• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    凝膠燃燒法合成Li1.07Mn1.93O4納米片及其高倍率放電和循環(huán)穩(wěn)定性

    2012-12-21 06:33:04代克化翟玉春
    物理化學(xué)學(xué)報(bào) 2012年2期
    關(guān)鍵詞:高倍率倍率凝膠

    毛 景 代克化 翟玉春

    (東北大學(xué)材料與冶金學(xué)院,沈陽110004)

    凝膠燃燒法合成Li1.07Mn1.93O4納米片及其高倍率放電和循環(huán)穩(wěn)定性

    毛 景 代克化*翟玉春*

    (東北大學(xué)材料與冶金學(xué)院,沈陽110004)

    利用聚乙烯吡咯烷酮(PVP)作為聚合物配位劑和燃料,通過凝膠-燃燒法合成了Li1.07Mn1.93O4納米片.采用熱重/差熱分析(TG/DTA)研究了凝膠的燃燒過程.采用X射線多晶衍射(XRD)分析了材料的結(jié)構(gòu),結(jié)果表明合成的Li1.07Mn1.93O4結(jié)晶完整,無雜質(zhì)相.掃描電鏡(SEM)結(jié)果顯示材料的二次形貌為厚度約100 nm的片狀,由大小約100 nm的一次顆粒構(gòu)成.充放電測(cè)試表明Li1.07Mn1.93O4納米片具備極佳的倍率放電性能和優(yōu)秀的循環(huán)性能.0.5C(1C=120 mA·g-1)倍率的初始放電容量為115.4 mAh·g-1,即使倍率增大到40C,放電容量仍有105.3 mAh·g-1.在10C倍率的放電條件下,循環(huán)850次容量保持率為81%.電化學(xué)阻抗譜(EIS)測(cè)試表明Li1.07Mn1.93O4納米片的界面電荷轉(zhuǎn)移電阻(Rct)遠(yuǎn)小于同類商業(yè)材料.

    鋰離子電池;錳酸鋰;燃燒合成;倍率性能;循環(huán)性能

    1 Introduction

    The rapid development of electric vehicles requires advanced lithium ion batteries with higher power density and longer cycling life.Spinel LiMn2O4is at present a very prospective candidate for the cathode material due to its low cost, good safety,environmental friendliness,and relatively high voltage.1Enhancing the rate capability and cycling stability of LiMn2O4has recently become one of the most attractive topics of both scientific and industrial interests.2-12

    Nanosized particles provide short diffusion pathways for both Li-ions and electrons,resulting in an improvement in Li-ion intercalation kinetics,which should allow for a higher charge-discharge rate and minimize the structural distortion at the surface of the cathode grains.13-15Recently,nanostructured LiMn2O4with various morphologies has been extensively prepared trying to improve the rate capability.A variety of synthetic routes have been chosen such as ball milling,16,17room-temperature solid-state coordination process,18,19sol-gel,20,21flame spray pyrolysis,22,23hard-template route,24-26electrochemical precipitation,27self-assembly process,28biomimetic synthetic process,29and hydrothermal method.3,8,12,30-32However,most of these methods involve several steps and some are quite complicated or expensive.

    Combustion method has been known as a simple,fast,and energetically economic method that yields high purity products.33Urea,34triethanolamine(TEA)-starch,35starch,36hexamethylenetetramine(HMTA),33polyacrylic acid(PAA),37polyvinylalcohol(PVA),38citric acid/glycol,39and glycine40have been chosen as fuels to synthesize LiMn2O4with high capacity, but the rate capability was not reported or was poor.Rojo et al.41,42reported a sucrose-aided combustion method and synthesized doubly doped LiMn1.99-yLiyM0.01O4(M=Al3+,Ni2+,Cr3+,Co3+; y=0.01,0.06)spinels.Among them the LiMn1.93Li0.06Co0.01O4can deliver 105 and 101 mAh·g-1at 0.2C and 5C rates between 3.1 and 4.4 V,respectively.

    The choice of fuel has a significant impact on structure,morphology,and performance of the synthesized materials.In this study,Li1.07Mn1.93O4(nLi/nMn=0.55,molar ratio)nanoflakes were synthesized by a gel-combustion method using polyvinylpyrrolidone(PVP)as the polymer chelating agent and fuel.PVP was employed due to its low toxicity and high aqueous solubility.It has been extensively used as a stabilizer and a structure-directing agent in nanotechnology because of its excellent adsorption ability.43,44Fu et al.44prepared PVP/LiCoO2nanofibers using an electrospinning route.Kanamura et al.45-48prepared Li4Ti5O12,LiCoO2,and LiMn2O4thin films by introducing PVP to a sol. The authors have synthesized sub-micron LiNi0.5Mn1.5O4with excellent high rate performance by the PVP-assisted gel-combustion method.49It is naturally guessed that PVP also can be used to prepare lithium manganese oxide nano-powders with high electrochemical performance.The molar ratio of Li/Mn(0.55)was chosen because Li doping has been proved to be a simplest but effective strategy to enhance the intrinsic structure stability during Li-ion insertion and extraction from the spinel framework.50,51

    2 Experimental

    Synthesis of Li1.07Mn1.93O4nanoflakes was carried out by dissolving PVP(AR),LiCH3COO·2H2O(AR),and Mn(CH3COO)2· 4H2O(AR)in deionized water with a Li/Mn molar ratio of 0.55.The molar ratio of PVP to total metal ions was fixed at 2.0.HNO3(AR)was added to the solution until the pH value of 3 was achieved.The mixture was stirred and heated at 90°C until viscous,and then the gel was dried at 110°C for 2 h.The resulting dried gel was heated in air on an electric hot plate to ignite a combustion reaction in several minutes.The obtained black powders were heated at 400°C for 3 h then calcinated at 700°C for 6 h to obtain well crystallized Li1.07Mn1.93O4.Finally, Li1.07Mn1.93O4was ground and passed through 300-mesh sieve.

