• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    無旋波近似下的二能級開放系統(tǒng)非馬爾科夫動力學

    2012-06-07 10:00:46徐甜甜鄭艷萍曾浩生
    關鍵詞:可夫艷萍馬爾科夫

    徐甜甜 , 唐 寧, 鄭艷萍, 曾浩生

    (湖南師范大學 物理系, 教育部低維量子結構與調控重點實驗室, 湖南 長沙, 410081)

    無旋波近似下的二能級開放系統(tǒng)非馬爾科夫動力學

    徐甜甜 , 唐 寧, 鄭艷萍, 曾浩生

    (湖南師范大學 物理系, 教育部低維量子結構與調控重點實驗室, 湖南 長沙, 410081)

    在無旋波近似下, 研究了一個二能級系統(tǒng)與零溫結構庫的相互作用. 當系統(tǒng)與環(huán)境為弱耦合時, 推導出描述系統(tǒng)狀態(tài)演化的主方程. 解析與數(shù)值結果均表明, 反旋轉波項對系統(tǒng)的非馬可夫動力學起著重要作用. 同時也分析了最近提出的兩種非馬可夫度量之間的差別.

    開放量子系統(tǒng); 旋波近似; 非馬爾科夫性

    1 Introduction

    Realistic quantum systems cannot avoid interactions with their environments, thus the study of open quantum systems is very important. It is not only relevant for better understanding of quantum theory, but also fundamental for various modern applications of quantum mechanics, especially for quantum communication, cryptography and computation[1]. The early study of dynamics of open quantum systems usually consists in the application of an appropriate Born-Markov approximation, that is, neglects all the memory effects, leading to a master equation which can be cast in the so-called Lindblad form[2]. Masterequations in Lindblad form can be characterized by the fact that the dynamics of the system satisfies both the semi-group property and the complete positivity, thus ensuring the preservation of positivity of the density matrix during the time evolution. We usually attribute the dynamical processes with these evolutional properties to the well-known Markovian ones.

    However, people recently find that many relevant physical systems, such as quantum optical system[3], quantum dot[4], superconductor system[5], could not be described simply by Markovian dynamics. Similarly, quantum chemistry[6]and excitation transfer of biological system[7]also need to be treated as non-Markovian processes. Quantum non-Markovian processes can lead to distinctly different effects on decoherence and disentanglement[8-9]of open systems compared to Markovian processes. These dynamical traits are important for the enriching of the basic theory of quantum mechanics, as well as for quantum information processing. Because of these distinct properties and extensive applications, more and more attention and interest have been devoted to the study of non-Markovian processes of open systems, including the measures of non-Markovianity[10-16], the positivity[17-18], and some other dynamical properties[19-23]and approaches[24-25]of non-Markovian processes. Experimentally, the simulation[26-27]of non-Markovian environment has been realized.

    The measure of non-Markovianity of quantum evolution is a fundamental problem which aims to detect whether a quantum process is non-Markovian and how much degrees it deviates from a Markovian one. Although several measures of non-Markovianity have been presented already, it is noted that these measures do not agree exactly. Therefore, the problem for measuring the non-Markovianity of quantum processes still remains elusive and, in some sense, controversial. Based on the distinguishability of quantum states, Breuer, Laine and Piilo (BLP)[10]proposed a measure to detect the non-Markovianity of quantum processes which is linked to the flow of information between system and environment. Alternatively, Rivas, Huelga and Plenio (RHP)[11]also presented a measure of non-Markovianity by exploiting the dynamical divisibility of a trace-preserving completely positive map. It is clear that the BLP measure is based on the physical features of the system-reservoir interactions, while the RHP definition is based on the mathematical property of the dynamical maps. It has been found that these two measures do not agree actually[28]. In this paper, we will use both the two measures to describe the non-Markovianity of the dynamics of the system of interest and find that there exists distinct difference between the two kinds of measuring results.

