孫鳳琪
(東北大學(xué)系統(tǒng)科學(xué)研究所,110819 沈陽(yáng))
考慮下面不確定時(shí)變時(shí)滯系統(tǒng):
不確定時(shí)滯系統(tǒng)的控制器設(shè)計(jì)
孫鳳琪
(東北大學(xué)系統(tǒng)科學(xué)研究所,110819 沈陽(yáng))
為了消除時(shí)滯和不確定性給實(shí)際系統(tǒng)造成的不良影響,采用魯棒控制系統(tǒng)設(shè)計(jì)技術(shù),進(jìn)行魯棒控制,對(duì)具有不確定性的系統(tǒng),設(shè)計(jì)1個(gè)反饋增益控制器,使系統(tǒng)在不確定性的容許變化范圍內(nèi)滿(mǎn)足設(shè)計(jì)要求,降低系統(tǒng)的靈敏度.通過(guò)構(gòu)造一種新的Lyapunov泛函方法,研究了一類(lèi)帶有時(shí)變時(shí)滯的不確定系統(tǒng)的魯棒控制問(wèn)題.通過(guò)細(xì)化不確定信息的結(jié)構(gòu),給出了基于線性矩陣不等式的控制器設(shè)計(jì)方法.
Schur補(bǔ)引理;狀態(tài)反饋控制;不確定時(shí)滯系統(tǒng)
其中Q >0對(duì)稱(chēng)正定矩陣.特別地,當(dāng)Q=ε時(shí),有下面矩陣不等式:
成立.
引理2 已知矩陣E、D和對(duì)稱(chēng)矩陣Y,對(duì)任意的不確定矩陣F(t),如果滿(mǎn)足如下矩陣不等式:
則當(dāng)且僅當(dāng)存在η>0,使得
考慮下面不確定時(shí)變時(shí)滯系統(tǒng):
其中:x(t)∈Rn是系統(tǒng)狀態(tài)向量;u(t)∈Rm是輸入向量;A、Ad、B是已知的適當(dāng)維數(shù)的定常矩陣,A漸進(jìn)穩(wěn)定.d(t)是時(shí)滯可微函數(shù),并且滿(mǎn)足下式:
式中:τ,t是已知常數(shù),φ(t)是連續(xù)向量初始函數(shù).D、E1、Ed是已知的適當(dāng)維數(shù)定常矩陣,表示不確定性結(jié)構(gòu)信息[2],F(xiàn)(t)∈ Ri×j是范數(shù)有界的不確定系統(tǒng)模型參數(shù)矩陣,其滿(mǎn)足
假設(shè)系統(tǒng)狀態(tài)可測(cè),設(shè)
那日本兵又罵一聲八嘎,準(zhǔn)備再給周教授兩耳光。鬼子軍官揮手制止了。鬼子軍官背著手沿周教授走了一圈兒,又沿五個(gè)人走了一圈兒,最后面對(duì)著幾個(gè)站定,用生硬的中國(guó)話說(shuō),你們的,什么的干活?
其中K是適當(dāng)維數(shù)待定控制增益矩陣,則閉環(huán)系統(tǒng)成為
證明 由下式
定義Lyapunov-Krasovskii泛函如下:
其中P >0,Q >0,P1>0,P2>0是適當(dāng)維數(shù)正定加權(quán)矩陣,這樣V(xt)就是正定的Lyapunov-Krasovskii泛函.
把V(xt)沿著系統(tǒng)(1)的軌跡進(jìn)行微分,得
由引理1知,存在常量λ1>0,λ2>0,經(jīng)推導(dǎo)整理,得下式:
由文獻(xiàn)[3],存在 α >0,β >0
再用文獻(xiàn)[4]類(lèi)似的方法,得
又由式(2)得
取 P1= λ1αI,P2= λ2βI,則整理得
顯然,若 M(ε)< 0,而
做限定[5]αI≤ PPT、βI≤ PPT,則由合同變換得下式:
再由Schur補(bǔ)引理,M <0等價(jià)于下面矩陣不等式成立:
其中“*”號(hào)的意義同上,
把式(4)作如下處理,以消除不確定:
由引理2知,存在 η > 0,使得P-1MP-T< 0,等價(jià)于
證畢
在系統(tǒng)(1)中,令E1=0,Ed=0,得到如下矩陣不等式:
這正是正常系統(tǒng)的穩(wěn)定性條件[6].