    Simultaneous thermogravimetric and differential thermal analyses(TG/DTA)measurements of the dried gel were carried out in America TA Instrument SDT 2960 Simultaneous DTA-TGA.Crucibles of alumina were used both for the specimen and for the reference material.The samples(about 10 mg) were heated from room temperature to 700°C in flowing air, with a heating rate of 10°C·min-1.

    Powder X-ray diffraction measurement was performed on a Japan Rigaku D/Max-2500PC X-ray diffractometer using Cu Kαradiation.Morphological study was conducted using a FEI Nova NanoSEM 430 scanning electron microscope(SEM,Europe).To determine the chemical composition,Li and Mn concentrations in the lithium manganese oxide were measured by inductively coupled plasma(ICP,Optima 4300DV,PE Ltd.).

    The electrochemical performance of the Li1.07Mn1.93O4nanoflakes as cathode was evaluated using a CR2025 coin cell with a lithium metal anode.The cathode was a mixture of active material/acetylene black/polyvinylidene fluoride(PVDF)with mass ratio of 80:10:10.The average loading density of active material was about 5 mg·cm-2.Celgard 2400 was used as separator and the electrolyte was 1 mol·dm-3LiPF6in a 1:1:1(volume ratio)mixture of ethylene carbonate(EC),dimethyl carbonate(DMC),and ethyl methyl carbonate(EMC).The cells were assembled in an argon filled glovebox.For comparison,a commercial material(produced by CITIC GUOAN Mengguli) with the same chemical composition was chosen and assembled similarly.Charge and discharge tests were performed at various current densities between 3.3 and 4.3 V by a LAND CT2001A battery test system at ambient temperature.Electrochemical impedance spectroscopy(EIS)studies were performed on the coin cell by a Princeton Applied Research PARSTAT2273 electrochemical measurement system.The cells were charged to 3.9 V and balanced for 12 h before EIS tests. The frequency ranged from 100 kHz to 0.1 Hz and the acoscillation amplitude was 10 mV.

    3 Results and discussion

    The pyrolysis process of the dried gel precursor was investigated by TG and DTA(Fig.1).The mass loss below 160°C can be ascribed to the evaporation of residual water.The small exothermic peak between 200 and 250°C can probably be explained by pyrolysis of acetates,and the broad exothermic peak between 250 and 350°C can probably be associated with pyrolysis of PVP.The precursor bloated and charred with giving out brown smoke along with the pyrolysis of PVP and then the polymer precursor automatically ignited and burned violently.This combustion reaction corresponds to the strong exothermic peak at about 400°C in the DTA curve and distinct mass loss in the TG curve.Because the metal ions had been mixed evenly at atomic level by chelating of PVP,the metal precursor formed basic spinel phase in situ during the combustion reaction.The combustion reaction was accompanied by violent gas evolution and the volume of the mixture bloomed up quickly.It means that the newly formed particles are compacted loosely which can prevent the particle growth in the subsequent heat treatment.No obvious mass loss is found after the combustion peak.However,for more gel precursor the remains of the combustion still needed to be calcinated at 400°C for 3 h for complete removal of the organic residue.Heat treating at 700°C is needed to improve the crystallinity and the electrochemical property of the as-prepared nanoparticles.

    Fig.1 TG and DTAcurves of the dried gel precursors

    The prepared and commercial lithium manganese oxides were analyzed by ICP and both identified as Li1.07Mn1.93O4(nLi/ nMn=0.55).

    Fig.2 shows XRD patterns of the samples at different stages. It can be seen from Fig.2a that a spinel phase is formed by the combustion reaction of the gel precursor even in a very short period of time,though some impurities such as Mn3O4phase also exist.Fig.2b shows that very little impurities exist after calcination at 400°C for 3 h but the diffraction lines are still broad indicating a low crystallinity.After heat treatment at 700°C,the impurities completely disappear and the peaks become sharp indicating a higher crystallinity(Fig.2c).XRD analysis of the sample definitely indicates its spinel structure and the crystal structure is indexed to a cubic system with a lattice parameter a of 0.8227(2)nm,and then is defined to the space group Fd3m.

    Fig.2 XRD patterns of the precursor and samples(a)burned precursor;(b)sample after calcination at 400°C; (c)sample after calcination at 700°C

    Figs.3a and 3b show the SEM images of the as-prepared Li1.07Mn1.93O4with different magnifications.Under lower magnification,Fig.3a shows that most of the secondary particles are nanoflakes with several micrometers in size,about 100 nm in thickness and piled up loosely.Under higher magnification (Fig.3b),it can be seen that the nanoflakes consist of uniform nanocrystallites with a size of 100 nm or so.The unique thin flake-like morphology is different from those obtained via other methods.This may be related to good film-forming property of PVP.It may favor electrolyte penetration,thereby enabling better wetting of spinel cathode and faster Li-ion transfer at the interface.At the same time the nanosize of the primary crystallite makes the Li-ion and electron dissociating pathway inside the crystal shorter and then the cathode can behave better under high current densities.While the SEM images of the commercial Li1.07Mn1.93O4(Figs.3c&3d)demonstrate its secondary particle size of about 10 μm,and its primary particle size is about 300-500 nm,much bigger than that of the as prepared Li1.07Mn1.93O4.The subsequent electrochemical tests show that the Li1.07Mn1.93O4nanoflakes have excellent rate capability, which is much better than that of the commercial one.

