertion/extraction could be easily conducted in the nanoparticles.This result agrees well with the good rate capability of the Li1.07Mn1.93O4nanoflakes as demonstrated above.

    The Li1.07Mn1.93O4nanoflakes has been cycled at a high discharge rate of 10C(charged at 5C rate)for 850 cycles to investigate whether the good rate capability can be retained on prolonged cycling.The result in Fig.7 shows an initial capacity of 107.9 mAh·g-1and the capacity retention is 81%after 850 cycles.It is speculated that the good cycling performance may be originated from the well-crystallized nanoscale cathode active particles which minimize structural distortion at the surface of the cathode.

    4 Conclusions

    Li1.07Mn1.93O4nanoflakes were synthesized by the novel gelcombustion method using PVP as the polymer chelating agent and fuel.TG and DTA results clarified the quick combustion process of the gel.XRD analysis indicated the as-prepared Li1.07Mn1.93O4was pure phase and highly crystallized.SEM images displayed that most of the secondary particles were nanoflakes with thickness of about 100 nm and the primary particle size was about 100 nm.Electrochemical tests showed that the Li1.07Mn1.93O4nanoflakes behaved an excellent rate capability and cycling performance as a cathode material for lithium ion batteries.The discharge capacities at 0.5C and 40C were 115.4 and 105.3 mAh·g-1,respectively.It maintained 81%of its initial capacity after 850 cycles when cycling at 10C rate.EIS tests showed that the charge transfer resistance of the Li1.07Mn1.93O4nanoflakes was smaller than that of the commercial Li1.07Mn1.93O4. This excellent performance of the Li1.07Mn1.93O4nanoflake in this work can be attributed to the small particle size and high crystallinity prepared by the PVP-assisted combustion method.

    (1)Tarascon,J.M.;Armand,M.Nature 2001,414,359.

    (2) Du Pasquier,A.;Huang,C.C.;Spitler,T.Journal of Power Sources 2009,186,508.

    (3)Kudo,T.;Honma,I.;Matsuda,H.;Zhou,H.S.Nano Letters 2009,9,1045.

    (4) Lanz,M.;Kormann,C.;Steininger,H.;Heil,G.;Haas,O.; Novak,P.Journal of the Electrochemical Society 2000,147, 3997.

    (5) Lee,J.W.;Park,S.M.;Kim,H.J.Electrochemistry Communications 2009,11,1101.

    (6)Lee,K.S.;Myung,S.T.;Bang,H.;Amine,K.;Kim,D.W.; Sun,Y.K.Journal of Power Sources 2009,189,494.

    (7) Lim,S.;Cho,J.Electrochemistry Communications 2008,10, 1478.

    (8)Ma,S.B.;Nam,K.W.;Yoon,W.S.;Bak,S.M.;Yang,X.Q.; Cho,B.W.;Kim,K.B.Electrochemistry Communications 2009,11,1575.

    (9) Park,S.C.;Han,Y.S.;Kang,Y.S.;Lee,P.S.;Ahn,S.;Lee,H. M.;Lee,J.Y.Journal of the Electrochemical Society 2001,148, A680.

    (10)Park,S.C.;Kim,Y.M.;Kang,Y.M.;Kim,K.T.;Lee,P.S.; Lee,J.Y.Journal of Power Sources 2001,103,86.

    (11) Wang,X.Q.;Tanaike,O.;Kodama,M.;Hatori,H.Journal of Power Sources 2007,168,282.

    (12)Yue,H.;Huang,X.;Lv,D.;Yang,Y.Electrochimica Acta 2009, 54,5363.

    (13)Arico,A.S.;Bruce,P.;Scrosati,B.;Tarascon,J.M.;Van Schalkwijk,W.Nature Materials 2005,4,366.

    (14) Bruce,P.G.;Scrosati,B.;Tarascon,J.M.Angewandte Chemie-International Edition 2008,47,2930.

    (15) Chen,Z.Y.;Zhu,H.L.;Ji,S.;Linkov,V.;Zhang,J.L.;Zhu,W. Journal of Power Sources 2009,189,507.

    (16)Kamarulzaman,N.;Yusoff,R.;Kamarudin,N.;Shaari,N.H.; Aziz,N.A.A.;Bustam,M.A.;Blagojevic,N.;Elcombe,M.; Blackford,M.;Avdeev,M.;Arof,A.K.Journal of Power Sources 2009,188,274.

