• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    顯式溶劑模型模擬嵌段共聚物在納米微滴中的圖案化結構

    2012-11-30 10:41:26伍紹貴
    物理化學學報 2012年4期
    關鍵詞:微滴共聚物洋蔥

    伍紹貴 孫 婷 周 萍 周 俊

    (四川師范大學化學與材料科學學院,成都610068)

    顯式溶劑模型模擬嵌段共聚物在納米微滴中的圖案化結構

    伍紹貴*孫 婷 周 萍 周 俊

    (四川師范大學化學與材料科學學院,成都610068)

    采用耗散粒子動力學(DPD)方法研究了嵌段共聚物在納米微滴中的相分離行為.模擬是將共聚物納米微滴置于溶劑環(huán)境中進行自發(fā)相分離,從而形成一些圖案化結構.由于是受限體系,所形成的結構和在溶液或熔融體中形成的相分離結構有所差異,這些結構的形成與親/疏溶劑嵌段比例(RH/T)有關系.隨著親/疏溶劑嵌段比例的增加,依次形成了棗糕球體、排球狀相、多層囊泡(洋蔥相)、籠狀相、納米桿狀相和分散膠束等結構.我們對洋蔥相的形成過程進行了詳細的描述.溶劑粒子的集群屬性有助于更加深入地了解洋蔥相的結構衍化.采用密度曲線分析了洋蔥相的結構.在較高的親/疏溶劑嵌段的比例條件下,嵌段共聚物主要表現(xiàn)為親溶劑性,通過吸收大量的溶劑溶脹形成疏松結構或瓦解形成分散的膠束懸浮在溶劑中.本文模擬結果與理論或?qū)嶒灲Y果基本吻合.

    耗散粒子動力學;洋蔥相;微相分離

    1 Introduction

    Block copolymers,composed of blocks of chemically distinct repeat units,can assemble into a variety of ordered structures in bulk or in solution,such as lamellae,hexagonally ordered cylinders,body-centered cubic arrays of spheres and other more complex structures.1-3These structures are of great in-terest in nanotechnological applications,including targeted drug-release capsules,micro-reactors and templates for heterogeneous catalysts,etc.4,5The main challenge of all these applications lies in the preparation of these nanostructures in a controllable way.Large amount of work has been done to address the problem of tailoring a desired nanostructure using block copolymers both experimentally and theoretically.6-9Groot and coworkers10studied the microphase separation of block copolymer melts after a temperature quench,and found the equilibrium structures to be lamellar,perforated lamellar,hexagonal rods,and micelles.This is in agreement with the results from experiments and mean-field theory qualitatively.However,as the result of using periodic boundary conditions,configurations fused with their periodic images forming across periodic structures11and made it hard to conceive the actual structures in space.Moreover,the phase separation in solvent condition was not covered in their work.Sevink and coworkers12investigated the self-assembly of amphiphilic polymers in solution using self-consistent field theory.A rich variety of complex vesicles were observed and the nanostructures could be tailored by both kinetic and thermodynamic factors.Restricted by the simplicity of the model,the simulation results cannot fully reproduce the real self-assembly process of amphiphilic polymers. Fraaije and coworkers13examined the microphase separation of dispersed droplets using a self-consistent-field simulation and discovered patterned structures formed in nanodroplets.However,since solvent has not been incorporated explicitly,the simulation results are inadequate to reveal the real microphase separation behaviors.

    Dissipative particle dynamics(DPD)is a mesoscopic simulation technique primarily proposed to study the hydrodynamic behavior of complex fluids.With coarse-grained models and employment of soft potentials,DPD can perform efficient simulation of large systems for long period of time,as compared to atomistic molecular dynamics simulations.Furthermore,due to explicit solvent evolved,DPD can truly reproduce the hydrodynamic behavior of complex fluids.It has been successfully used to investigate the phase morphology and the dynamics of soft matter systems,such as lipids,14block copolymers,7surfactants.15In this study,DPD simulation technique is applied to elucidate the microphase separation in block copolymer nanodroplets,and the results are compared to experimental or theoretical results.

    2 Experimental

    2.1 DPD simulation

    DPD is a mesoscopic simulation technique originally developed by Hoogerbrugge and Koelman.16Position r and velocity v of particles are governed by Newton′s second law of motion. Particles interact(fi)with each other via conservative force FC, dissipative force FD,random force FRand spring force FS.

    The first three forces are applied for all inter-particle pairs, which are truncated by the cutoff radius rc.FSis used to refrain the relative distance of adjacent beads.The conservative force FCis a soft repulsion taking the form

    where rijis the distance between particles i and j,and nijis the unit vector pointing from particle j to particle i.The dissipative force FDis given by

    where γ is friction parameterand vijis the relative velocity between particles i and j.The random force FRis defined as

    where ξijis a Gaussian-distributed random element.Dissipative and random forces serve as thermostat that ensures the evolution of system towards a Boltzmann-distributed equilibrium state.Amphiphile chain is modeled by tying particles together using Hookean springs with harmonic force FS,17

    where i,i+1 represent adjacent beads in molecular chain;k2is spring constant and l0is unstretched bond length.