    Fig.3 SEM images of Li1.07Mn1.93O4(a,b)the nano-Li1.07Mn1.93O4;(c,d)the commercial Li1.07Mn1.93O4

    The high rate capability of the Li1.07Mn1.93O4nanoflakes is presented in Fig.4 and Fig.5.Fig.4 shows the discharge curves of the Li1.07Mn1.93O4nanoflakes recorded at different discharge rates.The rate capability measurements were investigated by discharging from 0.5C to 40C.Charging was done at 1C for all the discharge rates except when discharging was done at 0.5C. In this case,charging was conducted at 0.5C.At 0.5C,4C, 10C,20C,and 40C,the discharge capacity was 115.4,115.3, 114.4,111.9,and 105.3 mAh·g?1,respectively.Moreover,the discharge profiles at high rates of 10C,20C,and 40C still have a relative flat discharge plateau.The maintained relative flat plateau in the high rate of 40C can sustain a constant output voltage.3

    Fig.4 Discharge profiles of the nano-Li1.07Mn1.93O4at different rates between 3.3 and 4.3 V1C=120 mA·g-1

    Fig.5 compares the rate capability of the Li1.07Mn1.93O4nanoflakes and the commercial Li1.07Mn1.93O4.The capacities of the Li1.07Mn1.93O4nanoflakes remain 99.9%at a discharge rate of 4C,99.1%at 10C,97.0%at 20C,and 91.2%at 40C,and those of the commercial Li1.07Mn1.93O4only remain 96.4%at discharge rate of 4C,92.0%at 10C,86.6%at 20C,and 74.9%at 40C,although the electrodes have approximate mass.The results indicate that the excellent rate capability of the as-prepared Li1.07Mn1.93O4nanoflakes is caused by the very small particle size but not by the thin electrode.

    Fig.6 Electrochemical impedance spectra of the nano-Li1.07Mn1.93O4(a)and the commercial Li1.07Mn1.93O4(b) Rs:ohmic resistance;Rct:charge-transfer resistance;CPE:constant phase-angleelement;ZW:Warburg impedance;Cint:insertion capacitance

    Fig.7 Cyclic performance of the nano-Li1.07Mn1.93O4at a high discharge rate of 10C

    The electrochemical impedance spectra(EIS)of the nano-Li1.07Mn1.93O4/Li cell and commercial Li1.07Mn1.93O4/Li cell after 3 cycles at 3.9 V are shown in Fig.6.The Nyquist plots of two samples in Fig.6 show a semicircle followed by a sloping line at low frequencies and they were fitted with the equivalent circuit depicted in the inset of Fig.6.The result of fitting indicates that the Rctof Li1.07Mn1.93O4nanoflakes is 9.7 Ω,which is much less than that of commercial Li1.07Mn1.93O4(60.5 Ω).This means that the lithium insertion/extraction could be easily conducted in the nanoparticles.This result agrees well with the good rate capability of the Li1.07Mn1.93O4nanoflakes as demonstrated above.

    The Li1.07Mn1.93O4nanoflakes has been cycled at a high discharge rate of 10C(charged at 5C rate)for 850 cycles to investigate whether the good rate capability can be retained on prolonged cycling.The result in Fig.7 shows an initial capacity of 107.9 mAh·g-1and the capacity retention is 81%after 850 cycles.It is speculated that the good cycling performance may be originated from the well-crystallized nanoscale cathode active particles which minimize structural distortion at the surface of the cathode.

    4 Conclusions

    Li1.07Mn1.93O4nanoflakes were synthesized by the novel gelcombustion method using PVP as the polymer chelating agent and fuel.TG and DTA results clarified the quick combustion process of the gel.XRD analysis indicated the as-prepared Li1.07Mn1.93O4was pure phase and highly crystallized.SEM images displayed that most of the secondary particles were nanoflakes with thickness of about 100 nm and the primary particle size was about 100 nm.Electrochemical tests showed that the Li1.07Mn1.93O4nanoflakes behaved an excellent rate capability and cycling performance as a cathode material for lithium ion batteries.The discharge capacities at 0.5C and 40C were 115.4 and 105.3 mAh·g-1,respectively.It maintained 81%of its initial capacity after 850 cycles when cycling at 10C rate.EIS tests showed that the charge transfer resistance of the Li1.07Mn1.93O4nanoflakes was smaller than that of the commercial Li1.07Mn1.93O4. This excellent performance of the Li1.07Mn1.93O4nanoflake in this work can be attributed to the small particle size and high crystallinity prepared by the PVP-assisted combustion method.

    (1)Tarascon,J.M.;Armand,M.Nature 2001,414,359.

    (2) Du Pasquier,A.;Huang,C.C.;Spitler,T.Journal of Power Sources 2009,186,508.

    (3)Kudo,T.;Honma,I.;Matsuda,H.;Zhou,H.S.Nano Letters 2009,9,1045.

    (4) Lanz,M.;Kormann,C.;Steininger,H.;Heil,G.;Haas,O.; Novak,P.Journal of the Electrochemical Society 2000,147, 3997.

    (5) Lee,J.W.;Park,S.M.;Kim,H.J.Electrochemistry Communications 2009,11,1101.

    (6)Lee,K.S.;Myung,S.T.;Bang,H.;Amine,K.;Kim,D.W.; Sun,Y.K.Journal of Power Sources 2009,189,494.

    (7) Lim,S.;Cho,J.Electrochemistry Communications 2008,10, 1478.

    (8)Ma,S.B.;Nam,K.W.;Yoon,W.S.;Bak,S.M.;Yang,X.Q.; Cho,B.W.;Kim,K.B.Electrochemistry Communications 2009,11,1575.

    (9) Park,S.C.;Han,Y.S.;Kang,Y.S.;Lee,P.S.;Ahn,S.;Lee,H. M.;Lee,J.Y.Journal of the Electrochemical Society 2001,148, A680.

    (10)Park,S.C.;Kim,Y.M.;Kang,Y.M.;Kim,K.T.;Lee,P.S.; Lee,J.Y.Journal of Power Sources 2001,103,86.

    (11) Wang,X.Q.;Tanaike,O.;Kodama,M.;Hatori,H.Journal of Power Sources 2007,168,282.

    (12)Yue,H.;Huang,X.;Lv,D.;Yang,Y.Electrochimica Acta 2009, 54,5363.

    (13)Arico,A.S.;Bruce,P.;Scrosati,B.;Tarascon,J.M.;Van Schalkwijk,W.Nature Materials 2005,4,366.

    (14) Bruce,P.G.;Scrosati,B.;Tarascon,J.M.Angewandte Chemie-International Edition 2008,47,2930.

    (15) Chen,Z.Y.;Zhu,H.L.;Ji,S.;Linkov,V.;Zhang,J.L.;Zhu,W. Journal of Power Sources 2009,189,507.

