• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    水溶液中碳酸鈾酰化合物的電子結(jié)構(gòu)

    2012-11-30 10:41:24辜家芳陸春海陳文凱章永凡
    物理化學(xué)學(xué)報(bào) 2012年4期
    關(guān)鍵詞:鈾酰碳酸配體

    辜家芳 陸春海 陳文凱,* 陳 勇 許 可 黃 昕 章永凡

    (1福州大學(xué)化學(xué)系,福州350108;2成都理工大學(xué)核技術(shù)與自動(dòng)化工程學(xué)院,成都610059)

    水溶液中碳酸鈾?;衔锏碾娮咏Y(jié)構(gòu)

    辜家芳1陸春海2陳文凱1,*陳 勇1許 可1黃 昕1章永凡1

    (1福州大學(xué)化學(xué)系,福州350108;2成都理工大學(xué)核技術(shù)與自動(dòng)化工程學(xué)院,成都610059)

    應(yīng)用相對(duì)論密度泛函理論系統(tǒng)研究了水溶液中非水合化和水合化碳酸鈾?;衔顲n/m(其中n和m分別為結(jié)構(gòu)中碳酸配體和水配體的個(gè)數(shù))的結(jié)構(gòu).溶劑效應(yīng)采用類(lèi)導(dǎo)體屏蔽模型(COSMO),并采用零級(jí)規(guī)整近似(ZORA)方法考慮標(biāo)量相對(duì)論效應(yīng)和旋-軌耦合相對(duì)論效應(yīng).電子躍遷采用包含旋-軌耦合相對(duì)論效應(yīng)的含時(shí)密度泛函理論并在相關(guān)交換勢(shì)中采用軌道勢(shì)能統(tǒng)計(jì)平均(SAOP)做近似計(jì)算.結(jié)果表明碳酸配體對(duì)配合物結(jié)構(gòu)和電子躍遷有很大的影響.C3/0配合物的穩(wěn)定性可歸于5f軌道參與了高占據(jù)軌道的成鍵作用.增加碳酸鹽配體導(dǎo)致最大波長(zhǎng)的藍(lán)移,并在近可見(jiàn)光區(qū)域出現(xiàn)高強(qiáng)度的吸收.

    鈾酰;UV-Vis;溶劑效應(yīng);含時(shí)密度泛函理論;旋-軌耦合相對(duì)論效應(yīng)

    1 Introduction

    The uranyl ion is easy to interact with carbonate ligands to form complexesand plays an important role in migration from a nuclear waste repository or in ac-cidental site contamination in natural water.Hence,to understand the properties of the uranyl carbonate complexes in environment is of great importance for scientific interest.Nguyen-Trung3and McGlynn4et al.have made experimental studies on the frequencies of O=U=O vibrations in uranyl ion with various inorganic and organic ligands.de Jong et al.5have theoretically reported the properties of geometries and frequencies on monomer complexes(n=1-3)and trimer complexesusing local density functional theory in gaseous phase with the program of NWChem.Our previous study6by Gaussian 03 program established linear correlations between the frequency of O=U=O systematical vibration and the number of different ligands in gaseous and aqueous phases. And some other spectroscopic techniques,such as X-ray diffraction,nuclear magnetic resonance spectroscopy(NMR),and extended X-ray absorption fine structure(EXAFS),have been employed for uranyl carbonate studies.7,8Some reviews have summarized recent advances in computational actinide chemistry.9-12UV-Vis spectra of uranyl(VI)carbonate complexes have been obtained in experiments,13,14but few studies were reported from the theoretical perspective.Su et al.9,15have calculated the luminescence properties of uranyl-glycine-water complexes in solution with the statistically averaged orbital potentials (SAOP)employed in the spin-orbit coupling time-dependent density functional theory(SO-TD-DFT)calculations.And for other actinide elements,the spectrum studies in theory and experiment were also limited.16To explain the absorption or emission spectra of actinide complexes is important for environmental detections.

    As seen from above survey,there is much experimental and theoretical interest in uranyl carbonate complexes.Absorption spectroscopy is a very important tool for analyzing chemical systems,but the interpretation of electronic spectra in terms of molecular structures remains challenges for experiments.In this paper,solvent effects on geometries of non-hydrated and hydrated structures of uranyl carbonate complexes were considered to predict characteristic absorption band of uranyl complexes in aqueous phase.

    2 Calculation details

    It is necessary to include relativistic effects on uranium included system.There are two general classes of relativistic effects that are clearly summarized as scalar relativistic and spinorbit coupling relativistic by Kaltsoyannis et al.17The scalar relativistic method is sufficient for ground state?s properties of actinide systems,including molecular geometries and vibration frequencies.5,15,17However,the spin-orbit coupling relativistic methods are demanded to be included in the calculation of excited states properties especially optical excitation energies.

    It is advised to obtain results by using gradient-correction DFT functional with small-core relativistic effective core potential(RECP)in the benchmark for approximate calculations on bare uranyl ion by de Jong et al.18We performed the optimizations for ground state structures on the Amsterdam Density Functional Code(ADF2010.01).19-21The corresponding approximation methods obtained reliable results on uranyl glycine complexes by Su et al.15Hence,we used the Perdew-Burke-Ernzerhof(PBE)exchange-correlation functional22and uncontracted Slater basis sets of triple-ζ plus one polarization(TZP) quality for the U atom and sets of double-ζ plus one polarization(DZP)quality for the C and O atoms from ADF basis library.23Small frozen atomic core approximation was applied to C,O with[1s2]and to U with[1s2-5d10].The zeroth-order regular approximation(ZORA)was used to account for scalar relativistic effects.24-26Solvent effects which were estimated by the conductor-like screening model(COSMO)used the solvent accessible surface(SAS).27,28And the default water dielectric constant(ε)is 78.4 for aqueous phase calculations.

    Electronic transitions by the time-dependent density functional theory(TD-DFT)29calculations based on ground state of uranyl complexes were performed.We examined the transitions from the ground state to the excited states.And the spinorbit coupling was included in excitation energies by the relativistic two-component ZORA formalism.24-26The statistically averaged orbital potentials(SAOP)15,30were employed in the TD-DFT calculations.