    2.2 DPD model for block copolymer

    Our simulation system contains diblock copolymers and solvent.There are a variety of block copolymers,in which the molecular structure and the volume ratio of solvophilic/solvophobic blocks(RH/T)are varied.Since the microphase separation structure mainly depends on the volume ratio of two blocks,18we adopt linear diblock copolymer model HMTN-Mto elucidate their microphase separation behaviors in nanodroplets,where M and N-M are the numbers of H and T particles,H and T denote solvophilic particles and solvophobic particles,respectively.The diblock copolymer model is built by tying soft spherical particles together using Hookean springs and each particle represents a group of atoms.It should be noted that all connections between adjacent particles are fully flexible in these models.Thus,many complex processes can be reproduced on relatively smaller time and length scales.19,20Each copolymer chain contains N=10 beads.And by changing the numbers of H and T particles we obtain diblock copolymers with different values of RH/T.A parameter is defined as f=M/N,denoting the overall volume fraction of the H component.In addition,solvent is modeled by S particle which represents several solvent molecules.The interaction parameters for the conservative force between DPD particles have been described previously.21The repulsion parameters are set at aij=25kBT for the solvophilic interaction(H-S)and 75kBT for the solvophobic interaction(H-T and S-T).The value of parameter aij=75kBT is a value high enough to induce strong phase segregation of a binary mixture system.The value of repulsion parameters between particles of the same type(H-H,T-T,and S-S)is set at aij=25kBT.22The unstretched bond length l0is chosen at 0.7r0,and spring constant is set at k2=100kBT/r02.

    2.3 Simulation condition

    All physical quantities in this paper are presented in reduced units.The units for mass,length,energy are m0,r0,kBT,respectively.23For simplicity,all particles are assumed to have the same mass m0and size r0.24All the simulations are carried out in the NVT ensemble with constant particle number N,simulation box volume V,and temperature kBT=1.In this work,we quenched a dispersed nanodroplet of block copolymer in a solvent bath and then relaxed the structure by a dissipative particle dynamics simulation method to obtain patterned inner structures.Nanodroplets are generally formed in solvent with random irregular shapes.We have proved that the initial shape of nanodroplet does not affect the final morphology.For solvophobic copolymers,their nanodroplet would minimize its contact with solvent so as to evolve into a sphere.For solvophilic copolymers,their nanodroplet would be swelled by solvent into irregular shapes independent of the initial shape.However, nanodroplets with spherical shapes may accelerate the evolution process.The initial configuration is built as follows:first, a cubic simulation box(76.59r0×76.59r0×76.59r0)is filled up with block copolymers to the density of ρ=3r0-3.After the filling,the total particle number reaches the value of 1387840 (~138784 HMT10-Mmolecules).Then the system is dispersed sufficiently to create a homogenous melt,as shown in Fig.1(A). Subsequently,all the copolymer particles beyond a certain diameter are replaced by solvent particles.Therefore,a spherical copolymer nanodroplet is cut from the original cubic melt as shown in Fig.1(B).These replaced particles turn into the solvent environment surrounding the block copolymer nanodroplet.The thickness of solvent layer should be large enough to circumvent the influence of periodic boundary conditions.

    3 Results and discussion

    The nanodroplet of diblock copolymer in solvent is a confined system,which allows the self-assembly process to occur only inside the sphere.The final configurations depend on f, which is similar to self-assembly of block copolymer melts. For copolymers with f<0.5,the nanodroplet maintains nearsphere shape during the whole simulation time.Extreme asymmetric polymer——H1T9exhibits strong solvophobicity.Its nanodroplet tries to minimize the surface and evolves into an energetically favorable regular sphere(Fig.2(A)).Since insufficient to aggregate into large domains,these H particles gather into a number of small inverted micelles randomly distributed in the nanodroplet resembling the“Plum Pudding Model”. Thus,in this case,there is no obvious patterned internal structure formed in the nanodroplet.This is in full agreement with the prediction of self-consistent field simulation.

    Fig.1 Setup of initial configuration

    Fig.2 Obtained morphologies for(A)H1T9,(B)H2T8, (C)H3T7,(D)H4T6

    For the case of asymmetric copolymer H2T8,H particles gather into many solvophilic domains and T particles form the continuous phase.As shown in Fig.2(B),the resulted morphology is best described as a mixture of long wormlike and short inverted micelles.In melt systems,the mean-filed theory predicts a perfectly hexagonal array of micelles,while the DPD simulation expects a disordered peanut-shaped micellar phase.10Under current simulation conditions,influenced by the curved shape of the nanodroplet,these inverted micelles are aligned in concentric rings.For clear observation,a half of the ring is peeled off from the nanodroplet as shown in Fig.3.It is interesting to find that the original“l(fā)ong wormlike and short”inverted micelles are all long wormlike inverted micelles actually.The cluster analysis shows that the inverted micelles interconnect with each other forming a continuous phase with its appearance resembling volleyball.One ring is corresponding to a perforated shell structure in three-dimension.

    Fig.3 Volleyball-like morphology for H2T8

    As for H3T7(f=0.3)and H4T6(f=0.4),well-ordered structures composed of alternating H and T layers(the so-called onion phase)are formed.Solvent particles are encapsulated in the solvophilic H-rich layers.Onion phase is a particular structure composed of multiple lamellar layers.The gaps between any two solvophobic rings provide a space to encapsulate solvent and other solvophilic contents.This structure attracts great interest for its application in pharmaceutical formulations.The multiple lamellar layers not only protect the encapsulated contents,but also enable the sustained and controlled release of them.The obtained morphology for H4T6is a near-spherical onion with the size of 72.6r0,as shown in Fig.2(D).The onion includes four complete solvophobic rings and a micelle nucleus in the center,containing 19532,11488,5528,1710,and 123 copolymer molecules,respectively.The solvophilic H-rich regions form containers filled with a certain amount of solvent, which is introduced during the initial stage of onion formation. A total amount of 46549 S particles are encapsulated in the nanodroplet while the solvent content makes 12.1%.Each gap (including the central cavity)contains 33169,10060,2885,and 435 S particles,respectively.As for H3T7,affected by the central oblong vesicle,the obtained onion takes the shape of an ellipsoid,as shown in Fig.2(C).