    (16)Kamarulzaman,N.;Yusoff,R.;Kamarudin,N.;Shaari,N.H.; Aziz,N.A.A.;Bustam,M.A.;Blagojevic,N.;Elcombe,M.; Blackford,M.;Avdeev,M.;Arof,A.K.Journal of Power Sources 2009,188,274.

    (17)Ye,S.H.;Lv,J.Y.;Gao,X.P.;Wu,F.;Song,D.Y. Electrochimica Acta 2004,49,1623.

    (18) Caballero,A.;Cruz,M.;Hernán,L.;Melero,M.;Morales,J.; Castellón,E.R.Journal of Power Sources 2005,150,192.

    (19) Huang,Y.D.;Jiang,R.R.;Bao,S.J.;Dong,Z.F.;Cao,Y.L.; Jia,D.Z.;Guo,Z.P.Journal of Solid State Electrochemistry 2009,13,799.

    (20) Shaju,K.M.;Bruce,P.G.Chemistry of Materials 2008,20, 5557.

    (21) Vivekanandhan,S.;Venkateswarlu,M.;Satyanarayana,N. Journal of Alloys and Compounds 2007,441,284.

    (22) Patey,T.J.;Buchel,R.;Nakayama,M.;Novak,P.Physical Chemistry Chemical Physics 2009,11,3756.

    (23) Patey,T.J.;Buchel,R.;Ng,S.H.;Krumeich,F.;Pratsinis,S.E.; Novak,P.Journal of Power Sources 2009,189,149.

    (24) Cabana,J.;Valdes-Solis,T.;Palacin,M.R.;Oro-Sole,J.; Fuertes,A.;Marban,G.;Fuertes,A.B.Journal of Power Sources 2007,166,492.

    (25) Jiao,F.;Bao,J.L.;Hill,A.H.;Bruce,P.G.Angewandte Chemie-International Edition 2008,47,9711.

    (26)Luo,J.Y.;Wang,Y.G.;Xiong,H.M.;Xia,Y.Y.Chemistry of Materials 2007,19,4791.

    (27)Katakura,K.;Wada,K.;Kajiki,Y.;Yamamoto,A.;Ogumi,Z. Journal of Power Sources 2009,189,240.

    (28) Luo,J.Y.;Cheng,L.;Xia,Y.Y.Electrochemistry Communications 2007,9,1404.

    (29) Uchiyama,H.;Hosono,E.;Zhou,H.S.;Imai,H.Journal of Materials Chemistry 2009,19,4012.

    (30) Fang,H.S.;Li,L.P.;Yang,Y.;Yan,G.F.;Li,G.S.Journal of Power Sources 2008,184,494.

    (31) Jiang,C.H.;Dou,S.X.;Liu,H.K.;Ichihara,M.;Zhou,H.S. Journal of Power Sources 2007,172,410.

    (32) Kim,D.K.;Muralidharan,P.;Lee,H.W.;Ruffo,R.;Yang,Y.; Chan,C.K.;Peng,H.;Huggins,R.A.;Cui,Y.Nano Letters 2008,8,3948.

    (33) Fey,G.;Cho,Y.;Kumar,T.Materials Chemistry and Physics 2006,99,451.

    (34)Liu,Q.G.;Yang,W.S.;Zhang,G.;Xie,J.Y.;Yang,L.L. Journal of Power Sources 1999,81,412.

    (35)Fey,G.T.K.;Cho,Y.D.;Kumar,T.P.Materials Chemistry and Physics 2004,87,275.

    (36) Kalyani,P.;Kalaiselvi,N.;Muniyandi,N.Journal of Power Sources 2002,111,232.

    (37) Park,H.B.;Kim,J.;Lee,C.W.Journal of Power Sources 2001, 92,124.

    (38) Subramania,A.;Angayarkanni,N.;Vasudevan,T.Materials Chemistry and Physics 2007,102,19.

    (39)Wu,X.M.;Li,X.H.;Xiao,Z.B.;Liu,J.;Yan,W.B.;Ma,M.Y. Materials Chemistry and Physics 2004,84,182.

    (40) Zhang,Y.;Shin,H.C.;Dong,J.;Liu,M.Solid State Ionics 2004,171,25.

    (41)Amarilla,J.M.;Petrov,K.;Pico,F.;Avdeev,G.;Rojo,J.M.; Rojas,R.M.Journal of Power Sources 2009,191,591.

    (42) Kovacheva,D.;Gadjov,H.;Petrov,K.;Mandal,S.;Lazarraga, M.G.;Pascual,L.;Amarilla,J.M.;Rojas,R.M.;Herrero,P.; Rojo,J.M.Journal of Materials Chemistry 2002,12,1184.

    (43) Zhang,J.H.;Liu,J.B.;Wang,S.Z.;Zhan,P.;Wang,Z.L.; Ming,N.B.Adv.Funct.Mater.2004,14,1089.

    (44) Fu,Y.S.;Chen,L.J.;Liao,J.D.;Chuang,Y.J.;Hsu,K.C.; Chiang,Y.F.J.Appl.Polym.Sci.2011,121,154.

    (45) Kanamura,K.;Rho,Y.H.J.Electroanal.Chem.2003,559,69.

    (46) Kanamura,K.;Rho,Y.H.J.Solid State Chem.2004,177,2094.

    (47) Kanamura,K.;Rho,Y.H.Journal of Power Sources 2006,158, 1436.

    (48)Kanamura,K.;Rho,Y.H.;Umegaki,T.Chem.Lett.2001,1322.

    (49) Dai,K.H.;Mao,J.;Zhai,Y.C.Acta Phys.-Chim.Sin.2010,26, 2130.[代克化,毛 景,翟玉春.物理化學(xué)學(xué)報(bào),2010,26, 2130.]

    (50) Hirose,S.;Kodera,T.;Ogihara,T.Journal of Alloys and Compounds 2010,506,883.