    The study of the dynamics of non-Markovian open quantum systems is typically very involved and often requires some approximations. Almost all the previous treatments are based on the rotating wave approximation, that is, neglect the counter-rotating terms in the microscopic system-reservoir interaction Hamiltonian. However, the counter-rotating terms which are responsible for the virtual exchanges of energy between the system and the environment not always can be neglected. For example, when the effective frequency-band of the reservoir spectra is wide enough or when the main value of the frequency-spectrum distribution of the structured environment is detuned large enough from the transition of the system, the rotating wave approximation is invalid. The main motivation of this paper is to demonstrate the limitations of the commonly-used rotating wave approximation and to see how the counter-rotating terms affect the non-Markovian dynamics of the open quantum system.

    The article is organized as follows. In Sec. 2 we introduce the microscopic Hamiltonian model and derive the non-Markovian time-local master equation for a two-level system weakly coupled to a vacuum reservoir, without rotating-wave approximation. In Sec. 3, we calculate the non-Markovianity of the system dynamics in terms of both the RHP and BLP measures, and show their difference visibly in measuring the non-Markovianity. And in sec. 4, we choose the Lorentzian spectra reservoir as an exemplary example, giving the analytic expressions of the time-dependant transition rate and demonstrating quantitatively theeffect of the counter-rotating wave terms on the non-Markovian dynamics. Finally, the conclusion is arranged in Sec.5.

    2 The microscopic model

    Consider a two-level atom with Bohr frequency ω0interacting with a zero-temperature bosonic reservoir modeled by an infinite chain of quantum harmonic oscillators. The total Hamiltonian for this system in the Schrodinger picture is given by

    where σzand σ±are the Pauli and inversion operators of the atom, ωk, bkand bk+are respectively the frequency, annihilation and creation operators for the k-th harmonic oscillator of the reservoir. The coupling strength gkis assumed to be real for simplicity. The distinct feature of this Hamiltonian is the reservation of the counter-rotating wave terms, σ+bk+and σ-bk.

    The time-convolutionless (TCL) projection operator technique is most effective in dealing with the dynamics of open quantum systems. In the limit of weak coupling between the system and the environment, by expanding the TCL generator to the second order with respect to coupling strength, the non-Markovian master equation describing the evolution of the reduced system, in the interaction picture, can be written as

    where

    is the Lamb shift Hamiltonian which describes a small shift in the energy of the eigenstates of the two-level atom. This term has no qualitative effect on the dynamics of the system and therefore is neglected usually. The dissipator D[ρ(t)] that describes the secular motion of the system has the form

    where the first term describes the dissipation of the atom to the vacuum environment with time-dependent decay rate γ-(t), and the second term denotes the heating of the atom in the vacuum environment with time-dependent heating rate γ+(t). This heating is related to the dissipation, for a ground-state atom in a zero-temperature environment, there is no heating effect. Note that the heating term completely originates from the counter-rotating terms present in the system-reservoir interaction Hamiltonian, as it would not exist under rotating wave approximation[3]. In the following, we will show that this heating term in some cases may play an important role, in particular to the non-Markovian behaviors of the system's dynamics. The dissipater D′[ρ(t)], which also originates from the counter-rotating terms in the coupling Hamiltonian, represents the contribution of the so-called nonsecular terms, that is, terms oscillating rapidly with atomic transition frequency ω0,

    here h.c. denotes the Hermitian conjugation. In what follows, we will neglect the effect of these nonsecular terms, that is, perform the so-called secular approximation. Just as pointed out in reference [29], this kind of secular approximation that used after tracing over the bath degrees of freedom is different from the rotating wave approximation before the tracing. It is a more precise approximation that consists in an average over rapidly oscillating terms, but does not wash out the effect of the counter-rotating terms present in the coupling Hamiltonian. The time-dependent coefficients in the above equations are respectively

    where the spectral density function is defined as.

    3 Measures of Non-Markovianity

    In this section, we employ two measures to describe the non-Markovianity of the dynamics of the considered system so as to explicitly show the difference of the two measures. The first measure was proposed by RHP[11]which is based on the divisibility of the dynamical map: a trace-preserving completely positive map ε(t2, 0) that describes the evolution from times zero to t2is divisible if it satisfies composition law,

    with ε(t2, t1) being completely positive for any t2≥ t1≥ 0 RHP defined all the divisible maps to be Markovian exactly. Therefore, the indivisibility of a map advocates its dynamical non-Markovianity. It was shown that all the evolutions governed by Lindblad-type master equation with positive transition rates (timeindependent or time-dependent) are divisible and thus Markovian[30]. RHP further proved that the indivisibility of map ε(t, 0) is equivalent to the positivity of the quantity,

    According RHP measure, for Markovian processes, g(t) = 0 at any time t; and if g(t) > 0 for some times, the dynamical evolution takes on non-Markovianity. The distinct advantage of this non-Markovian measure is that its calculation can be processed only by knowledge of time-local master equation, not requiring the exact form of the map ε(t, 0).