    Fig.4 Density profiles for the obtained morphologies (A)H1T9,(B)H2T8,(C)H3T7,(D)H4T6

    In order to characterize the obtained structures,density profiles are evaluated among these morphologies and the results are summarized in Fig.4.For the extreme asymmetric case of H1T9,though no obvious internal structure is observed in Fig.2(A)as mentioned earlier,the existence of peaks in density curves(Fig.4(A))suggests otherwise:the morphology may have a certain orderly internal structure.As shown in Fig.4(A), there are four discernible H peaks(where H clusters gather) and three T peaks(where T clusters gather)and they appear to be staggered.With the increasing value of the radial distance, the intensity of these H and T peaks grows higher.This implies that the H clusters are arranged more in an incomplete ring when it comes closer to the surface of the nanodroplet and more random when closer to the center.As mentioned earlier, the microphase separation is confined inside the nanodroplet. The effect of the shape of the nanodroplet on the process peaks in the near-surface region,which probably causes the ring-like arrangement of the H clusters in this case.When moving away from the surface,this effect diminishes and results in randomly distributed H clusters.When it comes to the asymmetric model of H2T8(Fig.4(B)),six obvious H peaks emerge in the density curve and are arranged regularly.This shows that H clusters are arranged in incomplete rings in the nanodroplet,which is in agreement with Fig.2(B).Obviously,the outer rings are more regular than the inner ones in the nanodroplet.

    For the systems of H3T7and H4T6(Fig.4(C)and 4(D)),although both form onions,their density curves are slightly different.The peaks for H3T7onion are arranged less regularly than those for H4T6onion,which is caused by the irregularity of the spherical shape of H3T7onion.The intensity of T peaks in Fig.4(D)is almost at the same height——slightly above 3, suggesting that H4T6onion is in the shape of regular sphere and its solvophobic particles are closely packed.The space between two solvophobic layers is a solvophilic layer filled with H and S particles.Thus H and S peaks emerge between two T peaks when illustrated in the density curves as shown in Fig.4 (D).Moreover,when being closer the surface,the intensity of S peaks increases while that of H peaks decreases.This indicates that the amount of solvent contents in outer solvophilic layers is greater than that in inner ones.In addition,on both sides of each T peak,there are two H peaks,which confirm the existence of bilayer structure of each shell25,26(It is similar to a lipid bilayer membrane).Finally,the narrow H peak at r≈32.5r0corresponds to the single layer of H particles coating the onion′s surface.

    Fig.5 Kinetic pathway of onion formation(H4T6)Solvent particles are not displayed,but a slice illustration including solvent particles is depicted at t=8000t0.

    Fig.5 shows a series of snapshots illustrating the evolution pathway of onion from a nanodroplet.At initial stage(t=0t0), phase segregation takes place quickly between H and T particles,forming a lot of small solvophilic and solvophobic domains,which will merge into large ones later.The feature of the structure formed after 50t0can be described as a collection of associated bilayers.Since the shell is not yet sealed,many solvent pores are remained on the surface,providing temporary channels for solvent transmission.This allows the S particles to diffuse into the nanodroplet then to enter the solvophilic domains of H particles.These pores can stay open as long as 6500t0before being fully sealed.The inner space of the droplet is filled with highly folded bilayers,which connect to each other or to the shell.The conjunctions play an important role during the structure transition towards an onion.They enable the bilayers to exchange copolymers to adjust the amount in each bilayer.When a bilayer has sufficient copolymers,all the conjunctions connecting to it begin to break up.Then the bilayer becomes an independent ring.In our simulation,it is found that onion formation is promoted when outer rings are formed earlier than inner ones.This is due to the fact that it is hard for the outer rings to seal with limited number of available copolymers if the inner rings are formed earlier.Therefore,the outer three rings take shape during the time t=(1500-2000)t0.The remaining copolymers are concentrated in the central region and form an unsealed ring with a superfluous part.By the time of t= 7000t0,it is closed and the superfluous part breaks away from it to generate a small spherical micelle nucleus.This marks the formation of the final onion.Sometimes,the superfluous part is very large and forms an oblate bilayer,which would result in an oval onion.

    Fig.6 Particle cluster property

    Fig.7 Obtained morphologies of diblock copolymer nanodroplets(A)H5T5,cage-like structure,(B)H6T4,nanorods,(C)H7T3and(D)H8T2,discrete micelles.H and S particles are not drawn for clear observation.

    Another way to understand onion structure evolution is to investigate the change of particle cluster property.Given that particle i is already inside a cluster,the distance between particle j and i(rij)can be used to determine whether particle j is in a cluster:if rij

    Fig.8 Cluster size(chain number)distributions for H7T3,H8T2and H9T1

    The obtained morphologies of diblock copolymer nanodroplets(f≥0.5)are summarized in Fig.7.For the symmetric H5T5(f=0.5),Groot et al.10predict a lamellar phase in the situation of a pure melt.Under current simulation conditions,a lot of solvent diffuses into the nanodroplet,which makes the morphology swell into a loose cage-like structure,as shown in Fig.7(A).Due to the strong solvophobic interaction between T and S particles,the loose structure still maintains the integrity. The solvophobic regions are interconnected and the structure is actually like a perforated onion.For H6T4(f=0.6),since the number of solvophilic particles is higher than that of solvophobic particles,the diblock copolymer exhibits certain solvophilicity in whole.Therefore,more solvent molecules are attracted into the inner space of the nanodroplet.As a result,the nanodroplet can not keep integrity any more,and turns into a swarm of long worm-like micelles,as shown in Fig.7(B).For H7T3(f=0.7)and other diblock copolymers of f>0.7,due to the large ratio of solvophilic particles,the initial nanodroplets are disintegrated completely into a lot of small micelles,which are homogenously suspended in the solution,as shown in Fig.7(C) and Fig.7(D),respectively.The distribution of cluster sizes for each system is determined and is shown in Fig.8.Cluster sizes of the highest probability are 1,38 and 58 molecules for H9T1, H8T2and H7T3,respectively.With the increasing value of f,the sizes of micelles become smaller.H9T1molecules are almost soluble in the solvent,thus most exist in the free form.