    (17)Ye,S.H.;Lv,J.Y.;Gao,X.P.;Wu,F.;Song,D.Y. Electrochimica Acta 2004,49,1623.

    (18) Caballero,A.;Cruz,M.;Hernán,L.;Melero,M.;Morales,J.; Castellón,E.R.Journal of Power Sources 2005,150,192.

    (19) Huang,Y.D.;Jiang,R.R.;Bao,S.J.;Dong,Z.F.;Cao,Y.L.; Jia,D.Z.;Guo,Z.P.Journal of Solid State Electrochemistry 2009,13,799.

    (20) Shaju,K.M.;Bruce,P.G.Chemistry of Materials 2008,20, 5557.

    (21) Vivekanandhan,S.;Venkateswarlu,M.;Satyanarayana,N. Journal of Alloys and Compounds 2007,441,284.

    (22) Patey,T.J.;Buchel,R.;Nakayama,M.;Novak,P.Physical Chemistry Chemical Physics 2009,11,3756.

    (23) Patey,T.J.;Buchel,R.;Ng,S.H.;Krumeich,F.;Pratsinis,S.E.; Novak,P.Journal of Power Sources 2009,189,149.

    (24) Cabana,J.;Valdes-Solis,T.;Palacin,M.R.;Oro-Sole,J.; Fuertes,A.;Marban,G.;Fuertes,A.B.Journal of Power Sources 2007,166,492.

    (25) Jiao,F.;Bao,J.L.;Hill,A.H.;Bruce,P.G.Angewandte Chemie-International Edition 2008,47,9711.

    (26)Luo,J.Y.;Wang,Y.G.;Xiong,H.M.;Xia,Y.Y.Chemistry of Materials 2007,19,4791.

    (27)Katakura,K.;Wada,K.;Kajiki,Y.;Yamamoto,A.;Ogumi,Z. Journal of Power Sources 2009,189,240.

    (28) Luo,J.Y.;Cheng,L.;Xia,Y.Y.Electrochemistry Communications 2007,9,1404.

    (29) Uchiyama,H.;Hosono,E.;Zhou,H.S.;Imai,H.Journal of Materials Chemistry 2009,19,4012.

    (30) Fang,H.S.;Li,L.P.;Yang,Y.;Yan,G.F.;Li,G.S.Journal of Power Sources 2008,184,494.

    (31) Jiang,C.H.;Dou,S.X.;Liu,H.K.;Ichihara,M.;Zhou,H.S. Journal of Power Sources 2007,172,410.

    (32) Kim,D.K.;Muralidharan,P.;Lee,H.W.;Ruffo,R.;Yang,Y.; Chan,C.K.;Peng,H.;Huggins,R.A.;Cui,Y.Nano Letters 2008,8,3948.

    (33) Fey,G.;Cho,Y.;Kumar,T.Materials Chemistry and Physics 2006,99,451.

    (34)Liu,Q.G.;Yang,W.S.;Zhang,G.;Xie,J.Y.;Yang,L.L. Journal of Power Sources 1999,81,412.

    (35)Fey,G.T.K.;Cho,Y.D.;Kumar,T.P.Materials Chemistry and Physics 2004,87,275.

    (36) Kalyani,P.;Kalaiselvi,N.;Muniyandi,N.Journal of Power Sources 2002,111,232.

    (37) Park,H.B.;Kim,J.;Lee,C.W.Journal of Power Sources 2001, 92,124.

    (38) Subramania,A.;Angayarkanni,N.;Vasudevan,T.Materials Chemistry and Physics 2007,102,19.

    (39)Wu,X.M.;Li,X.H.;Xiao,Z.B.;Liu,J.;Yan,W.B.;Ma,M.Y. Materials Chemistry and Physics 2004,84,182.

    (40) Zhang,Y.;Shin,H.C.;Dong,J.;Liu,M.Solid State Ionics 2004,171,25.

    (41)Amarilla,J.M.;Petrov,K.;Pico,F.;Avdeev,G.;Rojo,J.M.; Rojas,R.M.Journal of Power Sources 2009,191,591.

    (42) Kovacheva,D.;Gadjov,H.;Petrov,K.;Mandal,S.;Lazarraga, M.G.;Pascual,L.;Amarilla,J.M.;Rojas,R.M.;Herrero,P.; Rojo,J.M.Journal of Materials Chemistry 2002,12,1184.