    3 Results and discussion

    3.1 Bond distance

    Geometries of uranyl carbonate complexes have become great interesting for theoretical and experimental chemists. From previous theoretical studies,5,31the calculated bond lengths for uranyl tri-carbonate anions are in accordance with experimental results8,32(Table 1).The use of COSMO improves the value of R(U-Ocarbonate)in structures at the PBE and PW91 levels.Although addition of diffused functions to U at the LDA

    3level leads to decrease of U=O bond length,the method is difficult in converging.5The R(U-Ocarbonate)at the PBE/ZORA level is close to experimental data in aqueous phase8as compared to those with the PW91 and LDA methods.Hence,we use the PBE/ZORA method with the the approximations of successive uranyl carbonate complexes.

    Table 1 Comparison of calculated and experimental bond lengths for UO2(CO3)4-

    Fig.1 Stable structures of non-hydrated(C1/0,C2/0,C3/0)and hydrated(C1/3,C2/1,C2/2)uranyl carbonate complexes

    The coordination number(CN)in the equator of the linear UO2unit for stable uranyl complexes is 5.15,33,34When CNs of uranyl carbonate complexes are 2 or 4,water molecule could be added to the equator to form more stable structures.Here we label the non-hydrated form and hydrated form with Cn/m (n and m are the numbers of carbonate and water ligands in uranyl complexes,respectively).The non-hydrated(C1/0,C2/0, C3/0)and hydrated(C1/3,C2/1,C2/2)structures of uranyl complexes are shown in Fig.1.In order to estimate the ligand effects on geometry and electronic structures of uranyl complexes,PBE/ZORA method is employed to optimize both forms.The bond lengths are listed in Table 2.

    The trend in the bond distances of non-hydrated structures is substantially the same as those observed in experimental and theoretical data.5By adding carbonate ligand in the equator of the linear UO2unit,the U=O and U-Oeqare elongated.It seems that ligands competing effects of carbonate ions have weakened the bonds of U=O and uranium-carbonate coordination.The R(U=O)of the successive uranyl carbonate complexes ranges from 0.1798 to 0.1852 nm in gaseous phase and 0.1802 to 0.1853 nm in aqueous phase.R(U=O)of C1/0 (UO2CO3)is widely discussed in experiments.35-38It arrived at 0.193 nm by Christ et al.,35(0.167±0.009)nm by Cromer and Harper,36and 0.174 nm by Finch et al.37Recently,Matar38has carried out a DFT study on lattice anisotropy,electronic and chemical geometry of C1/0,and the calculated R(U=O)value is 0.179 nm in the uranyl carbonate crystal.And we favor the results of longer U=O of C1/0 as those determined by theoretical methods.Solvent effects of water elongate the U=O in C1/ 0 as compared with that in gaseous phase.But for high coordination complexes of C2/0 and C3/0(uranyl di-,tri-carbonate complexes),similar R(U=O)values are obtained in gaseous and aqueous phases.The carbonate ion performs a great geometry deformation in successive uranyl carbonate complexes. The differences between R(C=O)and R(C-O)are great in the complexes which contain one or two uranium-carbonate coordination bonds,but are tiny in the complex with three uranium-carbonate coordination bonds.The hydrated water elongates U=O of C1/3 as compared with that in C1/0.And in C2/ 0,C2/1,and C2/2,similar bond lengths in gaseous and aqueous phases again illustrate the little effect by solvent on high uranium-carbonate coordination complexes.The fact that UOwateris much longer than U-Ocarbonateindicates that hydrated water may interact with uranyl ion weakly.

    3.2 Binding energy

    The corresponding binding energies15of the Cn/m complexes defined by energy differences between the whole complex and its components are based on the following formula:

    Cn/m refers to the non-hydrated and hydrated structures of ura-nyl complexes.And C(n-1)/m or Cn/(m-1)refers to the structures removing one carbonate ion or one water molecule from Cn/m.Carbonate,water,and uranyl are the components of a whole complex.The E refers to energy with the inclusion of spin orbit coupling relativistic effects in gaseous or aqueous phase.And all components?energies for the whole complex include the basis set superposition error(BSSE)correction.

    Table 2 Bond distances for uranyl carbonates in gaseous and aqueous phases

    Table 3 Binding energies for uranyl carbonates in gaseous and aqueous phase

    The parameter Ebcarbonate(Table 3)introduced by adding hydrated water in structures indicates that the bond of uraniumcarbonate coordination is strengthened in uranyl hydrated structures.And the small value of Ebwaterillustrates that uranium-water coordination is far weaker.In aqueous phase,the total binding energyof C3/0 is-1495.1 kJ·mol-1and the negative value means that the formation of C3/0is exothermic.The total binding energies show that C2/2 and C3/0 are the most stable carbonate complexes in gaseous and aqueous phases,respectively. These results agree with stability constants of uranyl carbonate in experiments.13,14,39In gaseous phase,the binding energy ofwith positive value means the formation of C3/0 from reactions between carbonate ion and C2/0 is endothermic by 522.1 kJ·mol-1.In Table 3,although hydrated water seems to increase the total binding energies of uranyl carbonate complexes,ligands competing effects could decrease the energies to separate one carbonate ion from C1/3,C2/1,and C2/2.The bond of uranium-water coordination tends to be intensified in aqueous phase as the binding energies of U-Owaterare higher than those in gaseous phase(Table 3).

    3.3 Molecular orbital

    Fig.2 Molecular orbital diagrams of hydrated uranyl complex C1/3H and L are short for the highest occupied and lowest unoccupied orbitals, respectively.The same abbreviation scheme is applied from Fig.3 to Fig.6.