本文考慮一類(lèi)帶時(shí)變時(shí)滯的不確定系統(tǒng),研究系統(tǒng)的魯棒控制器設(shè)計(jì)問(wèn)題.所得控制器設(shè)計(jì)方法描述為線性矩陣不等式形式,容易利用現(xiàn)有優(yōu)化方法求解相關(guān)問(wèn)題[5,7].與現(xiàn)有文獻(xiàn)[8 -10]相比,系統(tǒng)不確定性結(jié)構(gòu)更加具體.因此,所提方法易于實(shí)現(xiàn)且具有廣泛的應(yīng)用前景.
[1]MA X J.Research on robust stability and robust control for uncertain time-de1ay systems[D].Guangzhou:South China Univisity of Technology,2005:14 -15.
[2]CAO Y Y,SUN Y X.Robust stability of uncertain systems with time-varying multistate delay[J].IEEE Trans Autom Control,1998,43(3):1484 -1488.
[3]俞立.魯棒控制——線性矩陣不等式處理方法[M].北京:清華大學(xué)出版社,2002:174-176.
[4]JIANG X F,XU W L.Robust exponential stabilization for linearly uncertain time-delay systems[J].Journal of Tsinghua University,2004,44(7):997 -1000.
[5]SUTHEE P,F(xiàn)URUTA K.Memoryless stabilization of uncertain linear systems including time-varying state delays[J].IEEE Trans Autom Control,1989,34(2):460-462.
[6]MEI Ping.Stability analysis for singularl perturbed systems with time-varying delay[J].Journal of Nanjing University of Science and Technology(Natural Science),2009,33(3):297-301.
[7]賈新春,鄭南寧,張?jiān)?線性不確定時(shí)滯系統(tǒng)的可靠保性能魯棒控制[J].自動(dòng)化學(xué)報(bào),2003,29(6):971-975.
[8]GLIZER V Y,F(xiàn)RIDMAN E.Stability of singularly perturbed functional-differential systems:spectrum analysis and LMI approaches[J].IMA Journal of Maths Control& Information,2012,29(1):79 -111.
[9]FRIDMAN E.Stability of singularly perturbed differential differences systems:a LMI approach[J].Dynamics of Continuous,Discrete and Impulsive Systems,2002,9(2):201-212.
[10]CHEN W H,YANG S T,LU X,et al.Exponential stability and exponential stabilization of singularly perturbed stochastic systems with time-varying delay[J].Robust Nonlinear Control,2010,20(2):2021 -2044.
Controller design for uncertain time-delay systems
SUN Feng-qi
(Institute of Systems Science,Northeastern University,110819 Shenyang,China)
To eliminate time delay and uncertainty that cause some undesired effects in the actual system,using robust control system design techniques,a feedback gain controller is designed which allows the system to meet design requirements within the allowable range of uncertainty,and reduces the sensitivity of the system.A class of stability control problem for uncertain time-varying delay systems with state delay is investigated.By materializing uncertain structural information and constructing a new appropriate Lyapunov-Krasovskii functional based on LMIS,the controller design method is derived.
schur complement lemma;state feedback control;uncertain time-delay systems
TP2
A
0367-6234(2012)11-0129-04
2012-04-24.
國(guó)家自然科學(xué)基金資助項(xiàng)目(61020106003).
孫鳳琪(1968—),女,教授.
孫鳳琪,jlsdsfq@163.com.
(編輯 張 宏)