    (43) Zhang,J.H.;Liu,J.B.;Wang,S.Z.;Zhan,P.;Wang,Z.L.; Ming,N.B.Adv.Funct.Mater.2004,14,1089.

    (44) Fu,Y.S.;Chen,L.J.;Liao,J.D.;Chuang,Y.J.;Hsu,K.C.; Chiang,Y.F.J.Appl.Polym.Sci.2011,121,154.

    (45) Kanamura,K.;Rho,Y.H.J.Electroanal.Chem.2003,559,69.

    (46) Kanamura,K.;Rho,Y.H.J.Solid State Chem.2004,177,2094.

    (47) Kanamura,K.;Rho,Y.H.Journal of Power Sources 2006,158, 1436.

    (48)Kanamura,K.;Rho,Y.H.;Umegaki,T.Chem.Lett.2001,1322.

    (49) Dai,K.H.;Mao,J.;Zhai,Y.C.Acta Phys.-Chim.Sin.2010,26, 2130.[代克化,毛 景,翟玉春.物理化學(xué)學(xué)報(bào),2010,26, 2130.]

    (50) Hirose,S.;Kodera,T.;Ogihara,T.Journal of Alloys and Compounds 2010,506,883.

    (51)Peng,Z.D.;Jiang,Q.L.;Du,K.;Wang,W.G.;Hu,G.R.;Liu, Y.X.Journal of Alloys and Compounds 2010,493,640.

    July 18,2011;Revised:November 24,2011;Published on Web:December 5,2011.

    High Rate Capability and Cycling Stability of Li1.07Mn1.93O4Nanoflakes Synthesized via Gel-Combustion Method

    MAO Jing DAI Ke-Hua*ZHAI Yu-Chun*
    (School of Materials and Metallurgy,Northeastern University,Shenyang 110004,P.R.China)

    Li1.07Mn1.93O4nanoflakes were synthesized by a gel-combustion method using polyvinylpyrrolidone(PVP)as the polymer chelating agent and fuel.Thermogravimetric and differential thermal analyses(TG/DTA)were used to investigate the combustion process of the gel precursor.X-ray diffraction(XRD)analysis indicated that the as-prepared Li1.07Mn1.93O4was a pure,highly crystalline phase. Scanning electron microscopy(SEM)results showed that most of the secondary particles were nanoflakes, about 100 nm in thickness,and the primary particle of the nanoflakes was about 100 nm in size.Charge and discharge tests suggested that the Li1.07Mn1.93O4nanoflakes had excellent rate capability and good cycling stability.The initial discharge capacity was 115.4 mAh·g-1at a rate of 0.5C(1C=120 mAh·g-1)and the capacity was maintained at 105.3 mAh·g-1at the high discharge rate of 40C.When cycling at 10C,the material retained 81%of its initial capacity after 850 cycles.Electrochemical impedance spectroscopy (EIS)tests indicated that the charge-transfer resistance(Rct)of the Li1.07Mn1.93O4nanoflakes was much less than that of commercial Li1.07Mn1.93O4.

    Lithium ion battery;Lithium manganese oxide;Combustion synthesis;Rate capability; Cycling stability

    10.3866/PKU.WHXB201112052

    *Corresponding authors.DAI Ke-Hua,Email:daikh@smm.neu.edu.cn;Tel/Fax:+86-24-83684943.ZHAI Yu-Chun,Email:zhaiyc@smm.neu.edu.cn