    Fig.3 Isosurfaces(Ψ=±0.03 a.u.)of the corresponding frontier orbitals(H,H-1,L,L+2)in C1/3 complex

    Molecular orbital(MO)diagrams and frontier orbitals of C1/ 3 are displayed in Fig.2 and Fig.3,respectively.In uranyl,the highest occupied MOs(HOMOs)3σg,3σu,1πg(shù),and 2πuare most components of 2p shell centered on oxygen atoms,while the lowest unoccupied MOs(LUMOs)1Фu,1δu,and 3πualmost are the components of 5f shell centered on uranium atom.The HOMOs of C1/3 consist of 2p components from carbonate ligand and the LUMOs are mainly uranium 5f unoccupied orbital as the fragments interactions illustrated in Fig.2.Here we find that the H-1 orbital comes from the interactions of 3σuorbital of uranyl and 2p orbital of carbonate.And the HOMOs, 3σg,1πg(shù),and 2πuof uranyl come to interact with 2p components of water ligands to form orbital of uranyl complex in low energy level.The corresponding orbitals shown in Fig.3 are in accordance to the molecular orbitals interactions.Hence,the more carbonate ligands come to ligate with uranyl ion,the more 2p components of carbonate based orbital could insert in the high occupied energy level.That is also true in molecular orbital diagrams of C2/2 and C3/0 shown in Fig.4 and Fig.5. However,the main difference compared to C1/3 complex is that the components of 5f shell begin to take part in bonding interactions in C2/2 and C3/0.The bonding orbital between 5f and 2p components of C2/2 and C3/0 are showed in Fig.6.And we may attribute stability of C3/0 carbonate complex in aqueous phase to the inclusion of 5f components in high occupied orbital.

    Fig.4 Molecularorbitaldiagramsof hydrated uranylcomplexC2/2

    Fig.5 Molecular orbital diagrams of hydrated uranyl complex C3/0

    3.4 Electronic transitions

    Electronic transition calculations from PBE-ZORA by ADF program are mentioned in the detail of calculations.State splitting by the ligand field and spin-orbit coupling makes more transitions available.But symmetry in structure would restrict the transitions as selection rule only allows transitions with parity changes.

    The experimental characteristic absorption band was at 414 nm for uranyl species.40The absorption band of the uranyl complexes was broad in the visible range between 520 and 370 nm by extensive spectroscopy experiments studies on uranyl carbonate complexes13,14,41,42and some other inorganic ligands.38,43-47The excitation energies above 370 nm of uranyl carbonate complexes in Table 4 are in accordance with the major characteristics observed from experiments discussed above. Just as the main assignments of excitations transitions shown in Table 4,transitions are essentially transferred from high occupied orbital to the low vacant orbital.As the molecular orbitals discussed above,the main transitions between HOMOs and LUMOs are clearly ligand-to-metal charge transfer(LMCT) with electron density essentially transferring from carbonates ligand-based 2p components towards the vacant 5f orbital of the uranium.Only a few high occupied orbitals come from the interactions of 3σuorbital of uranyl and 2p components based orbital of carbonate.When compared to the allowed transitions in C1/3,the allowed ones in C2/2 and C3/0 turn to be with a smaller number for the restriction of centro symmetry of molecule in the selection rule.The maximum of wavelengths are blue shifted for uranyl carbonate complexes C1/3 to C3/0.And relatively stronger absorptions at 420 nm in all the uranyl carbonate complexes accord with properties of material itself.But our calculations indicate that absorptions at 420 nm in C2/2 and C3/0 are far stronger than those in C1/3.Our calculated UV-Vis absorption spectra are simulated by SO-TD-DFT calculations and displayed in Fig.7.The characters of uranyl carbonate complexes on UV-Vis spectra depend on the coordinating number of carbonate ion.And the additions of ligated water in structures make UV-Vis spectra slightly red shift as compared to those in the corresponding non-hydrated structures.Uranyl carbonate C1/0 behaved differently in absorption spectrum with no major characteristics as compared to those of other uranyl carbonate species by experimental study.44And the low intensity of absorptions for C1/3 is in accordance to the results from experiments.44The UV-Vis absorption spectra observed by Gong et al.47on uranyl acetohydroxamate also show no characteristics of other uranyl complexes.The absorption intensity of uranyl carbonate complexes can be explained by the differences in molecular orbital.As we have discussed above, components of 5f shell begin to take part in bonding orbital interactions in C2/2 and C3/0.The ligand contributions of carbonate ion allow larger ligand-to-metal charge transfer(LMCT). We can find that the carbonate ligand plays an important role in electronic absorption.It indicates that the addition of carbonate ligand leads to a blue shift in the maximum wavelength and high intensity of absorption in the near visible region.

    Fig.6 Isosurfaces(Ψ=±0.03 a.u.)of the bonding orbitals(H,and H-2)in C2/2 and C3/0 complexes

    Table 4 Excitation energy and main assignments of spinpolarized excitations for uranyl carbonate complexes

    Fig.7 Simulated UV-Vis spectra for non-hydrated(C1/0,C2/0, C3/0)and hydrated(C1/3,C2/1,C2/2)uranyl carbonate complexes as carbonate and hydrated water ligands changed from 1 to 3

    4 Conclusions

    It indicates that carbonate ligand plays an important role in its geometrical and electronic transitional properties.The geometries of uranyl carbonate complexes agree well with the available experimental and theoretical studies.The interpretations of the characteristics of uranyl carbonate complexes were suggested from a certain viewpoint of molecular orbital.The differences among orbital compositions show that more 2p based orbitals from carbonate ligands in the high occupied energy level are due to the addition of carbonate ligands in structures.This promotes the LMCT in the near visible region.And the adding of water in uranyl complexes makes little effect on LMCT transitions.Hence,the low intensity of absorptions at near visible region for C1/3 is attributed to the low number of carbonate ligand.

    (1)Clark,D.L.;Hobart,D.E.;Neu,M.P.Chem.Rev.1995,95,25.

    (2) Meinrath,G.J.Radioanal.Nucl.Chem.1996,211,349.

    (3)Nguyen-Trung,C.;Begun,G.M.;Palmer,D.A.Inorg.Chem. 1992,31,5280.

    (4) McGlynn,S.P.;Smith,J.K.;Neely,W.C.J.Chem.Phys.1961, 35,105.

    (5) de Jong,W.A.;Aprà,E.;Windus,T.L.;Nichols,J.A.;Harrison, R.J.;Gutowski,K.E.;Dixon,D.A.J.Phys.Chem.A 2005, 109,11568.