    4 Conclusions

    In this study,DPD simulation is used to investigate the microphase separation behavior of block copolymer nanodroplets and the results are compared to the experimental or theoretical ones.It is found that block copolymer nanodroplets in solvent form many microphase separated structures,depending on the ratio of the solvophilic to the solvophobic blocks(RH/T).As RH/Tincreases,the formed morphologies are plum pudding microsphere,volleyball-like structure,onion,cage-like structure, nanorods,and discrete micelles in succession.At low value of RH/T,block copolymers exhibit mainly solvophobicity.To minimize the contact with the solvent,microspheres with patterned internal structures are formed.For highly asymmetric copolymer——H1T9,an almost regular sphere with disordered inverted micelles is formed.For H2T8system,H particles aggregate into long inverted micelles,which interconnect with each other and form a continuous phase resembling volleyball.Onion phases are obtained in H3T7and H4T6systems.The pathway of onion formation is described in detail for H4T6system.Density analysis denotes that the rings in onion have a bilayer structure like lipid membrane.Additionally,cluster particle number determination helps to get more intuition about the dynamics of the onion evolution.For symmetric molecule H5T5,different than the lamellar phase formed in melt,a cage-like structure is observed at the existence of solvent.At high value of RH/T, block copolymers exhibit mainly solvophilicity and the formed morphologies are mostly swelled loose structures.The morphology of small micelles suspending in solvent is formed when f>0.7.And the sizes of micelles reduce with the increasing value of f.The microphase separation structures of block copolymer nanodroplets in current simulation are qualitatively consistent with the self-consistent filed theory or the experimental results.Furthermore,with the inclusion of explicit solvent,this DPD technique reveals more actual dynamics of morphology evolution for these structures and represents the situation closer to the reality.

    (1) Li,Z.;Dormidontova,E.E.Macromolecules 2010,43,3521.

    (2) Blanazs,A.;Armes,S.P.;Ryan,A.J.Macromol.Rapid Commun.2009,30,267.

    (3) Ruiz,R.;Kang,H.;Detcheverry,F.A.;Dobisz,E.;Kercher,D. S.;Albrecht,T.R.;de Pablo,J.J.;Nealey,P.F.Science 2008, 321,936.

    (4)Wan,D.H.;Zheng,O.;Zhou,Y.;Wu,L.Y.Acta Phys.-Chim. Sin.2010,26,3243.[萬東華,鄭 歐,周 燕,吳莉瑜.物理化學學報,2010,26,3243.]

    (5) Matsui,H.;Okada,A.;Yoshihara,M.J.Mater.Sci.Lett.2001, 20,1151.

    (6) Roy,S.;Markova,D.;Kumar,A.;Klapper,M.;Mu¨ller-Plathe,F. Macromolecules 2009,42,841.

    (7)Wang,H.;Liu,Y.T.;Qian,H.J.;Lu,Z.Y.Polymer 2011,52, 2094.

    (8) Li,X.;Guo,J.;Liu,Y.;Liang,H.J.Chem.Phys.2009,130, 074908.

    (9)Chen,W.X.;Fan,X.D.;Huang,Y.;Liu,Y.Y.;Sun,L.React. Polym.2009,69,97.

    (10) Groot,R.D.;Madden,T.J.J.Chem.Phys.1998,108,8713.

    (11) Marrink,S.J.;Mark,A.E.J.Am.Chem.Soc.2003,125,15233.

    (12) Sevink,G.;Zvelindovsky,A.Macromolecules 2005,38,7502.

    (13) Fraaije,J.;Sevink,G.Macromolecules 2003,36,7891.

    (14) Ganzenmüller,G.;Hiermaier,S.;Steinhauser,M.Soft Matter 2011,7,4307.

    (15) Li,Z.;Dormidontova,E.E.Soft Matter 2011,7,4179.

    (16) Koelman,J.;Hoogerbrugge,P.J.Europhys.Lett.1993,21,363.

    (17) Shillcock,J.C.;Lipowsky,R.J.Chem.Phys.2002,117,5048.

    (18) Bates,F.S.;Fredrickson,G.H.Annu.Rev.Phys.Chem.1990, 41,525.

    (19)Venturoli,M.;Smit,B.;Sperotto,M.M.Biophys.J.2005,88, 1778.

    (20) Markvoort,A.J.;Pieterse,K.;Steijaert,M.N.;Spijker,P.; Hilbers,P.A.J.J.Phys.Chem.B 2005,109,22649.

    (21)Wu,S.;Guo,H.J.Phys.Chem.B 2009,113,589.

    (22)Yamamoto,S.;Maruyama,Y.;Hyodo,S.J.Chem.Phys.2002, 116,5842.

    (23)Yamamoto,S.;Hyodo,S.A.J.Chem.Phys.2003,118,7937.

    (24) Kranenburg,M.;Venturoli,M.;Smit,B.Phys.Rev.E 2003,67, 060901.

    (25)Van der Linden,E.;Hogervorst,W.T.;Lekkerkerker,H.N.W. Langmuir 1996,12,3127.

    (26) El Rassy,H.;Belamie,E.;Livage,J.;Coradin,T.Langmuir 2005,21,8584.

    (27) Rapaport,D.C.The Art of Molecular Dynamics Simulation; Cambridge Univ Press:Cambridge,2004.

    November 15,2011;Revised:February 4,2012;Published on Web:February 14,2012.