    (51)Peng,Z.D.;Jiang,Q.L.;Du,K.;Wang,W.G.;Hu,G.R.;Liu, Y.X.Journal of Alloys and Compounds 2010,493,640.

    July 18,2011;Revised:November 24,2011;Published on Web:December 5,2011.

    High Rate Capability and Cycling Stability of Li1.07Mn1.93O4Nanoflakes Synthesized via Gel-Combustion Method

    MAO Jing DAI Ke-Hua*ZHAI Yu-Chun*
    (School of Materials and Metallurgy,Northeastern University,Shenyang 110004,P.R.China)

    Li1.07Mn1.93O4nanoflakes were synthesized by a gel-combustion method using polyvinylpyrrolidone(PVP)as the polymer chelating agent and fuel.Thermogravimetric and differential thermal analyses(TG/DTA)were used to investigate the combustion process of the gel precursor.X-ray diffraction(XRD)analysis indicated that the as-prepared Li1.07Mn1.93O4was a pure,highly crystalline phase. Scanning electron microscopy(SEM)results showed that most of the secondary particles were nanoflakes, about 100 nm in thickness,and the primary particle of the nanoflakes was about 100 nm in size.Charge and discharge tests suggested that the Li1.07Mn1.93O4nanoflakes had excellent rate capability and good cycling stability.The initial discharge capacity was 115.4 mAh·g-1at a rate of 0.5C(1C=120 mAh·g-1)and the capacity was maintained at 105.3 mAh·g-1at the high discharge rate of 40C.When cycling at 10C,the material retained 81%of its initial capacity after 850 cycles.Electrochemical impedance spectroscopy (EIS)tests indicated that the charge-transfer resistance(Rct)of the Li1.07Mn1.93O4nanoflakes was much less than that of commercial Li1.07Mn1.93O4.

    Lithium ion battery;Lithium manganese oxide;Combustion synthesis;Rate capability; Cycling stability

    10.3866/PKU.WHXB201112052

    *Corresponding authors.DAI Ke-Hua,Email:daikh@smm.neu.edu.cn;Tel/Fax:+86-24-83684943.ZHAI Yu-Chun,Email:zhaiyc@smm.neu.edu.cn