    (6) Gu,J.F.;Lu,C.H.;Chen,W.K.;Xu,Y.;Zheng,J.D.Acta Phys.-Chim.Sin.2009,25,655. [辜家芳,陸春海,陳文凱,許 瑩,鄭金德.物理化學(xué)學(xué)報(bào),2009,25,655.]

    (7)Allen,P.G.;Bucher,J.J.;Clark,D.L.;Edelstein,N.M.; Ekberg,S.A.;Gohdes,J.W.;Hudson,E.A.;Kaltsoyannis,N.; Lukens,W.W.Inorg.Chem.1995,34,4797.

    (8) Docrat,T.I.;Mosselmans,J.F.W.;Charnock,J.M.;Whiteley, M.W.;Collison,D.;Livens,F.R.;Jones,C.;Edmiston,M.J. Inorg.Chem.1999,38,1879.

    (9) Su,J.;Li,J.Prog.Chem.2011,23,1329.[蘇 靜,李 雋.化學(xué)進(jìn)展,2011,23,1329.]

    (10) Wang,D.Q.;Gunsteren,W.F.v.Prog.Chem.2011,23,1566. [王東琪,Gunsteren,W.F.v.化學(xué)進(jìn)展,2011,23,1566.]

    (11) Hu,H.S.;Wu,G.S.;Li,J.J.Nucl.Radiochem.2009,31,25. [胡憾石,吳國(guó)是,李 雋.核化學(xué)與放射化學(xué),2009,31,25.]

    (12) Liu,W.J.Prog.Chem.2007,19,833.[劉文劍.化學(xué)進(jìn)展, 2007,19,833.]

    (13) Cinnéide,S.ó.;Scanlan,J.P.;Hynes,M.J.J.Inorg.Nucl. Chem.1975,37,1013.

    (14) Scanlan,J.P.J.Inorg.Nucl.Chem.1977,39,635.

    (15) Su,J.;Zhang,K.;Schwarz,W.H.E.;Li,J.Inorg.Chem.2011, 50,2082.

    (16) Matsika,S.;Pitzer,R.M.;Reed,D.T.J.Phys.Chem.A 2000, 104,11983.

    (17) Kaltsoyannis,N.;Hay,P.J.;Li,J.;Blaudeau,J.P.;Bursten,B. E.Theoretical Studies of the Electronic Structure of Compounds of theActinide Elements.In The Chemistry of the Actinide and Transactinide Elements;Morss,L.R.,Edelstein, N.M.,Fuger,J.,Eds.;Springer:Netherlands,2006;p 1893.

    (18) de Jong,W.A.;Harrison,R.J.;Nichols,J.A.;Dixon,D.A. Theor.Chem.Acc.2001,107,22.

    (19)ADF2010,SCM,Theoretical Chemistry;Vrije Universiteit: Amsterdam,The Netherlands;http://www.scm.com.

    (20) Guerra,C.F.;Snijders,J.G.;Velde,G.T.;Baerends,E.J.Theor. Chem.Acc.1998,99,391.

    (21) Velde,G.T.;Bickelhaupt,F.M.;Baerends,E.J.;Guerra,C.F.; van Gisbergen,S.J.A.;Snijders,J.G.;Ziegler,T.J.Comput. Chem.2001,22,931.

    (22) Perdew,J.P.;Burke,K.;Ernzerhof,M.Phys.Rev.Lett.1996, 77,3865.

    (23) van Lenthe,E.;Baerends,E.J.J.Comput.Chem.2003,24, 1142.

    (24) van Lenthe,E.;Ehlers,A.E.;Baerends,E.J.J.Chem.Phys. 1999,110,8943.

    (25) van Lenthe,E.;Baerends,E.J.;Snijders,J.G.J.Chem.Phys. 1994,101,9783.

    (26) van Lenthe,E.;Baerends,E.J.;Snijders,J.G.J.Chem.Phys. 1993,99,4597.

    (27) Lee,B.;Richards,F.M.J.Mol.Biol.1971,55,379.

    (28) Richards,F.M.Annu.Rev.Biophys.Bioeng.1977,6,151.

    (29) Perdew,J.P.;Ruzsinsky,A.;Tao,J.;Staroverov,V.N.;Scuseria, G.E.;Csonka,G.I.J.Chem.Phys.2005,123,062201.

    (30) Schipper,P.R.T.;Gritsenko,O.V.;van Gisbergen,S.J.A.; Baerends,E.J.J.Chem.Phys.2000,112,1344.

    (31) Vázquez,J.;Bo,C.;Poblet,J.M.;de Pablo,J.;Bruno,J.Inorg. Chem.2003,42,6136.

    (32) Graziani,R.;Bombieri,G.;Forsellini,E.J.Chem.Soc.Dalton Trans.1972,2059.

    (33) Spencer,S.;Gagliardi,L.;Handy,N.C.;Ioannou,A.G.; Skylaris,C.K.;Willetts,A.;Simper,A.M.J.Phys.Chem.A 1999,103,1831.

    (34) Bardin,N.;Rubini,P.;Madic,C.Radiochim.Acta 1998,83,189.

    (35) Christ,C.L.;Clark,J.R.;Evans,H.T.J.Science 1955,121, 472.

    (36) Cromer,D.T.;Harper,P.E.Acta Crystallogr.1955,8,847.

    (37)Finch,R.J.;Cooper,M.A.;Hawthorne,F.C.;Ewing,R.C. Can.Mineral.1999,37,929.

    (38) Matar,S.F.Chem.Phys.2010,372,46.

    (39) Pashalidis,I.;Czerwinski,K.R.;Fanghanel,T.;Kim,J.I. Radiochim.Acta 1997,76,55.

    (40) Rude,W.Los Alamos Science 2000,26,412.

    (41) Meinrath,G.J.Radioanal.Nucl.Chem.1997,224,119.

    (42) Meinrath,G.;Klenze,R.;Kim,J.I.Radiochim.Acta 1996,74, 81.

    (43) Havel,J.;Soto-Guerrero,J.;Lubal,P.Polyhedron 2002,21, 1411.