    For the open two-level system considered in this paper, suppose that, a straightforward deduction combined with equations (2) and (12) gives

    where γ±(t) are given by Eq.(7). In the deduction, we neglect the contribution of the nonsecular term D′[ρ(t)], but the consideration of the Lamb shift HLS(t) does not alter the result of g(t), i.e., Lamb shift does not affect the divisibility of the system's dynamics. Eq.(13) shows that γ+(t) not only affects, but in the same way as γ-(t), affects the non-Markovianity of the system's dynamics. As long as one of them is negative, g(t) > 0 and the evolution takes on non-Markovianity.

    The second measure of non-Markovianity for quantum processes of open systems we employ is proposed by BLP[10]which is based on the consideration in purely physics. Note that Markovian processes always tend to continuously reduce the trace distance between any two states of a quantum system, thus anincrease of the trace distance during any time intervals implies the emergence of non-Markovianity. The authors further linked the changes of the trace distance to the flow of information between system and its environment, and concluded that the back flow of information from environment to the system is the key feature of a non-Markovian dynamics. In quantum information science, the trace distance for quantum states ρ1and ρ2is defined as[1]

    where ρ1,2(t) are the dynamical states of the system corresponding to the initial states ρ1,2(0). For Markovian processes, the monotonically reduction of the trace-distance implies σ(t, ρ1,2(0)) ≤ 0 for any initial states ρ1,2(0) and at any timet. If there exists a pair of initial states of the system such that for some evolutional time t the trace-distance increases, that is, σ(t, ρ1,2(0)) > 0, the process must be non-Markovian.

    In order to calculate BLP measure, we must solve the dynamics of the system. Thus, we write the alternative Bloch equation corresponding to Eq.(2) as

    where we neglect the Lamb shift HLS(t) and the nonsecular term D′[ρ(t)], and the Bloch vector is defined as bj(t) = tr[ρ(t)σj]. This set of decoupled equations can be easily solved which gives

    where the positive function G(t) is defined as G(t) = e-Λ(t)/2{Δt + [Δbz(0)]2e-Λ(t)/Δ(t)} > 0, Δ(t) = {[Δbx(0)]2+ [Δby(0)]2+ [Δbz(0)]2e-Λ(t)}1/2and Δbj(0) = b1j(0) - b2j(0) with j = x, y, z are the difference of the initial Bloch components. This result implies that the RHP and BLP criteria of non-Markovianity have distinct differences: According to BLP criterion, the condition for the system's dynamics to reveal non-Markovianity is γ-(t) + γ+(t) < 0; While RHP criterion only requires γ-(t) < 0 or γ+(t) < 0. Eqs.(13) and (20) also shows that when one of the transition rates, γ-(t) or γ+(t), is zero, then the two criteria agree qualitatively. This further approves the previous conclusion: For Lindblad-form master equation with single time-dependant transition rate, the RHP and BLP criteria are equivalent to each other[31]. But for Lindblad-form master equation with multiple time-dependant transition rates, the two measures are in general not in agreement according to above results.