    Simulating Patterned Structures in Block Copolymer Nanodroplets Using Explicit Solvent Model

    WU Shao-Gui*SUN Ting ZHOU Ping ZHOU Jun
    (College of Chemistry and Materials Sciences,Sichuan Normal University,Chengdu 610068,P.R.China)

    Dissipative particle dynamics(DPD)simulation technique is used to elucidate the microphase separation behavior of block copolymers in nanodroplets.The simulation is performed by relaxing disordered copolymer nanodroplets in a solvent bath.Microphase separation is then carried out inside the nanodroplet,which allows block copolymers self-assemble into many new morphologies differing from those formed in pure melts or in solution.These patterned structures depend on the volume ratio of solvophilic/solvophobic blocks(RH/T).As the value of RH/Tincreases,the following structures are formed: plum-pudding microsphere,volleyball-like structure,multilamellar vesicle,cage-like structure,nanorods, and discrete micelles.Density analysis is performed to characterize the onion′s structure.At high RH/Tvalues,block copolymers exhibit mainly solvophilicity and form swollen loose structures or small micelles suspended in the solvent.The simulation results are in good agreement with experimental and theoretical results.

    Dissipative particle dynamics;Onion phase;Microphase separation

    10.3866/PKU.WHXB201202142

    O648

    ?Corresponding author.Email:wsgchem@foxmail.com.

    The project was supported by the Science and Technology Plan of Sichuan Province,China(2010JY0122),Science Research Fund of Sichuan Normal University,China(10MSL02),and 251 Key Talent Program of Sichuan Normal University,China.