    O646

    猜你喜歡
    高倍率倍率凝膠
    大型桅桿起重機(jī)起升變倍率方法及其應(yīng)用
    纖維素氣凝膠的制備與應(yīng)用研究進(jìn)展
    三維多孔石墨烯在高倍率超級(jí)電容器中的應(yīng)用
    能源工程(2020年5期)2021-01-04 01:29:06
    超輕航天材料——?dú)饽z
    軍事文摘(2020年20期)2020-11-16 00:31:56
    保暖神器——?dú)饽z外套
    FANUC0iD系統(tǒng)速度倍率PMC控制方法
    “凍結(jié)的煙”——?dú)饽z
    論ZVR高倍率視頻壓縮存儲(chǔ)技術(shù)的先進(jìn)性與實(shí)用性
    一種智能加工系統(tǒng)中的機(jī)床倍率控制方法
    李賢能:銀隆鈦高倍率快充 解決新能源汽車之痛
    中亚洲国语对白在线视频| 人人妻人人澡欧美一区二区| 一级毛片女人18水好多| 亚洲人成电影免费在线| 国产精品爽爽va在线观看网站| 黄片小视频在线播放| 国产三级在线视频| 国产一级毛片七仙女欲春2| 精品国内亚洲2022精品成人| 国产av麻豆久久久久久久| 午夜福利视频1000在线观看| 热99re8久久精品国产| 午夜福利免费观看在线| 在线视频色国产色| 网址你懂的国产日韩在线| 欧美日韩瑟瑟在线播放| 欧美日本视频| 中出人妻视频一区二区| 国产单亲对白刺激| 成年女人毛片免费观看观看9| 亚洲人与动物交配视频| 午夜老司机福利剧场| 欧美xxxx黑人xx丫x性爽| 久久久久久久精品吃奶| 叶爱在线成人免费视频播放| 国产精品香港三级国产av潘金莲| 日韩成人在线观看一区二区三区| 成人国产一区最新在线观看| 久久精品亚洲精品国产色婷小说| 欧美+日韩+精品| 精品福利观看| 女同久久另类99精品国产91| 黄色日韩在线| 九九在线视频观看精品| av福利片在线观看| 熟女电影av网| 悠悠久久av| 一进一出抽搐gif免费好疼| 国产精品一区二区三区四区免费观看 | 国产高清有码在线观看视频| 一个人免费在线观看的高清视频| 国产精品精品国产色婷婷| 狠狠狠狠99中文字幕| 日本成人三级电影网站| 天堂av国产一区二区熟女人妻| 亚洲成av人片在线播放无| 老司机午夜福利在线观看视频| 久久婷婷人人爽人人干人人爱| 成人国产综合亚洲| 国产中年淑女户外野战色| 精品福利观看| 91九色精品人成在线观看| 国产高清videossex| 看免费av毛片| 99久久99久久久精品蜜桃| 国产精品99久久久久久久久| 9191精品国产免费久久| 日本成人三级电影网站| 悠悠久久av| 亚洲乱码一区二区免费版| 精品人妻1区二区| 国产男靠女视频免费网站| 99国产极品粉嫩在线观看| 日本五十路高清| 午夜影院日韩av| 婷婷精品国产亚洲av在线| 成人三级黄色视频| 男女下面进入的视频免费午夜| 国产蜜桃级精品一区二区三区| 亚洲国产欧洲综合997久久,| 岛国视频午夜一区免费看| 久久久久久久午夜电影| 麻豆成人av在线观看| 在线a可以看的网站| 一个人看视频在线观看www免费 | 露出奶头的视频| 香蕉丝袜av| 亚洲欧美一区二区三区黑人| 久久天躁狠狠躁夜夜2o2o| 午夜福利视频1000在线观看| 中亚洲国语对白在线视频| 国产亚洲精品久久久com| 美女 人体艺术 gogo| 成人性生交大片免费视频hd| 狂野欧美白嫩少妇大欣赏| 成年免费大片在线观看| 老司机福利观看| 天堂影院成人在线观看| 日韩欧美国产在线观看| 中文在线观看免费www的网站| 欧美大码av| 免费人成在线观看视频色| 看黄色毛片网站| 亚洲国产欧美网| 亚洲色图av天堂| 网址你懂的国产日韩在线| www.www免费av| 