    4 Non-M arkovian dynamics for Lorentzian spectrum

    In order to demonstrate quantitatively the effects of counter-rotating wave terms, we specify our study to a particular reservoir spectra, Lorentzian spectra,

    which describes the interaction of an atom with an imperfect cavity and is widely used in literatures. Where ω0denotes the transition frequency of the atom, Δ = ω0-ωcis the frequency detuning between the atom and the cavity mode. λ is the width of Lorentzian distribution and is connected to the reservoir correlation time TR= λ-1. The parameter γ0can be regarded as the decay rate for the excited atom in the Markovian limit of flat spectrum which is related to the relaxation time TS= γ0-1. For the Lorentzian spectra, the time-dependent transition rates γ±(t) can be analytically written as

    with Δ-= Δ = ω0-ωcand Δ+= 2ω0- Δ = ω0+ ωc. The other time-dependent coefficients S±(t), α(t) and β(t) related to Lamb shift and nonsecular terms also can be calculated analytically, but we have neglected them already. For different spectral widths and different frequency detunings between the atom and the cavity mode, we plot the rescaled transition rates γ±(t)/γ0as functions of dimensionless time γ0t in Figs.1 and 2. Where we choose the atomic transition frequency to be ω0= 100γ0.

    Fig.1 shows that with the increasing of Δ, the relative amplitude (relative to γ-(t)) for the oscillation of γ+(t) increases, implying that the role of γ+(t) increases. Thus for large frequency detuning between the atom and the cavity mode, the rotating wave approximation would be incorrect. In addition, according to RHP criterion, γ+(t) plays an important role to the non-Markovian dynamics of the system. For small detunig (see Fig.1 (a)), γ-(t) has no oscillation and always positive, thus the non-Markovianity completely arises by γ+(t). However, when the detuning augments (see Fig.1 (b) and (c)), γ-(t) oscillates and appears negative values for some time intervals, leading that both γ±(t) have contributions to the non-Markovianity of the system's dynamics.

    Fig.1 The time-dependent tr ansition r ates(t)/γ0(dot line ) and γ+(t)/γ0(solid lin e ) as functions of dimensionless time γ0t. Where ω0= 100γ0, λ = 2γ0and Δ = γ0, 10γ0, 30γ0for (a), (b), (c) respectively.

    Fig.2 The time-dependent transition rates γ-(t)/γ0(dot line ) and γ+(t)/γ0(solid line ) as fun ctions of dimensionless time γ0t. Where ω0= 100γ0, Δ = 10γ0, and λ = 5γ0, 50γ0, 200γ0for (a), (b), (c) respectively.

    From Fig.2, we see that, firstly, with the increasing of the spectral width, the value of γ+(t) becomeslarger, implying that the role of γ+(t) becomes more and more important. In particular when λ→∞, it has γ+(t) = γ-(t) = γ0, leading to the same degrees of significance of γ±(t). Thus for a broad and smooth spectral distribution, the rotating wave approximation is invalid. Next, when the width λ of the reservoir spectra is narrower (Fig.2 (a)), the memory time of the reservoir is longer, thus γ+(t) oscillates for a relatively longer time. But with the increasing of the spectral width, the oscillation time of γ+(t) becomes shorter (see Fig.2 (b) and (c)), implying that the non-Markovian time scale imposed by γ+(t) becomes shorter.

    In Fig.3, we plot the time evolution of the rescaled RHP non-Markovian measure g(t)/γ0where the parameters are chosen to be in agreement with that in Fig.1. From this figure, we can see clearly the contributions of γ±(t) to the non-Markovianity of the system's dynamics. In Fig.3 (a), all the positive-value intervals of g(t) stem from the negative values of γ+(t) shown in Fig.1. While in Fig.3 (b) and (c), only the series of minor positive-value intervals of g(t) stem from the negative values of γ+(t), and the major positive-value intervals stem from mainly the contributions of the negative values of γ-(t). Clearly, according to RHP measure, the dynamics that corresponds to all the three situations of (a), (b) and (c) is non-Markovian.

    Fig.3 The rescaled RHP non-Markovian measure g(t)/γ0as function of dimensionless time γ0t, Where ω0= 100γ0, λ = 2γ0and Δ = γ0, 10γ0, 30γ0for (a), (b), (c) respectively.

    Fig.4 The z component of t he Bloch ve ctor a s a function of dimensionless time γ0t for initial value of bz(0) = 1. Where ω0= 100γ0, λ = 2γ0and Δ = γ0, 10γ0, 30γ0for (a), (b), (c) respectively.