    (44) Tian,G.;Rao,L.J.Chem.Thermodyn.2009,41,569.

    (45) Rao,L.;Tian,G.J.Chem.Thermodyn.2008,40,1001.

    (46) Tian,G.;Rao,L.Inorg.Chem.2009,48,6748.

    (47) Gong,C.M.S.;Poineau,F.;Czerwinski,K.R.Radiochim.Acta 2007,95,439.

    September 26,2011;Revised:January 8,2012;Published on Web:January 17,2012.

    Electronic Structures of Uranyl(VI)Carbonate Complexes in the Aqueous Phase

    GU Jia-Fang1LU Chun-Hai2CHEN Wen-Kai1,*CHEN Yong1XU Ke1HUANG Xin1ZHANG Yong-Fan1
    (1Department of Chemistry,Fuzhou University,Fuzhou 350108,P.R.China;2College of Nuclear Technology and Automation Engineering,Chengdu University of Technology,Chengdu 610059,P.R.China)

    A systematic study of series of non-hydrated and hydrated Cn/m uranyl carbonate complexes (n is number of carbonate ligands,and m is number of water molecules)in the aqueous phase was carried out using relativistic density functional theory.The conductor-like screening model was used to calculate solvent effects.The zeroth-order regular approximation was used to account for scalar relativistic effects and spin-orbit coupling relativistic effects.Time-dependent density functional theory with the inclusion of spin-orbit coupling relativistic effects was used to calculate electronic transitions using the statistically averaged orbital potentials.The results indicate that carbonate ligands play an important role in the geometric and electronic transition properties of the complex.The stability of the C3/0 carbonate complex in the aqueous phase may be attributed to the involvement of 5f components in the highest occupied bonding orbital.The addition of carbonate ligands caused a blue shift in the maximum wavelength and high intensity absorptions in the near visible region.

    Uranyl;UV-Vis;Solvent effect;Time-dependent density functional theory;Spin-orbit coupling relativistic effect

    10.3866/PKU.WHXB201201171

    O641

    ?Corresponding author.Email:qc2008@fzu.edu.cn;Tel:+86-591-22866162.

    The project was supported by the National Natural Science Foundation of China(10676007)and Program for New Century Excellent Talents at the University of Fujian Province,China(HX2006-103).

    國(guó)家自然科學(xué)基金(10676007)和福建省高等學(xué)校新世紀(jì)優(yōu)秀人才計(jì)劃(HX2006-103)資助項(xiàng)目