    四川省應用基礎項目(2010JY0122),四川師范大學校級面上項目(10MSL02)和“251重點人才培養(yǎng)工程”資助

    猜你喜歡
    微滴共聚物洋蔥
    銀墨水/樹脂雙材料微滴噴射過程數(shù)值模擬與分析
    對稱Y型分岔微通道微滴分裂數(shù)值模擬與實驗探究
    織物表面導電線路噴射打印中微滴關鍵參數(shù)的視覺測量
    紡織學報(2021年7期)2021-07-26 10:04:56
    兩嵌段共聚物軟受限自組裝行為研究
    基于改進分水嶺分割算法的致密熒光微滴識別
    中國光學(2019年4期)2019-09-02 07:46:46
    洋蔥寫檢討
    切洋蔥
    雙親嵌段共聚物PSt-b-P(St-alt-MA)-b-PAA的自組裝行為
    化工進展(2015年3期)2015-11-11 09:18:44
    DADMAC-AA兩性共聚物的合成及應用
    剝開心的洋蔥
    99视频精品全部免费 在线| 永久网站在线| 久久免费观看电影| 国产精品人妻久久久影院| 久久97久久精品| 丝袜脚勾引网站| 在线观看一区二区三区激情| 亚洲成色77777| 国产 一区精品| 国产亚洲最大av| a级毛片黄视频| 国产精品麻豆人妻色哟哟久久| 亚洲中文av在线| 91久久精品电影网| 男女边吃奶边做爰视频| 51国产日韩欧美| 国产成人精品一,二区| 久久国产精品大桥未久av| 最黄视频免费看| 国产亚洲最大av| 精品人妻熟女av久视频| 男人添女人高潮全过程视频| a级毛片在线看网站| 亚洲av福利一区| 中文字幕精品免费在线观看视频 | 国产爽快片一区二区三区| 麻豆成人av视频| 亚洲精品视频女| 2018国产大陆天天弄谢| 最近2019中文字幕mv第一页| a级片在线免费高清观看视频| 成人毛片60女人毛片免费| 国产成人精品一,二区| 人人妻人人爽人人添夜夜欢视频| 两个人的视频大全免费| 亚洲综合色网址| 日本欧美国产在线视频| 黄色欧美视频在线观看| 亚洲精品aⅴ在线观看| 国产一区亚洲一区在线观看| 老司机亚洲免费影院| av在线老鸭窝| 成人毛片a级毛片在线播放| 亚洲国产欧美在线一区| 人妻少妇偷人精品九色| 国产精品国产av在线观看| 男的添女的下面高潮视频| 五月玫瑰六月丁香| 久久精品夜色国产| 久久久欧美国产精品| a级毛片在线看网站| 黑人猛操日本美女一级片| 简卡轻食公司| 亚洲无线观看免费| 精品国产乱码久久久久久小说| 久久久久久久精品精品| av线在线观看网站| 高清午夜精品一区二区三区| 免费久久久久久久精品成人欧美视频 | 在线观看免费日韩欧美大片 | 波野结衣二区三区在线| 日韩三级伦理在线观看| 老司机亚洲免费影院| 如何舔出高潮| 熟女电影av网| 日本猛色少妇xxxxx猛交久久| 亚洲精品日本国产第一区| 日韩视频在线欧美| 亚洲精品视频女| 国产精品一区二区在线不卡| 中文字幕制服av| 岛国毛片在线播放| 18禁裸乳无遮挡动漫免费视频| 夜夜骑夜夜射夜夜干| 欧美精品高潮呻吟av久久| 成年美女黄网站色视频大全免费 | 久久久久久久久久成人| 少妇人妻 视频| 国产精品久久久久久av不卡| 一级爰片在线观看| 日韩人妻高清精品专区| 爱豆传媒免费全集在线观看| 中文乱码字字幕精品一区二区三区| 国产色婷婷99| 欧美精品一区二区大全| 亚洲精品国产色婷婷电影| 亚洲精品成人av观看孕妇| 免费看不卡的av| 超色免费av| 美女xxoo啪啪120秒动态图| 久久久精品区二区三区| 国产探花极品一区二区| 久久久久久伊人网av| 一本大道久久a久久精品| 精品久久久噜噜| 久久人妻熟女aⅴ| 成人国语在线视频| 少妇 在线观看| 尾随美女入室| 国产成人91sexporn| 王馨瑶露胸无遮挡在线观看| 青春草视频在线免费观看| 天天操日日干夜夜撸| 国国产精品蜜臀av免费| 日韩一区二区三区影片| 女人久久www免费人成看片| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩国产mv在线观看视频| 丝袜喷水一区| 亚洲精品亚洲一区二区| xxxhd国产人妻xxx| videos熟女内射| 在线天堂最新版资源| 啦啦啦在线观看免费高清www| 简卡轻食公司| 日韩,欧美,国产一区二区三区| 欧美人与性动交α欧美精品济南到 | 少妇高潮的动态图| 精品亚洲成a人片在线观看| 女人久久www免费人成看片| 最黄视频免费看| 91国产中文字幕| 男女国产视频网站| 欧美激情国产日韩精品一区| .国产精品久久| 一个人看视频在线观看www免费| 母亲3免费完整高清在线观看 | 丰满乱子伦码专区| 色视频在线一区二区三区| 女性被躁到高潮视频| 老司机亚洲免费影院| 精品人妻熟女av久视频| 最近的中文字幕免费完整| 下体分泌物呈黄色| 99热这里只有精品一区| 日韩一区二区视频免费看| 永久免费av网站大全| 色婷婷av一区二区三区视频| 国产视频首页在线观看| 国产av国产精品国产| 最近2019中文字幕mv第一页| 丝瓜视频免费看黄片| 日日摸夜夜添夜夜添av毛片| 日韩人妻高清精品专区| 国产视频首页在线观看| 99久国产av精品国产电影| 韩国av在线不卡| 蜜桃国产av成人99| 欧美老熟妇乱子伦牲交| 大话2 男鬼变身卡| 99热这里只有是精品在线观看| 久久 成人 亚洲| 国产精品国产三级国产专区5o| 精品视频人人做人人爽| 女人久久www免费人成看片| 如日韩欧美国产精品一区二区三区 | 少妇丰满av| 黑人欧美特级aaaaaa片| 亚洲欧美日韩另类电影网站| 青春草视频在线免费观看| 人成视频在线观看免费观看| 亚洲精品乱码久久久久久按摩| 男女边摸边吃奶| 一级毛片电影观看| 国产日韩欧美亚洲二区| 91国产中文字幕| 一区二区三区免费毛片| 人妻一区二区av| 亚洲怡红院男人天堂| a级毛片黄视频| 精品少妇黑人巨大在线播放| 久久人人爽人人爽人人片va| 丝瓜视频免费看黄片| 边亲边吃奶的免费视频| 人人妻人人添人人爽欧美一区卜| 一级爰片在线观看| 亚洲美女黄色视频免费看| 一区二区av电影网| 中文字幕最新亚洲高清| 中文乱码字字幕精品一区二区三区| 