    However, the BLP measure gives inconsistent results. According to the expression of Eq.(20) combined with the evolution of γ±(t) in Fig.1, one can easily conclude that only the dynamics corresponding to the situations of Fig.1 (b) and (c) is non-Markovian, while the dynamics related to Fig.1 (a) is Markovian. In order to further demonstrate the physical features of BLP measure, we plot under the same parameters as in Fig.1 the time evolution of the Bloch component bz(t) as in Fig.4, for the initial state (bx(0), by(0), bz(0)) = (0, 0, 1). We see that in case (a) it decreases monotonically, implying that there is no visible exchange of energy or information between the system and the environment. While in cases of (b) and (c), the oscillations of bz(t) occurring in times of the order of the reservoir memory time advocates the exchange of energy or information, which is the indication of non-Markovian dynamics according BLP measure.

    5 Conclusion

    In conclusion, we have studied the non-Markovianity for a two-level system interacting with a zero-temperature structured environment without rotating wave approximation. In the limit of weak coupling between the system and the reservoir, we have derived the time-local non-Markovian master equation for the reduced state of the system. For the case of Lorentzian reservoir, the analytic expressions for the time-dependent coefficients were obtained. It was found that when the width of the reservoir spectra is large enough or when the cavity frequency is detuned large enough from the transition of the system, the rotating wave approximation is invalid. We have investigated the non-Markovian dynamical behavior of the system in terms of both the RHP and BLP measures. It was found on the one hand that the counter-rotating wave terms have important contributions to the non-Markovianity of the system's dynamics. And on the other hand there is explicit difference for the two measures to describe the non-Markovianity of the system: when the Lindblad-form master equation has only a single time-dependant transition rate, the RHP and BLP measures are equivalent to each other. While for the case of the master equation with multiple time-dependant transition rates, the two measures are in general not agreement. This difference alerts people that the research on the essence of non-Markovian dynamics for open quantum systems is still necessary.

    [1] Nielsen M A, Chuang I L. Quantum computation and quantum information [M]. Cambridge: Cambridge University Press, 2000.

    [2] Lindblad G. On the generator of quantum dynamical semigroups [J]. Commun. Math. Phys, 1976, 48: 119-130.

    [3] Breuer H P,Petruccione F. The theory of open quantum systems [M]. Oxford: Oxford University Press, 2007.

    [4] Kubota Y, Nobusada K. Applicability of site-basis time-evolution equation for thermalization of exciton states in a quantum dot array [J]. J. Phys. Soc. Jpn, 2009, 78: 114603.

    [5] Ji Y H, Hu J J. Entanglement and decoherence of coupled superconductor qubits in a non-Markovian environment [J]. Chin. Phys. B, 2010, 19: 060304.

    [6] Shao J. Decoupling quantum dissipation interaction via stochastic fields [J]. J. Chem. Phys. 2004, 120: 5053-5056.

    [7] Chin A W, Datta A, Caruso F, et al. Noise-assisted energy transfer in quantum networks and light-harvesting complexes [J]. New J. Phys. 2010, 12: 065002.

    [8] Dijkstra A G, Tanimura Y. Non-Markovian entanglement dynamics in the presence of system-bath coherence [J]. Phys. Rev. Lett, 2010, 104: 250401.

    [9] Huang L Y, Fang M F. Protecting entanglement by detuning: in Markovian environments vs in non-Markovian environments [J]. Chin. Phys. B, 2010, 19: 090318.

    [10] Breuer H P, Laine E M,Piilo J. Measure for the degree of non-Markovian behavior of quantum processes in open systems [J]. Phys. Rev. Lett., 2009, 103: 210401.

    [11] Rivas ?, Huelga S F, Plenio M B. Entanglement and non-Markovianity of quantum evolutions [J]. Phys. Rev. Lett., 2010, 105: 050403.

    [12] Usha Devi A R, Rajagopal A K, Sudha. Open-system quantum dynamics with correlated initial states, not completely positive maps, and non-Markovianity [J]. Phys. Rev. A, 2011, 83: 022109.

    [13] Lu X M, Wang X G, Sun C P. Quantum Fisher information flow and non-Markovian processes of open systems [J]. Phys. Rev. A, 2010, 82: 042103.

    [14] Hou S C, Yi X X, Yu S X, et al. Alternative non-Markovianity measure by divisibility of dynamical maps [J]. Phys. Rev. A, 2011, 83: 062115.