    O646

    猜你喜歡
    高倍率倍率凝膠
    大型桅桿起重機(jī)起升變倍率方法及其應(yīng)用
    纖維素氣凝膠的制備與應(yīng)用研究進(jìn)展
    三維多孔石墨烯在高倍率超級(jí)電容器中的應(yīng)用
    能源工程(2020年5期)2021-01-04 01:29:06
    超輕航天材料——?dú)饽z
    軍事文摘(2020年20期)2020-11-16 00:31:56
    保暖神器——?dú)饽z外套
    FANUC0iD系統(tǒng)速度倍率PMC控制方法
    “凍結(jié)的煙”——?dú)饽z
    論ZVR高倍率視頻壓縮存儲(chǔ)技術(shù)的先進(jìn)性與實(shí)用性
    一種智能加工系統(tǒng)中的機(jī)床倍率控制方法
    李賢能:銀隆鈦高倍率快充 解決新能源汽車之痛
    亚洲精品亚洲一区二区| 国内揄拍国产精品人妻在线| 久久99蜜桃精品久久| 18+在线观看网站| 欧美极品一区二区三区四区| 午夜精品国产一区二区电影 | 国产色婷婷99| 18禁动态无遮挡网站| 性色avwww在线观看| 国产精品久久视频播放| 亚洲国产精品成人综合色| 69人妻影院| 天天躁日日操中文字幕| 国内精品宾馆在线| 免费观看的影片在线观看| 午夜老司机福利剧场| 国产成人福利小说| 国产午夜精品久久久久久一区二区三区| 国产亚洲5aaaaa淫片| 日韩精品青青久久久久久| 91aial.com中文字幕在线观看| 精品人妻视频免费看| 精华霜和精华液先用哪个| 久久99热这里只有精品18| 五月玫瑰六月丁香| 亚洲精品国产成人久久av| 深爱激情五月婷婷| 国产视频首页在线观看| 噜噜噜噜噜久久久久久91| 免费观看人在逋| 免费搜索国产男女视频| 18禁裸乳无遮挡免费网站照片| 春色校园在线视频观看| 简卡轻食公司| 国产精品国产三级国产专区5o | 日韩av在线免费看完整版不卡| 欧美日韩精品成人综合77777| www.色视频.com| 国产高清视频在线观看网站| 九九热线精品视视频播放| 国产精品精品国产色婷婷| 天天躁日日操中文字幕| 一区二区三区免费毛片| 99在线视频只有这里精品首页| 国产单亲对白刺激| 蜜桃久久精品国产亚洲av| 午夜精品一区二区三区免费看| 青春草视频在线免费观看| 亚洲在久久综合| 三级经典国产精品| 午夜福利网站1000一区二区三区| 国产一区二区三区av在线| 99热网站在线观看| 午夜福利在线在线| 热99在线观看视频| 国产成人福利小说| 国产高清视频在线观看网站| 久久久久久大精品| 午夜亚洲福利在线播放| 亚洲va在线va天堂va国产| 51国产日韩欧美| 国产亚洲一区二区精品| 亚洲av电影不卡..在线观看| 成人美女网站在线观看视频| 18+在线观看网站| 少妇高潮的动态图| 免费av不卡在线播放| 国产高潮美女av| 国产精品无大码| 国产精品av视频在线免费观看| 国产精品国产三级国产av玫瑰| 亚洲熟妇中文字幕五十中出| 综合色av麻豆| 午夜亚洲福利在线播放| 国产精品久久久久久精品电影| 国产精品久久久久久久电影| 久久欧美精品欧美久久欧美| 久久精品国产自在天天线| 床上黄色一级片| 一夜夜www| 1024手机看黄色片| 婷婷色av中文字幕| 国产高清三级在线| 特级一级黄色大片| 国产熟女欧美一区二区| 久久热精品热| 亚洲av成人精品一二三区| 色哟哟·www| 欧美极品一区二区三区四区| 日本wwww免费看| 国产成人免费观看mmmm| 久久人人爽人人爽人人片va| 青春草亚洲视频在线观看| 狠狠狠狠99中文字幕| 一边摸一边抽搐一进一小说| 中文乱码字字幕精品一区二区三区 | 国产精品久久久久久精品电影小说 | 国产美女午夜福利| 国产淫片久久久久久久久| 久久精品夜色国产| 欧美高清性xxxxhd video| 中文资源天堂在线| 亚洲经典国产精华液单| av在线蜜桃| 午夜福利在线在线| 亚洲av男天堂| 91在线精品国自产拍蜜月| 亚洲av免费高清在线观看| 欧美丝袜亚洲另类| 特大巨黑吊av在线直播| 中文字幕人妻熟人妻熟丝袜美| 国产激情偷乱视频一区二区| 国产午夜精品论理片| 插逼视频在线观看| av播播在线观看一区| 久久婷婷人人爽人人干人人爱| 91久久精品国产一区二区三区| 校园人妻丝袜中文字幕| 国内精品宾馆在线| 亚洲欧美精品综合久久99| 欧美97在线视频| 国产白丝娇喘喷水9色精品| 天天躁夜夜躁狠狠久久av| 日本色播在线视频| 亚州av有码| 一级二级三级毛片免费看| 色播亚洲综合网| 亚洲国产精品成人久久小说| 国产一级毛片在线| 免费观看精品视频网站| 三级经典国产精品| 男女啪啪激烈高潮av片| 久久精品久久久久久噜噜老黄 | 国产又黄又爽又无遮挡在线| 免费看光身美女| 中文字幕av成人在线电影| 搡女人真爽免费视频火全软件| 青青草视频在线视频观看| 日本欧美国产在线视频| 日本黄色片子视频| 尤物成人国产欧美一区二区三区| 国产伦理片在线播放av一区| 国产精品久久久久久久电影| 亚洲美女视频黄频| 美女xxoo啪啪120秒动态图| 1024手机看黄色片| 国产久久久一区二区三区| 免费看光身美女| 又粗又爽又猛毛片免费看| 色综合亚洲欧美另类图片| 欧美zozozo另类| 国产亚洲一区二区精品| 久久久精品大字幕| 少妇高潮的动态图| 日韩欧美精品v在线| 国国产精品蜜臀av免费| av国产久精品久网站免费入址| 午夜福利成人在线免费观看| av在线亚洲专区| 午夜日本视频在线| 亚洲欧洲日产国产| 国产老妇伦熟女老妇高清| 亚洲人成网站高清观看| 国产老妇女一区| 久久久成人免费电影| 久久午夜福利片| 精品人妻一区二区三区麻豆| 人人妻人人澡人人爽人人夜夜 | 久久久久久久久久久免费av| 亚洲欧美精品专区久久| 91久久精品国产一区二区三区| 国产精品嫩草影院av在线观看| 国产精品久久电影中文字幕| 亚洲欧美日韩东京热| 午夜福利在线在线| 亚洲内射少妇av| 一区二区三区乱码不卡18| 一级av片app| 麻豆一二三区av精品| 波野结衣二区三区在线| av播播在线观看一区| 国产亚洲91精品色在线| 美女内射精品一级片tv| a级毛色黄片| 