香蕉丝袜av| 国产黄a三级三级三级人| 老司机午夜福利在线观看视频| 特大巨黑吊av在线直播| 午夜久久久久精精品| 怎么达到女性高潮| 国产精品99久久久久久久久| 亚洲精品一卡2卡三卡4卡5卡| 国产亚洲精品久久久久久毛片| 97碰自拍视频| 3wmmmm亚洲av在线观看| 国产一区二区在线观看日韩 | 国产精品影院久久| 97人妻精品一区二区三区麻豆| 国产精品香港三级国产av潘金莲| 精品国产美女av久久久久小说| 一二三四社区在线视频社区8| 国产91精品成人一区二区三区| 精品国产美女av久久久久小说| 日韩欧美精品v在线| 久久久久亚洲av毛片大全| 三级国产精品欧美在线观看| 亚洲精品在线观看二区| 18禁国产床啪视频网站| 俄罗斯特黄特色一大片| 国产欧美日韩一区二区精品| 国产aⅴ精品一区二区三区波| 欧美绝顶高潮抽搐喷水| 亚洲av二区三区四区| 99久久九九国产精品国产免费| 国产精品98久久久久久宅男小说| 精品国产亚洲在线| 此物有八面人人有两片| 国产真实伦视频高清在线观看 | 国产成人欧美在线观看| 日本三级黄在线观看| 国产探花在线观看一区二区| 国产伦在线观看视频一区| av福利片在线观看| 亚洲精品在线观看二区| 变态另类丝袜制服| 九九热线精品视视频播放| 性色avwww在线观看| 国产69精品久久久久777片| 特大巨黑吊av在线直播| 精品一区二区三区av网在线观看| 亚洲中文日韩欧美视频| 欧美精品啪啪一区二区三区| 亚洲 欧美 日韩 在线 免费| 亚洲精品在线观看二区| 日韩成人在线观看一区二区三区| 亚洲真实伦在线观看| 国产精品久久久人人做人人爽| 欧美性猛交黑人性爽| АⅤ资源中文在线天堂| 亚洲av电影在线进入| 亚洲国产精品成人综合色| 麻豆成人午夜福利视频| 国产成人欧美在线观看| 国产色爽女视频免费观看| 一本综合久久免费| 在线观看免费视频日本深夜| 日韩精品青青久久久久久| 精品国产三级普通话版| 国产亚洲欧美在线一区二区| 日日干狠狠操夜夜爽| 精品一区二区三区视频在线 | 国产精品1区2区在线观看.| 老熟妇仑乱视频hdxx| 国产午夜精品久久久久久一区二区三区 | 蜜桃亚洲精品一区二区三区| 国产综合懂色| 99久久精品热视频| 亚洲无线在线观看| 欧美成人a在线观看| 可以在线观看的亚洲视频| 日本在线视频免费播放| 欧美高清成人免费视频www| 岛国在线观看网站| 国产免费一级a男人的天堂| 91av网一区二区| 亚洲av美国av| 欧美一区二区亚洲| 给我免费播放毛片高清在线观看| 国产亚洲欧美98| 亚洲天堂国产精品一区在线| 国产伦一二天堂av在线观看| 成年女人看的毛片在线观看| 午夜福利18| 女生性感内裤真人,穿戴方法视频| 天美传媒精品一区二区| 一本一本综合久久| 精品日产1卡2卡| 日本三级黄在线观看| 9191精品国产免费久久| 全区人妻精品视频| 国产三级在线视频| 男女床上黄色一级片免费看| 久久久久久久精品吃奶| 男插女下体视频免费在线播放| 色av中文字幕| 天堂网av新在线| 在线观看午夜福利视频| 亚洲精品国产精品久久久不卡| 久久精品影院6| 国产一级毛片七仙女欲春2| 欧美又色又爽又黄视频| 久久精品夜夜夜夜夜久久蜜豆| 嫩草影院精品99| 国产精品久久久久久人妻精品电影| 熟女人妻精品中文字幕| 国产在视频线在精品| 久久久久国产精品人妻aⅴ院| 91久久精品电影网| 日本 av在线| 国产精品三级大全| 亚洲欧美日韩卡通动漫| 99热6这里只有精品| 亚洲人成网站高清观看| 久久精品国产亚洲av涩爱 | 久久中文看片网| 叶爱在线成人免费视频播放| 一本一本综合久久| 亚洲男人的天堂狠狠| 波多野结衣巨乳人妻| 亚洲精品在线美女| 少妇丰满av| 国产精品自产拍在线观看55亚洲| 51国产日韩欧美| 国产高清三级在线| 亚洲精品一卡2卡三卡4卡5卡| 午夜影院日韩av| 国产一区二区激情短视频| 国产精品久久视频播放| 欧美色欧美亚洲另类二区| 淫妇啪啪啪对白视频| 激情在线观看视频在线高清| 精品一区二区三区人妻视频| 一a级毛片在线观看| 亚洲狠狠婷婷综合久久图片| 精品欧美国产一区二区三| 熟女少妇亚洲综合色aaa.