    [15] Xu Z Y, Yang W L, Feng M. Proposed method for direct measurement of non-Markovian character of the qubitscoupled to bosonic reservoirs [J]. Phys. Rev. A, 2010, 81: 044105.

    [16] He Z, Zou J, Li L et al. Effective method of calculating the non-Markovianity N for single-channel open systems [J]. Phys. Rev. A, 2011, 83: 012108.

    [17] Shabani A, Lidar D A. Vanishing quantum discord is necessary and sufficient for completely positive maps [J]. Phys. Rev. Lett., 2009, 102: 100402.

    [18] Breuer H P, Vacchini B. Structure of completely positive quantum master equations with memory kernel [J]. Phys. Rev. E, 2009, 79: 041147.

    [19] Haikka P, Maniscalco S. Non-Markovian dynamics of a damped driven two-state system [J]. Phys. Rev. A, 2010, 81:052103.

    [20] Chang K W, Law C K. Non-Markovian master equation for a damped oscillator with time-varying parameters [J], Phys. Rev. A, 2010, 81: 052105.

    [21] Chru?ciński D, Kossakowski A, Pascazio S. Long-time memory in non-Markovian evolutions [J]. Phys. Rev. A, 2010, 81: 032101.

    [22] Haikka P, Cresser J D, Maniscalco S. Comparing different non-Markovianity measures in a driven qubit system [J]. Phys. Rev. A, 2011, 83: 012112.

    [23] Ding B F, Wang X Y, Tang Y F, et al. Non-Markovian dynamics of a qubit in a reservoir: different solutions of non-Markovian master equation [J]. Chin. Phys. B, 2011, 20: 060304.

    [24] Jing J, Yu T. Non-Markovian relaxation of a three-level system: Quantum trajectory approach [J]. Phys. Rev. Lett., 2010, 105: 240403.

    [25] Wu C, Li Y, Zhu M, et al. Non-Markovian dynamics without using a quantum trajectory [J]. Phys. Rev. A, 2011, 83:052116.

    [26] Xu J S, Li C F, Gong M, et al. Experimental demonstration of photonic entanglement collapse and revival [J]. Phys. Rev. Lett., 2010, 104: 100502.

    [27] Xu J S, Li C F, Zhang C J, et al. Experimental investigation of the non-Markovian dynamics of classical and quantum correlations [J]. Phys. Rev. A, 2010, 82: 042328.

    [28] Chru?ciński D, Kossakowski A, Rivas ?. Measures of non-Markovianity: Divisibility versus backflow of information [J]. Phys. Rev. A, 2011, 83: 052128.

    [29] Maniscalco S, Piilo J, Intravaia F, et al. Lindblad- and non-Lindblad-type dynamics of a quantum Brownian particle[J]. Phys. Rev. A, 2004, 70: 032113.

    [30] Alicki R, Lendi K. Quantum dynamical semigroups and applications [M]. Berlin Heidelberg: Springer, 2007.

    [31] Zeng H S, Tang Ning, Zheng Y P, et al. Equivalence of the measures of non-Markovianity for open two-level systems [J]. Phys. Rev. A, 2011, 84: 032118.

    (責任編校: 江 河)

    Non-Markovian dynamics for an open two-level system without rotating wave approximation

    XU Tian-tian, TANG Ning, ZHENG Yan-ping, ZENG Hao-Sheng
    (Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, china)

    The non-Markovianity for a two-level system interacting is studied with a zero-temperature structured environment without rotating wave approximation. In the limit of weak coupling between the system and the reservoir, the time-local non-Markovian master equation for the reduced state of the system is derived. Both the analytic and numerical results show that the counter-rotating wave terms play an important role for the non-Markovian dynamics of the system. And the difference of the two non-Markovian measures is proposed recently.

    open quantum system; rotating wave approximation; non-Markovianity

    O 431.2

    1672-6146(2012)02-0012-09

    10.3969/j.issn.1672-6146.2012.02.005

    2012-05-06

    Project supported by the National Natural Science Foundation of China (Grant No.11075050), the National Fundamental Research Program of China (Grant No.2007CB925204), and the Construct Program of the National Key Discipline.