亚洲国产精品999| 亚洲国产av新网站| 人妻系列 视频| www.av在线官网国产| 国产欧美另类精品又又久久亚洲欧美| 在线亚洲精品国产二区图片欧美 | 美女内射精品一级片tv| av视频免费观看在线观看| 五月伊人婷婷丁香| 国产精品一区www在线观看| 九草在线视频观看| 国产视频首页在线观看| 国产日韩欧美在线精品| 又大又黄又爽视频免费| 韩国av在线不卡| 大陆偷拍与自拍| av一本久久久久| 蜜桃久久精品国产亚洲av| 高清午夜精品一区二区三区| 亚洲精品av麻豆狂野| 欧美一级a爱片免费观看看| 男人操女人黄网站| 一本一本综合久久| 欧美最新免费一区二区三区| 久久人人爽av亚洲精品天堂| 久久狼人影院| 亚洲综合色惰| 在线亚洲精品国产二区图片欧美 | 亚洲精品456在线播放app| 精品国产一区二区三区久久久樱花| 国产视频首页在线观看| 欧美97在线视频| 看非洲黑人一级黄片| 成年人午夜在线观看视频| 日本黄色日本黄色录像| 激情五月婷婷亚洲| 在线观看一区二区三区激情| 亚洲怡红院男人天堂| 一级黄片播放器| 欧美最新免费一区二区三区| 制服人妻中文乱码| 国产免费又黄又爽又色| 国产精品偷伦视频观看了| 亚洲欧美清纯卡通| 亚洲精华国产精华液的使用体验| 91国产中文字幕| 少妇猛男粗大的猛烈进出视频| 免费黄频网站在线观看国产| 日本色播在线视频| 国产片特级美女逼逼视频| 成年人免费黄色播放视频| 亚洲综合色网址| 在线亚洲精品国产二区图片欧美 | 啦啦啦中文免费视频观看日本| 欧美日韩亚洲高清精品| 国产探花极品一区二区| 天天躁夜夜躁狠狠久久av| 夫妻午夜视频| 欧美xxxx性猛交bbbb| 国产免费又黄又爽又色| 免费av不卡在线播放| 成人国产麻豆网| 一边亲一边摸免费视频| 国产精品嫩草影院av在线观看| 大又大粗又爽又黄少妇毛片口| 男男h啪啪无遮挡| 在线免费观看不下载黄p国产| 高清毛片免费看| 女性生殖器流出的白浆| 夫妻性生交免费视频一级片| 国产 一区精品| 久久久久人妻精品一区果冻| 久久精品夜色国产| 高清视频免费观看一区二区| 欧美bdsm另类| 一区二区三区乱码不卡18| 国产成人精品一,二区| a级毛片在线看网站| 中文字幕最新亚洲高清| 婷婷色av中文字幕| 精品酒店卫生间| 视频区图区小说| 午夜福利影视在线免费观看| 国产免费又黄又爽又色| 天天躁夜夜躁狠狠久久av| 日韩成人av中文字幕在线观看| 熟妇人妻不卡中文字幕| 亚洲欧美精品自产自拍| 哪个播放器可以免费观看大片| 久久97久久精品| 中文字幕人妻熟人妻熟丝袜美| 久久免费观看电影| 日本av手机在线免费观看| 亚洲国产精品国产精品| 成人毛片a级毛片在线播放| 天堂8中文在线网| 乱人伦中国视频| 亚洲av日韩在线播放| 日韩制服骚丝袜av| 午夜激情福利司机影院| 亚洲国产精品一区二区三区在线| 亚洲精品国产色婷婷电影| 中文字幕制服av| 一区二区三区精品91| 国产片特级美女逼逼视频| 大陆偷拍与自拍| av在线播放精品| 亚洲欧美成人精品一区二区| 一边亲一边摸免费视频| 大又大粗又爽又黄少妇毛片口| 精品一区二区免费观看| 能在线免费看毛片的网站| 精品人妻熟女毛片av久久网站| 精品一区在线观看国产| 日韩一区二区视频免费看| 亚洲精品乱久久久久久| 国产色爽女视频免费观看| 日韩中字成人| 晚上一个人看的免费电影| 久久热精品热| 色婷婷久久久亚洲欧美| 亚洲国产精品一区二区三区在线| 99久国产av精品国产电影| 老司机影院毛片| 观看美女的网站| 另类亚洲欧美激情| 国产亚洲欧美精品永久| 久久国产精品男人的天堂亚洲 | 男人操女人黄网站| 999精品在线视频| 亚洲一区二区三区欧美精品| 久久精品夜色国产| 午夜日本视频在线| 亚洲av免费高清在线观看| videosex国产| 校园人妻丝袜中文字幕| 国产成人freesex在线| 国产精品欧美亚洲77777| tube8黄色片| www.色视频.com| 欧美 日韩 精品 国产| 国产黄色免费在线视频| 久久精品夜色国产| 这个男人来自地球电影免费观看 | 伊人亚洲综合成人网| 夜夜骑夜夜射夜夜干| 免费av不卡在线播放| 国产成人免费无遮挡视频| 伊人久久精品亚洲午夜| 免费大片18禁| 国产成人freesex在线| 久久午夜综合久久蜜桃| 欧美激情 高清一区二区三区| 精品久久久久久久久av| 在线观看免费视频网站a站| 777米奇影视久久| videos熟女内射| 日本wwww免费看| 飞空精品影院首页| 99热国产这里只有精品6| 麻豆精品久久久久久蜜桃| 亚洲av中文av极速乱| 热99国产精品久久久久久7| 国产精品久久久久久久电影| 午夜老司机福利剧场| 久久国产精品大桥未久av| 免费观看无遮挡的男女| 亚洲av二区三区四区| 亚洲精品久久午夜乱码| 日本黄色日本黄色录像| 啦啦啦中文免费视频观看日本| 亚洲在久久综合| 久久午夜综合久久蜜桃| 欧美激情国产日韩精品一区| xxxhd国产人妻xxx| av有码第一页| 亚洲成人手机| 国产精品久久久久久久电影| 国产精品嫩草影院av在线观看| 夜夜看夜夜爽夜夜摸| a级毛片在线看网站| 18禁裸乳无遮挡动漫免费视频| 久久精品久久久久久久性| 大香蕉久久网| 亚洲婷婷狠狠爱综合网| 成人亚洲欧美一区二区av| 99久久综合免费| 性高湖久久久久久久久免费观看| 精品国产国语对白av| 国产爽快片一区二区三区| 少妇丰满av| 特大巨黑吊av在线直播| 亚洲美女视频黄频| 亚洲图色成人| 亚州av有码| 少妇精品久久久久久久| 爱豆传媒免费全集在线观看| 黄色欧美视频在线观看| 丰满乱子伦码专区| 91精品一卡2卡3卡4卡| 91久久精品电影网| 91久久精品国产一区二区三区| 免费观看性生交大片5| av免费在线看不卡| 亚洲精品日韩av片在线观看| 久久久久网色| 伦理电影大哥的女人| 国产精品三级大全| 亚洲精品乱码久久久v下载方式| 欧美bdsm另类| 国产精品国产三级国产专区5o| a级毛片在线看网站| 亚洲国产最新在线播放| 国产精品不卡视频一区二区| 国产欧美另类精品又又久久亚洲欧美| 成年av动漫网址| 91国产中文字幕| av女优亚洲男人天堂| 精品国产一区二区三区久久久樱花| 亚洲欧美日韩卡通动漫| 