美女被艹到高潮喷水动态| 精品熟女少妇av免费看| 亚洲欧洲国产日韩| 色播亚洲综合网| 又爽又黄无遮挡网站| 久久亚洲国产成人精品v| 麻豆久久精品国产亚洲av| 少妇被粗大猛烈的视频| 男女国产视频网站| 亚洲18禁久久av| 天天躁夜夜躁狠狠久久av| 欧美成人午夜免费资源| 性插视频无遮挡在线免费观看| 日日啪夜夜撸| 麻豆成人av视频| 成人二区视频| 高清av免费在线| 97热精品久久久久久| 麻豆成人午夜福利视频| 国产综合懂色| 国产av码专区亚洲av| 免费av毛片视频| 岛国在线免费视频观看| 美女高潮的动态| 中文资源天堂在线| 亚洲精品自拍成人| 久久久久久国产a免费观看| 久久韩国三级中文字幕| 精品人妻熟女av久视频| 日本一本二区三区精品| 在线a可以看的网站| 亚洲成人中文字幕在线播放| 国产亚洲最大av| 国产黄色视频一区二区在线观看 | 国产真实伦视频高清在线观看| 成人特级av手机在线观看| 老司机影院成人| 中文字幕免费在线视频6| 久久久久久久久中文| 91久久精品电影网| 美女黄网站色视频| 国产黄色小视频在线观看| 成人鲁丝片一二三区免费| 日韩一区二区视频免费看| 日本黄色视频三级网站网址| 久久精品夜夜夜夜夜久久蜜豆| 超碰av人人做人人爽久久| 人妻少妇偷人精品九色| 国产又黄又爽又无遮挡在线| h日本视频在线播放| 汤姆久久久久久久影院中文字幕 | 精品国产露脸久久av麻豆 | 亚洲成av人片在线播放无| 亚洲第一区二区三区不卡| 日日撸夜夜添| 99国产精品一区二区蜜桃av| 国产v大片淫在线免费观看| 久久鲁丝午夜福利片| 97人妻精品一区二区三区麻豆| 最近中文字幕高清免费大全6| 18禁动态无遮挡网站| 国产精品1区2区在线观看.| 久久精品久久久久久久性| www.av在线官网国产| 精品久久久久久电影网 | 精品国产露脸久久av麻豆 | 亚洲自拍偷在线| 日韩av在线大香蕉| 极品教师在线视频| 国语自产精品视频在线第100页| 国产伦精品一区二区三区视频9| 国产精华一区二区三区| 日韩视频在线欧美| 欧美精品一区二区大全| 国产亚洲午夜精品一区二区久久 | 神马国产精品三级电影在线观看| 有码 亚洲区| 国产精品美女特级片免费视频播放器| 成人综合一区亚洲| 亚洲精品aⅴ在线观看| 国产成年人精品一区二区| 国产亚洲精品久久久com| 国产淫语在线视频| 天堂中文最新版在线下载 | 晚上一个人看的免费电影| h日本视频在线播放| 国产精品av视频在线免费观看| 亚洲高清免费不卡视频| 精品久久久噜噜| 午夜福利高清视频| 国国产精品蜜臀av免费| 水蜜桃什么品种好| 在线播放无遮挡| 美女大奶头视频| 日本免费a在线| 欧美极品一区二区三区四区| 亚洲国产精品合色在线| 精品国产三级普通话版| 亚洲五月天丁香| 尤物成人国产欧美一区二区三区| 色网站视频免费| 丰满人妻一区二区三区视频av| 最近手机中文字幕大全| 午夜精品一区二区三区免费看| 国产精品一区二区性色av| 国国产精品蜜臀av免费| 久99久视频精品免费| 欧美高清成人免费视频www| 2021天堂中文幕一二区在线观| 天美传媒精品一区二区| 亚洲国产成人一精品久久久| 国内精品一区二区在线观看| 男女下面进入的视频免费午夜| 91久久精品国产一区二区成人| 乱码一卡2卡4卡精品| 国产一级毛片七仙女欲春2| 亚洲国产欧洲综合997久久,| 乱系列少妇在线播放| 97超碰精品成人国产| 91aial.com中文字幕在线观看| 一区二区三区四区激情视频| 午夜精品国产一区二区电影 | 狂野欧美激情性xxxx在线观看| 久久99热6这里只有精品| 国产精品1区2区在线观看.| 亚洲av成人av| 人妻系列 视频| 伊人久久精品亚洲午夜| 99久久中文字幕三级久久日本| 久久久国产成人免费| 少妇熟女aⅴ在线视频| 少妇丰满av| 99久国产av精品国产电影| 国产激情偷乱视频一区二区| 2021天堂中文幕一二区在线观| 一二三四中文在线观看免费高清| 国产av一区在线观看免费| av天堂中文字幕网| 国产av不卡久久| 国产亚洲一区二区精品| 黄色日韩在线| 国产私拍福利视频在线观看| 熟女人妻精品中文字幕| 看免费成人av毛片| 国产精品人妻久久久影院| 国产一区二区亚洲精品在线观看| 色综合站精品国产| 91精品国产九色| 国产爱豆传媒在线观看| 噜噜噜噜噜久久久久久91| 欧美成人免费av一区二区三区| 国语自产精品视频在线第100页| 少妇的逼好多水| 久久草成人影院| 免费av不卡在线播放| 国产黄a三级三级三级人| 啦啦啦啦在线视频资源| 国产精品1区2区在线观看.| 一边亲一边摸免费视频| 人妻系列 视频| 黄色一级大片看看| 久久久久久久久久黄片| 非洲黑人性xxxx精品又粗又长| 白带黄色成豆腐渣| 亚洲av.av天堂| 一级黄片播放器| 欧美日韩综合久久久久久| 国产av不卡久久| 国产69精品久久久久777片| 人人妻人人澡人人爽人人夜夜 | 久久精品91蜜桃| 麻豆国产97在线/欧美| 亚洲国产成人一精品久久久| 日本免费在线观看一区| 成人漫画全彩无遮挡| 欧美另类亚洲清纯唯美| 国产午夜福利久久久久久| 欧美性感艳星| 在线播放国产精品三级| 两个人的视频大全免费| 一级毛片久久久久久久久女| 亚洲最大成人手机在线| 国产综合懂色| 我的老师免费观看完整版| 国产一区二区三区av在线| 性色avwww在线观看| 小蜜桃在线观看免费完整版高清| 少妇被粗大猛烈的视频| 在现免费观看毛片| 国产午夜精品论理片| 亚洲av男天堂| 国产麻豆成人av免费视频| 99久久九九国产精品国产免费| 国产黄a三级三级三级人| 成人二区视频| 亚洲欧美精品自产自拍| 一级毛片电影观看 | 亚洲色图av天堂| 久久久久久久午夜电影| 国产亚洲av片在线观看秒播厂 | 国产免费福利视频在线观看| 我要看日韩黄色一级片| 亚洲美女搞黄在线观看| 夜夜看夜夜爽夜夜摸| 我要搜黄色片| 国产淫语在线视频| 男人舔女人下体高潮全视频| 久久久国产成人免费| 亚洲国产精品合色在线| 国产高清视频在线观看网站| 国产精品伦人一区二区| 亚洲欧美精品自产自拍| 少妇裸体淫交视频免费看高清| 日韩视频在线欧美| 亚洲精品成人久久久久久| 