    徐甜甜(1986-), 女, 碩士研究生, 研究方向為量子光學. E-mail: liweitian930924@163.com

    曾浩生(1965-), 男, 教授, 博士生導師, 主要研究方向為量子光學與量子信息.

    E-mail: hszeng@hunnu.edu.cn

    猜你喜歡
    可夫艷萍馬爾科夫
    一維馬爾可夫鏈研究
    A SPECTRAL METHOD FOR A WEAKLY SINGULAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATION WITH PANTOGRAPH DELAY*
    基于疊加馬爾科夫鏈的邊坡位移預測研究
    基于改進的灰色-馬爾科夫模型在風機沉降中的應用
    NUMERICAL ANALYSIS FOR VOLTERRA INTEGRAL EQUATION WITH TWO KINDS OF DELAY?
    馬爾科夫鏈在教學評價中的應用
    學吹泡泡
    把秘密帶回家
    基于馬爾科夫法的土地格局變化趨勢研究
    河南科技(2014年11期)2014-02-27 14:10:11
    把秘密帶回家
    国语对白做爰xxxⅹ性视频网站| 一区二区三区精品91| 亚洲一区二区三区欧美精品 | 欧美zozozo另类| 大码成人一级视频| 亚洲精品色激情综合| 日韩一本色道免费dvd| 国产高清有码在线观看视频| 久久久精品94久久精品| 18禁裸乳无遮挡动漫免费视频 | 少妇熟女欧美另类| 91精品国产九色| av在线app专区| 久久久精品免费免费高清| 免费av观看视频| 成年版毛片免费区| 自拍偷自拍亚洲精品老妇| 麻豆国产97在线/欧美| 国产亚洲av嫩草精品影院| 中文字幕亚洲精品专区| 91狼人影院| 汤姆久久久久久久影院中文字幕| 国国产精品蜜臀av免费| 久久久久网色| 天堂网av新在线| 国产有黄有色有爽视频| 亚洲伊人久久精品综合| 亚洲欧美日韩卡通动漫| 18禁动态无遮挡网站| 欧美老熟妇乱子伦牲交| 亚洲精品视频女| 一级a做视频免费观看| 2021少妇久久久久久久久久久| 蜜桃久久精品国产亚洲av| 99re6热这里在线精品视频| 自拍偷自拍亚洲精品老妇| 国产一区二区亚洲精品在线观看| 最近中文字幕高清免费大全6| videossex国产| 少妇熟女欧美另类| 亚洲天堂国产精品一区在线| 亚洲成色77777| 亚洲精品日韩av片在线观看| 久久影院123| 国产黄色视频一区二区在线观看| 秋霞伦理黄片| 日韩av不卡免费在线播放| 国产黄a三级三级三级人| 中文乱码字字幕精品一区二区三区| 国产亚洲av片在线观看秒播厂| .国产精品久久| 精品久久久久久电影网| 亚洲国产最新在线播放| 中文在线观看免费www的网站| 国产男女超爽视频在线观看| 日日撸夜夜添| 国语对白做爰xxxⅹ性视频网站| 欧美成人午夜免费资源| 岛国毛片在线播放| 亚洲怡红院男人天堂| 亚洲精品久久午夜乱码| 国产91av在线免费观看| 久久久久久久久久久免费av| 亚洲国产av新网站| 日韩欧美精品免费久久| 老女人水多毛片| 老司机影院毛片| 久久久久久伊人网av| 日韩欧美精品免费久久| 国产精品av视频在线免费观看| 一级毛片电影观看| 国产精品一二三区在线看| 日韩成人伦理影院| 亚洲成人精品中文字幕电影| 啦啦啦中文免费视频观看日本| 欧美 日韩 精品 国产| 日本熟妇午夜| 日本午夜av视频| 亚洲色图综合在线观看| 免费黄网站久久成人精品| 五月开心婷婷网| 少妇丰满av| 