    猜你喜歡
    鈾酰碳酸配體
    什么!碳酸飲料要斷供了?
    冒泡的可樂(lè)
    一種鈾酰配合物的合成及其光催化降解性能研究
    pH-dependent Synthesis of Octa-nuclear Uranyl-oxalate Network Mediated by U-shaped Linkers
    電噴霧串聯(lián)質(zhì)譜快速鑒別水溶液中鈾酰形態(tài)及在檸檬酸鈾酰形態(tài)研究的應(yīng)用
    “碳酸鈉與碳酸氫鈉”知識(shí)梳理
    基于配體鄰菲啰啉和肉桂酸構(gòu)筑的銅配合物的合成、電化學(xué)性質(zhì)及與DNA的相互作用
    新型三卟啉醚類(lèi)配體的合成及其光學(xué)性能
    鈾酰-Salophen與環(huán)己烯酮的作用模式
    鑭石型碳酸鐠釹向堿式碳酸鐠釹的相轉(zhuǎn)變反應(yīng)特征及其應(yīng)用
    欧美性猛交╳xxx乱大交人| 国产精品日韩av在线免费观看| 亚洲精品456在线播放app | 久久久久久久久中文| 久久精品国产99精品国产亚洲性色| 国产单亲对白刺激| 一级av片app| 色尼玛亚洲综合影院| 成人亚洲精品av一区二区| 亚洲成人久久爱视频| 高清毛片免费观看视频网站| 欧美性猛交╳xxx乱大交人| 丝袜美腿在线中文| 欧美一区二区国产精品久久精品| 国产黄a三级三级三级人| 男女做爰动态图高潮gif福利片| 成人一区二区视频在线观看| 成人二区视频| 乱系列少妇在线播放| 欧美xxxx黑人xx丫x性爽| 欧美性猛交黑人性爽| 九九久久精品国产亚洲av麻豆| 亚洲美女黄片视频| 精品人妻偷拍中文字幕| av福利片在线观看| 亚洲精华国产精华液的使用体验 | 热99在线观看视频| 成年女人看的毛片在线观看| 麻豆一二三区av精品| 欧洲精品卡2卡3卡4卡5卡区| 麻豆成人午夜福利视频| 日韩欧美免费精品| 国产精品国产三级国产av玫瑰| 少妇人妻一区二区三区视频| 国产精品亚洲一级av第二区| 一个人看的www免费观看视频| 日韩在线高清观看一区二区三区 | 精品99又大又爽又粗少妇毛片 | av在线亚洲专区| 欧美高清成人免费视频www| a级一级毛片免费在线观看| av在线老鸭窝| 99热这里只有是精品50| 日日夜夜操网爽| 精品久久久噜噜| 精品一区二区三区视频在线| 亚洲精品久久国产高清桃花| 少妇猛男粗大的猛烈进出视频 | 高清日韩中文字幕在线| 精品久久久久久,| .国产精品久久| 免费在线观看成人毛片| 国产高清有码在线观看视频| 国产伦人伦偷精品视频| 天堂√8在线中文| 五月玫瑰六月丁香| 久久这里只有精品中国| 99久久精品一区二区三区| 国产在线精品亚洲第一网站| 级片在线观看| 亚洲av不卡在线观看| 亚洲av电影不卡..在线观看| 精品久久久久久成人av| 欧美色视频一区免费| 久久欧美精品欧美久久欧美| 不卡视频在线观看欧美| 国产蜜桃级精品一区二区三区| 男女啪啪激烈高潮av片| 亚洲中文字幕日韩| 中出人妻视频一区二区| 国内揄拍国产精品人妻在线| 午夜久久久久精精品| 国产大屁股一区二区在线视频| 1024手机看黄色片| 99riav亚洲国产免费| 最近最新免费中文字幕在线| 日日干狠狠操夜夜爽| 国产伦人伦偷精品视频| 日韩av在线大香蕉| 有码 亚洲区| 日韩精品有码人妻一区| 91av网一区二区| 九九久久精品国产亚洲av麻豆| 午夜影院日韩av| 一级av片app| www.www免费av| 国产高清有码在线观看视频| 亚洲av一区综合| 色哟哟·www| АⅤ资源中文在线天堂| 国产精品人妻久久久影院| 国产成年人精品一区二区| 国产精品一及| 国产私拍福利视频在线观看| 一进一出好大好爽视频| 尾随美女入室| 久久国产精品人妻蜜桃| 国产色婷婷99| 直男gayav资源| 精品人妻一区二区三区麻豆 | 精品人妻一区二区三区麻豆 | 国产色婷婷99| 国内久久婷婷六月综合欲色啪| 国内久久婷婷六月综合欲色啪| 久久精品国产鲁丝片午夜精品 | 一级a爱片免费观看的视频| 神马国产精品三级电影在线观看| 免费在线观看影片大全网站| 国产午夜福利久久久久久| 成人二区视频| 国产人妻一区二区三区在| 很黄的视频免费| 麻豆av噜噜一区二区三区| 国产精品久久久久久av不卡| 男女视频在线观看网站免费| а√天堂www在线а√下载| 俄罗斯特黄特色一大片| 免费人成视频x8x8入口观看| 别揉我奶头~嗯~啊~动态视频| 午夜免费激情av| 别揉我奶头~嗯~啊~动态视频| 亚洲在线自拍视频| ponron亚洲| 听说在线观看完整版免费高清| 亚洲黑人精品在线| 欧美黑人巨大hd| 少妇裸体淫交视频免费看高清| 国内毛片毛片毛片毛片毛片| 日本a在线网址| 一本久久中文字幕| 亚洲精品影视一区二区三区av| 亚洲av免费在线观看| 香蕉av资源在线| 日韩精品有码人妻一区| 亚洲av免费在线观看| 麻豆国产97在线/欧美| 亚洲av日韩精品久久久久久密| 免费观看人在逋| 男女视频在线观看网站免费| 最近中文字幕高清免费大全6 | 国产男靠女视频免费网站| 精品人妻视频免费看| 男人舔女人下体高潮全视频| 国产男人的电影天堂91| a级毛片免费高清观看在线播放| 天天躁日日操中文字幕| 日韩高清综合在线| 高清毛片免费观看视频网站| 精品人妻熟女av久视频| 久久午夜福利片| 男人的好看免费观看在线视频| 一区二区三区免费毛片| 精品一区二区三区视频在线| 国产视频内射| 极品教师在线视频| 国产成人av教育| 一区福利在线观看| 丰满的人妻完整版| 一级黄色大片毛片| 欧美潮喷喷水| 搡老熟女国产l中国老女人| 麻豆一二三区av精品| 日韩大尺度精品在线看网址| 日日摸夜夜添夜夜添小说| 免费观看精品视频网站| 国产欧美日韩精品一区二区| 日日摸夜夜添夜夜添小说| 尾随美女入室| 小说图片视频综合网站| 日日摸夜夜添夜夜添av毛片 | 无人区码免费观看不卡| 麻豆成人午夜福利视频| 久久久国产成人免费| 国内精品宾馆在线| 别揉我奶头~嗯~啊~动态视频| 午夜激情欧美在线| 一卡2卡三卡四卡精品乱码亚洲| 成人二区视频| 国产在线男女| 亚洲精华国产精华液的使用体验 | 