国产片特级美女逼逼视频| 日韩国内少妇激情av| 天堂√8在线中文| 亚洲人成网站在线播| 久久久久久九九精品二区国产| 欧美激情在线99| 精品国内亚洲2022精品成人| 国产真实伦视频高清在线观看| 国产精品熟女久久久久浪| 亚洲最大成人中文| 精品久久国产蜜桃| 国产综合懂色| 国产午夜精品久久久久久一区二区三区| 一区二区三区免费毛片| 日日摸夜夜添夜夜添av毛片| 亚洲一级一片aⅴ在线观看| 国产69精品久久久久777片| 九九在线视频观看精品| 青青草视频在线视频观看| 久久久久久久久久久丰满| 91午夜精品亚洲一区二区三区| 一本久久精品| 免费av观看视频| 丰满人妻一区二区三区视频av| 亚洲欧美精品综合久久99| 在线观看av片永久免费下载| 丰满少妇做爰视频| 国产欧美日韩精品一区二区| 久久久久久伊人网av| 麻豆精品久久久久久蜜桃| 国产午夜福利久久久久久| 99国产精品一区二区蜜桃av| 亚洲av中文字字幕乱码综合| 免费av毛片视频| 秋霞在线观看毛片| 国产精品久久久久久久电影| 嫩草影院新地址| 联通29元200g的流量卡| 精品久久久久久久久亚洲| 久久久久性生活片| 天堂中文最新版在线下载 | 亚洲国产成人一精品久久久| 又粗又爽又猛毛片免费看| 久久久久九九精品影院| 国产午夜精品论理片| 欧美一区二区国产精品久久精品| 高清毛片免费看| 国产真实伦视频高清在线观看| 国产成人aa在线观看| 国产午夜福利久久久久久| 亚洲欧美日韩卡通动漫| 日韩在线高清观看一区二区三区| 亚洲国产欧美在线一区| 99热这里只有精品一区| 久久久午夜欧美精品| 在现免费观看毛片| 精品人妻熟女av久视频| 国产色婷婷99| 亚洲伊人久久精品综合 | 少妇熟女aⅴ在线视频| 精品久久国产蜜桃| 国产一区有黄有色的免费视频 | 亚洲电影在线观看av| 国产成人a∨麻豆精品| 国产精品麻豆人妻色哟哟久久 | 成人毛片a级毛片在线播放| 成人无遮挡网站| 日韩,欧美,国产一区二区三区 | 亚洲三级黄色毛片| 色噜噜av男人的天堂激情| 久久精品久久久久久久性| 日本黄大片高清| 亚洲精品影视一区二区三区av| 内射极品少妇av片p| 欧美一区二区亚洲| 久久久久免费精品人妻一区二区| 色哟哟·www| 男人和女人高潮做爰伦理| 在线观看66精品国产| 岛国在线免费视频观看| 久久久久久久久中文| 国产精品一区二区三区四区久久| 直男gayav资源| 国产精品电影一区二区三区| 九九热线精品视视频播放| 国产av一区在线观看免费| 在线观看一区二区三区| 日韩一区二区三区影片| 国产免费一级a男人的天堂| 91精品伊人久久大香线蕉| 97超碰精品成人国产| 精品久久国产蜜桃| av在线老鸭窝| 国产私拍福利视频在线观看| 国产在线一区二区三区精 | 亚洲自拍偷在线| 三级毛片av免费| 中文天堂在线官网| 男插女下体视频免费在线播放| 国产老妇女一区| 毛片一级片免费看久久久久| 国产精品99久久久久久久久| 久久久久久大精品| 国产色婷婷99| 又粗又硬又长又爽又黄的视频| 级片在线观看| 免费播放大片免费观看视频在线观看 | 偷拍熟女少妇极品色| 日韩成人伦理影院| 深爱激情五月婷婷| 成人午夜精彩视频在线观看| 亚州av有码| 精品久久久久久久久久久久久| 看非洲黑人一级黄片| 晚上一个人看的免费电影| 免费观看a级毛片全部| 99久国产av精品| 国产三级在线视频| 久久人人爽人人片av| 边亲边吃奶的免费视频| 久久久色成人| 国内精品美女久久久久久| 99久国产av精品国产电影| 夜夜看夜夜爽夜夜摸| 亚洲国产最新在线播放| 最近中文字幕2019免费版| 久久久久久久久久黄片| 高清在线视频一区二区三区 | 在线观看美女被高潮喷水网站| 国产精品不卡视频一区二区| 91久久精品国产一区二区三区| 国产免费又黄又爽又色| www.色视频.com| 精品人妻一区二区三区麻豆| 免费电影在线观看免费观看| 久久人妻av系列| 长腿黑丝高跟| 天堂av国产一区二区熟女人妻| 国产一区二区亚洲精品在线观看| 久久久欧美国产精品| or卡值多少钱| 日日摸夜夜添夜夜添av毛片| 在线观看美女被高潮喷水网站| 精品少妇黑人巨大在线播放 | 国产亚洲精品av在线| 欧美性感艳星| 国产成人freesex在线| 免费观看性生交大片5| 精品酒店卫生间| 99久久无色码亚洲精品果冻| 国产黄片美女视频| 成人无遮挡网站| 插逼视频在线观看| 春色校园在线视频观看| 欧美三级亚洲精品| 国模一区二区三区四区视频| 午夜福利在线观看免费完整高清在| 春色校园在线视频观看| 三级国产精品欧美在线观看| 大香蕉97超碰在线| 永久网站在线| 51国产日韩欧美| 蜜臀久久99精品久久宅男| 蜜桃亚洲精品一区二区三区| 日韩精品有码人妻一区| 乱码一卡2卡4卡精品| 久久精品影院6| 少妇的逼水好多| 一个人免费在线观看电影| 精品酒店卫生间| 亚洲精品国产av成人精品| 日本免费一区二区三区高清不卡| a级毛色黄片| 亚洲自拍偷在线| 国产精品蜜桃在线观看| 久久婷婷人人爽人人干人人爱| 十八禁国产超污无遮挡网站| 国产精品一区二区三区四区久久| 秋霞伦理黄片| 嫩草影院精品99| 成人高潮视频无遮挡免费网站| 嫩草影院入口| av.在线天堂| 午夜爱爱视频在线播放| 蜜臀久久99精品久久宅男| 婷婷色av中文字幕| 26uuu在线亚洲综合色| 天堂影院成人在线观看| 国产成人精品婷婷| 日韩在线高清观看一区二区三区| 国产黄片视频在线免费观看| 女人久久www免费人成看片 | 三级经典国产精品| 国内精品宾馆在线| 午夜福利在线在线| 晚上一个人看的免费电影| 菩萨蛮人人尽说江南好唐韦庄 | 1000部很黄的大片| 大香蕉97超碰在线| 久久99精品国语久久久| 女的被弄到高潮叫床怎么办| www.色视频.com| 日本一本二区三区精品| 综合色av麻豆| 欧美不卡视频在线免费观看| 最近手机中文字幕大全| 又粗又爽又猛毛片免费看| 九色成人免费人妻av| 国产成人午夜福利电影在线观看| 视频中文字幕在线观看| 欧美最新免费一区二区三区| 国产精华一区二区三区| 亚洲精品日韩在线中文字幕| 亚洲av电影不卡..在线观看| 97超视频在线观看视频| 国产成人午夜福利电影在线观看|