| 99久久精品一区二区三区| 婷婷精品国产亚洲av| 亚洲精品亚洲一区二区| 国产私拍福利视频在线观看| 欧美在线一区亚洲| 女警被强在线播放| 天堂影院成人在线观看| 国语自产精品视频在线第100页| 亚洲乱码一区二区免费版| 九色成人免费人妻av| 日韩亚洲欧美综合| 亚洲第一电影网av| 亚洲va日本ⅴa欧美va伊人久久| 亚洲真实伦在线观看| 长腿黑丝高跟| 午夜精品在线福利| 亚洲在线自拍视频| 国产极品精品免费视频能看的| eeuss影院久久| 亚洲狠狠婷婷综合久久图片| 很黄的视频免费| 中文字幕高清在线视频| 亚洲国产高清在线一区二区三| 精品国产三级普通话版| 欧美成人a在线观看| 亚洲av电影不卡..在线观看| 搡老熟女国产l中国老女人| 999久久久精品免费观看国产| 免费av毛片视频| 18禁美女被吸乳视频| 特大巨黑吊av在线直播| 啦啦啦观看免费观看视频高清| 亚洲无线观看免费| 此物有八面人人有两片| 一二三四社区在线视频社区8| 男人的好看免费观看在线视频| 国产又黄又爽又无遮挡在线| 亚洲中文字幕日韩| 国产精品,欧美在线| 久久久久国内视频| 日本在线视频免费播放| 波野结衣二区三区在线 | 国产伦人伦偷精品视频| 欧美黄色淫秽网站| 午夜免费男女啪啪视频观看 | 欧美精品啪啪一区二区三区| 亚洲精品成人久久久久久| 老司机福利观看| 久99久视频精品免费| 窝窝影院91人妻| 久久欧美精品欧美久久欧美| 亚洲精品美女久久久久99蜜臀| 国产精品嫩草影院av在线观看 | 午夜免费成人在线视频| 超碰av人人做人人爽久久 | 亚洲国产欧美网| 久久久久亚洲av毛片大全| 九九热线精品视视频播放| aaaaa片日本免费| 特级一级黄色大片| 搡老岳熟女国产| 日韩av在线大香蕉| 99久久成人亚洲精品观看| 国产老妇女一区| 两个人的视频大全免费| 国内精品一区二区在线观看| 国产蜜桃级精品一区二区三区| 午夜福利在线观看吧| 一本精品99久久精品77| 久久精品国产亚洲av涩爱 | 亚洲欧美日韩无卡精品| 亚洲精品色激情综合| 中国美女看黄片| 国产久久久一区二区三区| 麻豆成人av在线观看| 亚洲激情在线av| 桃红色精品国产亚洲av| 高潮久久久久久久久久久不卡| 三级国产精品欧美在线观看| 最近视频中文字幕2019在线8| 三级毛片av免费| 欧美乱码精品一区二区三区| 国产午夜精品久久久久久一区二区三区 | 欧美高清成人免费视频www| 久久欧美精品欧美久久欧美| 综合色av麻豆| 成年女人毛片免费观看观看9| 少妇熟女aⅴ在线视频| 日韩 欧美 亚洲 中文字幕| 国产精品久久视频播放| 国产 一区 欧美 日韩| 欧美三级亚洲精品| 女生性感内裤真人,穿戴方法视频| av片东京热男人的天堂| 色老头精品视频在线观看| www.色视频.com| 国模一区二区三区四区视频| 天堂网av新在线| 日韩欧美国产一区二区入口| 亚洲性夜色夜夜综合| 国内久久婷婷六月综合欲色啪| 999久久久精品免费观看国产| 99热只有精品国产| 黄色片一级片一级黄色片| 日本熟妇午夜| 免费av毛片视频| 麻豆成人午夜福利视频| 在线国产一区二区在线| 欧美在线黄色| 男人的好看免费观看在线视频| 日日夜夜操网爽| 无遮挡黄片免费观看| 亚洲五月天丁香| 国产综合懂色| 久久欧美精品欧美久久欧美| 久久久久久久精品吃奶| 久久人妻av系列| 