极品教师在线免费播放| 91久久精品国产一区二区成人| 麻豆成人午夜福利视频| 亚洲人成网站在线播| 成人美女网站在线观看视频| 欧美色视频一区免费| 日韩欧美免费精品| 国产蜜桃级精品一区二区三区| 国产一级毛片七仙女欲春2| 亚洲成人久久性| 亚洲av中文av极速乱 | 久久精品国产亚洲av香蕉五月| 久久久成人免费电影| 亚洲精品粉嫩美女一区| 亚洲av第一区精品v没综合| 好男人在线观看高清免费视频| 在现免费观看毛片| 免费不卡的大黄色大毛片视频在线观看 | 老司机深夜福利视频在线观看| 精品人妻视频免费看| 欧美成人性av电影在线观看| 亚洲男人的天堂狠狠| 三级国产精品欧美在线观看| 超碰av人人做人人爽久久| 男人狂女人下面高潮的视频| 欧美三级亚洲精品| 国产精品自产拍在线观看55亚洲| 99久国产av精品| 欧美三级亚洲精品| 国产精品精品国产色婷婷| 性欧美人与动物交配| 亚洲人成网站在线播放欧美日韩| 亚洲国产欧美人成| 欧美极品一区二区三区四区| 1000部很黄的大片| 免费大片18禁| 中亚洲国语对白在线视频| 亚洲精品亚洲一区二区| 国产精品福利在线免费观看| 久久99热这里只有精品18| 九色成人免费人妻av| 亚洲av日韩精品久久久久久密| 久久天躁狠狠躁夜夜2o2o| av女优亚洲男人天堂| 在线看三级毛片| 一卡2卡三卡四卡精品乱码亚洲| 成人美女网站在线观看视频| 午夜日韩欧美国产| 特级一级黄色大片| 麻豆久久精品国产亚洲av| 亚洲精品在线观看二区| 99久久中文字幕三级久久日本| 99久久无色码亚洲精品果冻| 午夜视频国产福利| 国产高清激情床上av| 人妻少妇偷人精品九色| 婷婷亚洲欧美| 久久精品国产自在天天线| 成人午夜高清在线视频| 老司机午夜福利在线观看视频| 免费在线观看日本一区| 国产乱人伦免费视频| 一a级毛片在线观看| 国产国拍精品亚洲av在线观看| 免费看美女性在线毛片视频| 1024手机看黄色片| 校园春色视频在线观看| 91在线观看av| 人妻夜夜爽99麻豆av| 国产免费av片在线观看野外av| 亚洲无线在线观看| 男女视频在线观看网站免费| 别揉我奶头~嗯~啊~动态视频| 99热6这里只有精品| 国产精品精品国产色婷婷| 久久久久九九精品影院| 校园春色视频在线观看| 99热这里只有是精品50| 一个人看视频在线观看www免费| 国语自产精品视频在线第100页| 简卡轻食公司| 欧美3d第一页| 亚洲第一电影网av| 国产精品美女特级片免费视频播放器| 国产日本99.免费观看| 亚洲狠狠婷婷综合久久图片| av在线天堂中文字幕| 欧美色视频一区免费| 日本在线视频免费播放| 免费无遮挡裸体视频| 国内少妇人妻偷人精品xxx网站| 久久久精品欧美日韩精品| 麻豆成人午夜福利视频| 在线国产一区二区在线| 国产免费一级a男人的天堂| 91av网一区二区| 九色成人免费人妻av| 亚洲熟妇熟女久久| 国产精品久久久久久精品电影| 我要看日韩黄色一级片| 国产麻豆成人av免费视频| 人妻久久中文字幕网| 国产真实乱freesex| 亚洲图色成人| 不卡视频在线观看欧美| 国产三级在线视频| 一进一出好大好爽视频| 亚洲va在线va天堂va国产| 欧美另类亚洲清纯唯美| 免费av观看视频| 亚洲专区国产一区二区| 在线播放无遮挡| 日本在线视频免费播放| 亚洲,欧美,日韩| 人人妻人人澡欧美一区二区| 十八禁网站免费在线| 午夜免费激情av| 极品教师在线视频| 免费一级毛片在线播放高清视频| 国产乱人伦免费视频| 精品久久国产蜜桃| 久久久久精品国产欧美久久久| 一级a爱片免费观看的视频| 久久九九热精品免费| 亚洲性久久影院| 国国产精品蜜臀av免费| 欧洲精品卡2卡3卡4卡5卡区| 自拍偷自拍亚洲精品老妇| 亚洲国产色片| 看十八女毛片水多多多| 国产一区二区三区在线臀色熟女| 大又大粗又爽又黄少妇毛片口| 美女免费视频网站| 日本欧美国产在线视频| 久久久久国产精品人妻aⅴ院| 十八禁网站免费在线| 极品教师在线视频| 男人舔奶头视频| 性插视频无遮挡在线免费观看| 国产伦一二天堂av在线观看| 精品久久国产蜜桃| 两人在一起打扑克的视频| 成人毛片a级毛片在线播放| 免费搜索国产男女视频| 国产精品国产高清国产av| 亚洲国产欧洲综合997久久,| 成人二区视频| 久久欧美精品欧美久久欧美| 99riav亚洲国产免费| 免费无遮挡裸体视频| 色哟哟·www| 成人亚洲精品av一区二区| 亚洲自拍偷在线| 真人一进一出gif抽搐免费| 欧美激情国产日韩精品一区| 久久久久久大精品| 成人综合一区亚洲| 国产不卡一卡二| 一级av片app| 一区二区三区高清视频在线| 精品免费久久久久久久清纯| 久久久久久大精品| 俄罗斯特黄特色一大片| 春色校园在线视频观看| 日本一本二区三区精品| 午夜免费成人在线视频| 久久久精品欧美日韩精品| 中文字幕精品亚洲无线码一区| 国产色爽女视频免费观看| 波野结衣二区三区在线| 最新中文字幕久久久久| 亚洲精品粉嫩美女一区| 午夜老司机福利剧场| 美女高潮的动态| 亚洲,欧美,日韩| 欧美日本亚洲视频在线播放| 久久这里只有精品中国| 最近中文字幕高清免费大全6 | 国产精品一及| 国产真实伦视频高清在线观看 | 天堂网av新在线| 亚洲成人久久性| 免费观看人在逋| 免费人成在线观看视频色| 黄色女人牲交| 亚洲最大成人手机在线| 国产精品一区二区免费欧美| 欧美日韩黄片免| 亚洲成人精品中文字幕电影| 综合色av麻豆| 两人在一起打扑克的视频| 91在线观看av| 久久久成人免费电影| 可以在线观看的亚洲视频| 赤兔流量卡办理| 老熟妇仑乱视频hdxx| 久久久久久久午夜电影| 乱系列少妇在线播放| 精品久久久久久久人妻蜜臀av| 午夜日韩欧美国产| 日韩,欧美,国产一区二区三区 | 免费观看的影片在线观看| 亚洲午夜理论影院| 精品一区二区免费观看| 国产麻豆成人av免费视频| 在线观看免费视频日本深夜| 日本一二三区视频观看| 国内精品美女久久久久久| 琪琪午夜伦伦电影理论片6080| av黄色大香蕉| 久久久久国产精品人妻aⅴ院| 伊人久久精品亚洲午夜| 成人国产综合亚洲| 久久国产精品人妻蜜桃| 99视频精品全部免费 在线| 国产精品一及| 久久久久九九精品影院| 99热这里只有是精品50| 