精品人妻在线不人妻| 69精品国产乱码久久久| 春色校园在线视频观看| 国产在线免费精品| 国产亚洲最大av| 日韩精品免费视频一区二区三区 | 免费观看在线日韩| 国产日韩一区二区三区精品不卡 | 大香蕉久久成人网| 久久韩国三级中文字幕| 麻豆成人av视频| 九色成人免费人妻av| 丁香六月天网| 亚洲天堂av无毛| 欧美3d第一页| freevideosex欧美| 国产精品久久久久久精品电影小说| 满18在线观看网站| 男女边吃奶边做爰视频| 天堂俺去俺来也www色官网| 人妻制服诱惑在线中文字幕| 久久午夜综合久久蜜桃| 久久久精品免费免费高清| 夫妻午夜视频| av在线老鸭窝| 国产精品一国产av| 一级黄片播放器| 亚洲国产精品一区二区三区在线| av国产久精品久网站免费入址| 亚洲,欧美,日韩| 成人影院久久| 一级毛片aaaaaa免费看小| 桃花免费在线播放| 亚洲人成网站在线播| 亚洲av国产av综合av卡| 欧美日韩av久久| 国产男女超爽视频在线观看| 777米奇影视久久| 少妇精品久久久久久久| 人成视频在线观看免费观看| 精品少妇久久久久久888优播| 国产免费又黄又爽又色| 久久精品国产自在天天线| 日本黄色片子视频| 人体艺术视频欧美日本| 丝袜美足系列| 国产成人一区二区在线| 色吧在线观看| 蜜桃久久精品国产亚洲av| 最新中文字幕久久久久| 韩国高清视频一区二区三区| 日产精品乱码卡一卡2卡三| 亚洲综合精品二区| 亚洲中文av在线| 黄片播放在线免费| 成人18禁高潮啪啪吃奶动态图 | 成年女人在线观看亚洲视频| 精品人妻偷拍中文字幕| 日韩av免费高清视频| 亚洲成人一二三区av| 最近中文字幕2019免费版| 色视频在线一区二区三区| tube8黄色片| 精品国产乱码久久久久久小说| 成人二区视频| 亚洲精品久久久久久婷婷小说| av女优亚洲男人天堂| 精品国产露脸久久av麻豆| 91久久精品国产一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 国产精品成人在线| 在线观看www视频免费| 我的老师免费观看完整版| 日韩免费高清中文字幕av| 夫妻性生交免费视频一级片| 久久韩国三级中文字幕| 日本91视频免费播放| 少妇的逼水好多| 亚洲国产欧美在线一区| 亚洲国产毛片av蜜桃av| 国产极品粉嫩免费观看在线 | 国产亚洲av片在线观看秒播厂| 哪个播放器可以免费观看大片| 黄色视频在线播放观看不卡| 两个人的视频大全免费| 国产精品久久久久成人av| 欧美日韩一区二区视频在线观看视频在线| 少妇猛男粗大的猛烈进出视频| 精品酒店卫生间| 在线观看美女被高潮喷水网站| 久久婷婷青草| 一边亲一边摸免费视频| 欧美精品高潮呻吟av久久| av免费观看日本| 三级国产精品片| av在线观看视频网站免费| 国产精品99久久99久久久不卡 | 国产欧美另类精品又又久久亚洲欧美| 蜜桃国产av成人99| 看非洲黑人一级黄片| 老女人水多毛片| 久久ye,这里只有精品| 性高湖久久久久久久久免费观看| av电影中文网址| 这个男人来自地球电影免费观看 | 亚洲精品色激情综合| 考比视频在线观看| 99九九线精品视频在线观看视频| 免费av不卡在线播放| 色婷婷久久久亚洲欧美| 亚洲天堂av无毛| 精品亚洲成国产av| 制服人妻中文乱码| 九九在线视频观看精品| 亚洲av免费高清在线观看| 中文欧美无线码| 麻豆乱淫一区二区| 日韩制服骚丝袜av| 久久狼人影院| 日日爽夜夜爽网站| 亚洲欧美一区二区三区黑人 | 狂野欧美激情性bbbbbb| 3wmmmm亚洲av在线观看| 丁香六月天网| 天堂8中文在线网| av.在线天堂| 三级国产精品片| 国产成人免费观看mmmm| 赤兔流量卡办理| 精品少妇内射三级| 人妻夜夜爽99麻豆av| 欧美亚洲日本最大视频资源| 亚洲精品色激情综合| 热99久久久久精品小说推荐| av国产久精品久网站免费入址| 永久网站在线| 久久久久久久大尺度免费视频| 国产精品秋霞免费鲁丝片| 人妻 亚洲 视频| 国产免费视频播放在线视频| 久久99一区二区三区| 特大巨黑吊av在线直播| 又粗又硬又长又爽又黄的视频| 精品少妇黑人巨大在线播放| 美女cb高潮喷水在线观看| 日本av免费视频播放| 国产日韩欧美在线精品| 午夜免费鲁丝| 边亲边吃奶的免费视频| 九九爱精品视频在线观看| 国产亚洲欧美精品永久| 伦理电影大哥的女人| 狂野欧美白嫩少妇大欣赏| 日韩不卡一区二区三区视频在线| 亚洲人成网站在线观看播放| 午夜老司机福利剧场| 国产极品天堂在线| 亚洲av在线观看美女高潮| 色哟哟·www| 国产成人精品在线电影| 国产乱来视频区| 精品久久久久久电影网| 成年女人在线观看亚洲视频| 一二三四中文在线观看免费高清| 男女边摸边吃奶| 中文字幕人妻熟人妻熟丝袜美| 国产精品一区二区在线不卡| 中文字幕人妻丝袜制服| 亚洲成人一二三区av| 日韩中文字幕视频在线看片| 欧美人与善性xxx| 日本欧美国产在线视频| 精品国产乱码久久久久久小说| 两个人免费观看高清视频| 美女福利国产在线| 亚洲精品乱码久久久久久按摩| 精品亚洲成a人片在线观看| 亚洲av电影在线观看一区二区三区| av.在线天堂| 亚洲精品456在线播放app| 国产精品免费大片| 免费高清在线观看日韩| 日韩一区二区三区影片| 18禁裸乳无遮挡动漫免费视频| 免费看光身美女| av女优亚洲男人天堂| 日本wwww免费看| 18+在线观看网站| 国产亚洲精品久久久com| 观看av在线不卡| 久久婷婷青草| 能在线免费看毛片的网站| 如日韩欧美国产精品一区二区三区 | 国产成人freesex在线| 国内精品宾馆在线| 3wmmmm亚洲av在线观看| 久久久欧美国产精品| 国产亚洲精品久久久com| 免费观看a级毛片全部| 国产av一区二区精品久久| 国模一区二区三区四区视频| 国产精品偷伦视频观看了| 中文字幕久久专区| 久久青草综合色| 久久免费观看电影| 久久久a久久爽久久v久久| 久久99热这里只频精品6学生| 亚洲av欧美aⅴ国产| 乱人伦中国视频| 久久综合国产亚洲精品| 亚洲国产精品一区二区三区在线| 亚洲美女搞黄在线观看| 美女xxoo啪啪120秒动态图| 在线看a的网站| 成年av动漫网址|