成人国产一区最新在线观看| 性色av乱码一区二区三区2| 蜜桃久久精品国产亚洲av| 精品国产亚洲在线| 天堂动漫精品| 无人区码免费观看不卡| 久久久久免费精品人妻一区二区| 九九久久精品国产亚洲av麻豆| 国产真实乱freesex| 久久精品国产亚洲av涩爱 | 久久久国产成人免费| 日韩欧美国产在线观看| 久久欧美精品欧美久久欧美| 69av精品久久久久久| 在线播放国产精品三级| 国产99白浆流出| 91在线精品国自产拍蜜月 | 国产免费av片在线观看野外av| 禁无遮挡网站| 国产久久久一区二区三区| 国产精品乱码一区二三区的特点| 国产私拍福利视频在线观看| 国产精品久久久久久人妻精品电影| 欧美日韩亚洲国产一区二区在线观看| 国产视频一区二区在线看| 国产三级黄色录像| 亚洲欧美精品综合久久99| 国产精品亚洲美女久久久| 国产主播在线观看一区二区| 别揉我奶头~嗯~啊~动态视频| 又黄又粗又硬又大视频| 99热只有精品国产| www国产在线视频色| 欧美三级亚洲精品| 欧美性猛交╳xxx乱大交人| 尤物成人国产欧美一区二区三区| 91字幕亚洲| 香蕉丝袜av| 男女那种视频在线观看| 日韩欧美精品v在线| 最后的刺客免费高清国语| 亚洲在线观看片| 乱人视频在线观看| 国产成人啪精品午夜网站| 国产精品久久久久久久电影 | 黑人欧美特级aaaaaa片| 国产精品影院久久| 九九热线精品视视频播放| www.熟女人妻精品国产| 国产视频一区二区在线看| 中文字幕熟女人妻在线| 色av中文字幕| 国内少妇人妻偷人精品xxx网站| 亚洲av一区综合| 精品久久久久久久久久免费视频| av天堂在线播放| av视频在线观看入口| 怎么达到女性高潮| 欧美av亚洲av综合av国产av| 一个人免费在线观看电影| 中文在线观看免费www的网站| 亚洲国产精品合色在线| 亚洲精品色激情综合| 很黄的视频免费| 精品不卡国产一区二区三区| 叶爱在线成人免费视频播放| 久久国产精品人妻蜜桃| 国产精品影院久久| 一本久久中文字幕| 久久久久久久久中文| 国产免费av片在线观看野外av| 国产成人aa在线观看| 在线观看66精品国产| 中文字幕熟女人妻在线| 国产色爽女视频免费观看| 搡老岳熟女国产| 麻豆国产av国片精品| av天堂中文字幕网| 在线观看美女被高潮喷水网站 | 可以在线观看的亚洲视频| 国语自产精品视频在线第100页| 精品久久久久久久毛片微露脸| 制服人妻中文乱码| 香蕉丝袜av| 一级毛片高清免费大全| 搡老岳熟女国产| 十八禁人妻一区二区| 国产精品乱码一区二三区的特点| 亚洲精品色激情综合| 国产69精品久久久久777片| 999久久久精品免费观看国产| 69av精品久久久久久| 国产亚洲精品综合一区在线观看| 色综合亚洲欧美另类图片| 欧美中文日本在线观看视频| 不卡一级毛片| 亚洲aⅴ乱码一区二区在线播放| 99久久99久久久精品蜜桃| 亚洲av美国av| 色综合欧美亚洲国产小说| 老熟妇仑乱视频hdxx| 日韩欧美精品免费久久 | 亚洲国产欧美网| 高清日韩中文字幕在线| 无人区码免费观看不卡| 国产乱人伦免费视频| 中文字幕熟女人妻在线| 脱女人内裤的视频| 日韩欧美一区二区三区在线观看| e午夜精品久久久久久久| 悠悠久久av| 国产精品嫩草影院av在线观看 | 日本免费a在线| 久久久精品大字幕| 男女做爰动态图高潮gif福利片| 久久精品国产99精品国产亚洲性色| 每晚都被弄得嗷嗷叫到高潮| 亚洲av熟女| 免费观看精品视频网站| 色综合亚洲欧美另类图片| 在线观看免费午夜福利视频| 国产亚洲精品久久久久久毛片| 超碰av人人做人人爽久久 | 在线天堂最新版资源| 性色av乱码一区二区三区2| 真实男女啪啪啪动态图| 在线观看一区二区三区| 久久久久性生活片| 日韩中文字幕欧美一区二区| 