日本黄色视频三级网站网址| 精品午夜福利在线看| 精品人妻熟女av久视频| 赤兔流量卡办理| 深夜a级毛片| 一区二区三区免费毛片| 久久久精品大字幕| 国产熟女欧美一区二区| 精品免费久久久久久久清纯| 日本三级黄在线观看| 免费无遮挡裸体视频| 伦精品一区二区三区| 国产高清激情床上av| 在线观看美女被高潮喷水网站| 欧美3d第一页| 成人特级黄色片久久久久久久| 床上黄色一级片| 免费看日本二区| 精品福利观看| 日韩欧美三级三区| 国产真实乱freesex| 午夜视频国产福利| 久久99热这里只有精品18| 国产精华一区二区三区| 日日夜夜操网爽| 欧美日韩精品成人综合77777| 美女 人体艺术 gogo| av中文乱码字幕在线| 亚洲人与动物交配视频| 无遮挡黄片免费观看| 国产亚洲欧美98| 亚洲av中文av极速乱 | 伊人久久精品亚洲午夜| or卡值多少钱| 国产成人a区在线观看| 香蕉av资源在线| 亚洲国产精品久久男人天堂| 22中文网久久字幕| 亚洲精品久久国产高清桃花| 国产精品1区2区在线观看.| 两个人视频免费观看高清| 国产精品1区2区在线观看.| 亚洲欧美日韩卡通动漫| 99久久九九国产精品国产免费| 搡老妇女老女人老熟妇| 亚洲av中文字字幕乱码综合| 亚洲无线在线观看| 午夜视频国产福利| 欧美日韩乱码在线| 天天一区二区日本电影三级| www.www免费av| 亚洲中文字幕日韩| 可以在线观看的亚洲视频| 国产三级在线视频| 色av中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 18+在线观看网站| 国产男靠女视频免费网站| 国产中年淑女户外野战色| 国产精品综合久久久久久久免费| 欧美日韩中文字幕国产精品一区二区三区| 婷婷精品国产亚洲av| av天堂中文字幕网| 国产高清视频在线观看网站| 国产亚洲欧美98| h日本视频在线播放| 综合色av麻豆| 国产av一区在线观看免费| 亚洲一区二区三区色噜噜| 久久久久久久精品吃奶| 看十八女毛片水多多多| 欧美性感艳星| 亚洲av五月六月丁香网| 日韩高清综合在线| 婷婷亚洲欧美| 亚洲欧美日韩卡通动漫| 搡老熟女国产l中国老女人| 亚洲内射少妇av| 国产在视频线在精品| 91av网一区二区| 18禁黄网站禁片午夜丰满| 亚洲人成网站在线播放欧美日韩| 淫秽高清视频在线观看| 色尼玛亚洲综合影院| 日本与韩国留学比较| 美女 人体艺术 gogo| 亚洲中文字幕一区二区三区有码在线看| 欧美黑人巨大hd| 国产精品电影一区二区三区| 我的女老师完整版在线观看| 欧美另类亚洲清纯唯美| 日本五十路高清| 国产麻豆成人av免费视频| 91久久精品电影网| 给我免费播放毛片高清在线观看| 国产黄片美女视频| 久久久久久久精品吃奶| 亚洲最大成人中文| 国产精品自产拍在线观看55亚洲| 99久国产av精品| 永久网站在线| 69av精品久久久久久| 亚洲男人的天堂狠狠| 国内精品美女久久久久久| 狂野欧美激情性xxxx在线观看| 亚洲图色成人| 日本免费一区二区三区高清不卡| 两个人视频免费观看高清| 性欧美人与动物交配| 日本黄色视频三级网站网址| 少妇猛男粗大的猛烈进出视频 | 中亚洲国语对白在线视频| .国产精品久久| 在线观看午夜福利视频| 在线观看av片永久免费下载| 成年免费大片在线观看| 日韩欧美国产一区二区入口| 蜜桃亚洲精品一区二区三区| eeuss影院久久| 国产色爽女视频免费观看| 亚洲自偷自拍三级| 亚洲在线观看片| 成人国产麻豆网| 国产人妻一区二区三区在| 国产精品野战在线观看| 精品国产三级普通话版| 欧美xxxx黑人xx丫x性爽| 国产色爽女视频免费观看| 国产午夜精品久久久久久一区二区三区 | 日韩精品有码人妻一区| av女优亚洲男人天堂| 国产精品亚洲美女久久久| 在线免费观看的www视频| 成人二区视频| 日韩人妻高清精品专区| 99久久无色码亚洲精品果冻| 免费av观看视频| 哪里可以看免费的av片| 亚洲成av人片在线播放无| 最近最新免费中文字幕在线| 久久精品91蜜桃| 99久久精品国产国产毛片| 国产午夜精品久久久久久一区二区三区 | 99久久精品一区二区三区| 琪琪午夜伦伦电影理论片6080| 成人国产综合亚洲| 俺也久久电影网| 日韩欧美在线乱码| www.色视频.com| 午夜精品在线福利| 日本熟妇午夜| 精品一区二区免费观看| 国模一区二区三区四区视频| 91在线观看av| 哪里可以看免费的av片| 欧美另类亚洲清纯唯美| 一区福利在线观看| 欧美3d第一页| 91午夜精品亚洲一区二区三区 | av专区在线播放| 亚洲无线在线观看| 国产老妇女一区| 久9热在线精品视频| 男人舔奶头视频| 成人二区视频| 国产国拍精品亚洲av在线观看| 小蜜桃在线观看免费完整版高清| 乱人视频在线观看| 国产老妇女一区| 人妻少妇偷人精品九色| 国产三级在线视频| 国产成人a区在线观看| 久久久久久久午夜电影| 国产欧美日韩精品一区二区| 一夜夜www| 欧美区成人在线视频| 亚洲一区高清亚洲精品| 搡女人真爽免费视频火全软件 | 国产视频内射| 久久精品国产自在天天线| 午夜久久久久精精品| 国产精品女同一区二区软件 | 亚洲精品一卡2卡三卡4卡5卡| 久久久午夜欧美精品| 成年女人永久免费观看视频| 国产 一区 欧美 日韩| 在线观看av片永久免费下载| 久久天躁狠狠躁夜夜2o2o| 人妻制服诱惑在线中文字幕| 我要搜黄色片| 成人永久免费在线观看视频| 床上黄色一级片| 国产在视频线在精品| 国产私拍福利视频在线观看| 国产亚洲精品综合一区在线观看| 高清毛片免费观看视频网站| 亚洲精品亚洲一区二区| 日本欧美国产在线视频| 色噜噜av男人的天堂激情| 午夜精品一区二区三区免费看| 男女边吃奶边做爰视频| 99热这里只有是精品50| 国内毛片毛片毛片毛片毛片| 搞女人的毛片| 国产精品一区www在线观看 | 亚洲无线在线观看| 精品久久久久久成人av| 波多野结衣巨乳人妻| 国产精品国产三级国产av玫瑰| 日本在线视频免费播放| 国产一区二区三区av在线 | 一个人看的www免费观看视频| 嫩草影院精品99| 国产综合懂色| 97碰自拍视频| 99在线视频只有这里精品首页| 免费av不卡在线播放|