国产伦人伦偷精品视频| 真人做人爱边吃奶动态| 欧美av亚洲av综合av国产av| 国产成人影院久久av| 亚洲av五月六月丁香网| 国产高清视频在线观看网站| 国产精品 欧美亚洲| 欧美日本亚洲视频在线播放| 精品欧美国产一区二区三| 国产精品国产高清国产av| 听说在线观看完整版免费高清| 亚洲av成人精品一区久久| 精品国产三级普通话版| 又爽又黄无遮挡网站| 最好的美女福利视频网| 亚洲国产色片| 1000部很黄的大片| 久久午夜亚洲精品久久| 九九在线视频观看精品| 色精品久久人妻99蜜桃| 欧美绝顶高潮抽搐喷水| 欧美一区二区亚洲| 欧美高清成人免费视频www| 亚洲精品国产精品久久久不卡| 九色国产91popny在线| 一进一出好大好爽视频| 欧美黄色淫秽网站| 最好的美女福利视频网| 亚洲欧美激情综合另类| ponron亚洲| 国产精品嫩草影院av在线观看 | 麻豆成人av在线观看| 天天添夜夜摸| 国产av麻豆久久久久久久| www日本黄色视频网| 色视频www国产| 亚洲真实伦在线观看| xxxwww97欧美| 国产免费一级a男人的天堂| 18美女黄网站色大片免费观看| www日本在线高清视频| 日本免费a在线| 亚洲欧美日韩东京热| 香蕉丝袜av| 无限看片的www在线观看| 国产精品爽爽va在线观看网站| 啦啦啦观看免费观看视频高清| 国产高清激情床上av| 两人在一起打扑克的视频| 亚洲精品在线观看二区| 三级毛片av免费| 国产精品综合久久久久久久免费| 欧美日韩福利视频一区二区| 老汉色∧v一级毛片| 欧美乱妇无乱码| 国产极品精品免费视频能看的| 天天躁日日操中文字幕| 一个人看的www免费观看视频| 国产伦人伦偷精品视频| 免费av观看视频| 亚洲无线在线观看| 午夜日韩欧美国产| 免费高清视频大片| 亚洲在线观看片| 亚洲内射少妇av| 中文字幕久久专区| 变态另类丝袜制服| 欧美最黄视频在线播放免费| 99精品欧美一区二区三区四区| 国产成人aa在线观看| 午夜福利高清视频| 麻豆成人午夜福利视频| 午夜福利高清视频| 熟女人妻精品中文字幕| 国产视频一区二区在线看| 午夜福利在线观看吧| 亚洲人成网站在线播放欧美日韩| 18美女黄网站色大片免费观看| 99国产精品一区二区三区| 久久精品综合一区二区三区| 麻豆一二三区av精品| 国产亚洲欧美在线一区二区| 亚洲中文日韩欧美视频| 乱人视频在线观看| 在线十欧美十亚洲十日本专区| 观看美女的网站| 日韩国内少妇激情av| 国内毛片毛片毛片毛片毛片| 精品国内亚洲2022精品成人| 久久香蕉国产精品| 国产成人av激情在线播放| 天堂动漫精品| 99热这里只有是精品50| 在线免费观看的www视频| 怎么达到女性高潮| 成人特级av手机在线观看| 韩国av一区二区三区四区| 亚洲av第一区精品v没综合| 欧美日本视频| 最近最新中文字幕大全免费视频| 国产探花极品一区二区| 欧美成人性av电影在线观看| 亚洲精品一卡2卡三卡4卡5卡| 俺也久久电影网| 身体一侧抽搐| 性色avwww在线观看| 成年女人看的毛片在线观看| 51国产日韩欧美| 国产午夜精品久久久久久一区二区三区 | 2021天堂中文幕一二区在线观| 99久国产av精品| 99久久精品热视频| 两个人的视频大全免费| 国产97色在线日韩免费| 久久欧美精品欧美久久欧美| xxxwww97欧美| 久久人人精品亚洲av| 18禁裸乳无遮挡免费网站照片| 国产亚洲精品久久久久久毛片| 真人一进一出gif抽搐免费| 精品电影一区二区在线| 免费在线观看亚洲国产| 午夜福利欧美成人| 尤物成人国产欧美一区二区三区| 88av欧美| 中文字幕av在线有码专区| 亚洲av第一区精品v没综合| 网址你懂的国产日韩在线| 亚洲成av人片免费观看| 成人国产一区最新在线观看|