国产精品久久久久久av不卡| av黄色大香蕉| 亚洲第一区二区三区不卡| 国产精品人妻久久久影院| 日韩亚洲欧美综合| 可以在线观看毛片的网站| 日韩人妻高清精品专区| 久久久精品欧美日韩精品| 欧美3d第一页| 伦理电影大哥的女人| 又大又黄又爽视频免费| 一级毛片我不卡| 亚洲av成人精品一区久久| 身体一侧抽搐| 男女国产视频网站| 国产精品久久久久久精品古装| 高清视频免费观看一区二区| 美女主播在线视频| 男男h啪啪无遮挡| 精品亚洲乱码少妇综合久久| 制服丝袜香蕉在线| 成人特级av手机在线观看| 麻豆乱淫一区二区| 日韩国内少妇激情av| 黄片无遮挡物在线观看| 亚洲色图综合在线观看| av在线app专区| 国产精品一区二区性色av| 国产一区二区亚洲精品在线观看| 性色av一级| 日韩国内少妇激情av| 亚洲美女视频黄频| 大香蕉97超碰在线| 亚洲在线观看片| 国产爱豆传媒在线观看| 久久人人爽人人爽人人片va| 韩国av在线不卡| 国产精品99久久久久久久久| 久久久成人免费电影| 日本一二三区视频观看| 波多野结衣巨乳人妻| 国产精品成人在线| 亚洲av一区综合| 午夜精品国产一区二区电影 | 久久影院123| 18禁动态无遮挡网站| 99视频精品全部免费 在线| 精品一区二区免费观看| 深爱激情五月婷婷| 高清欧美精品videossex| 如何舔出高潮| 国产日韩欧美在线精品| 人妻一区二区av| 女人久久www免费人成看片| 亚洲精品视频女| 久久精品国产亚洲网站| 秋霞在线观看毛片| 久久精品国产亚洲av天美| 日韩成人伦理影院| 久久精品人妻少妇| 一级片'在线观看视频| 日韩欧美精品免费久久| 成人亚洲精品av一区二区| 看免费成人av毛片| 国产 一区精品| 男女国产视频网站| 最近2019中文字幕mv第一页| 国产成人a区在线观看| 99久久九九国产精品国产免费| 国产黄频视频在线观看| 成人特级av手机在线观看| 成年人午夜在线观看视频| 国产在线一区二区三区精| 精品酒店卫生间| 亚洲精品日韩av片在线观看| av国产精品久久久久影院| 又爽又黄无遮挡网站| 少妇的逼水好多| 亚洲精品久久久久久婷婷小说| 黄色怎么调成土黄色| 老司机影院成人| 成人欧美大片| 亚洲精品亚洲一区二区| 国产一区亚洲一区在线观看| 性色av一级| .国产精品久久| 少妇的逼好多水| 99热这里只有是精品在线观看| 五月开心婷婷网| xxx大片免费视频| a级毛色黄片| 网址你懂的国产日韩在线| 亚洲国产欧美在线一区| 欧美丝袜亚洲另类| 免费av不卡在线播放| 有码 亚洲区| 18禁动态无遮挡网站| 欧美xxⅹ黑人| 在线观看美女被高潮喷水网站| 亚洲精品乱码久久久v下载方式| av在线蜜桃| 亚洲av一区综合| 中文在线观看免费www的网站| 亚洲av中文av极速乱| 一个人观看的视频www高清免费观看| 成人综合一区亚洲| 97人妻精品一区二区三区麻豆| 禁无遮挡网站| 人人妻人人爽人人添夜夜欢视频 | 免费看不卡的av| 日韩伦理黄色片| 老司机影院成人| 亚洲在久久综合| 亚洲精品色激情综合| 欧美3d第一页| 亚洲国产高清在线一区二区三| 男女国产视频网站| 极品少妇高潮喷水抽搐| 国产极品天堂在线| 日韩免费高清中文字幕av| kizo精华| 七月丁香在线播放| 欧美国产精品一级二级三级 | 亚洲精品第二区| 人人妻人人澡人人爽人人夜夜| 亚洲内射少妇av| 精品99又大又爽又粗少妇毛片| 我的老师免费观看完整版| 久久97久久精品| 青春草视频在线免费观看| 亚洲精品久久久久久婷婷小说| av国产久精品久网站免费入址| 波多野结衣巨乳人妻| 一区二区av电影网| 国产 精品1| 精品酒店卫生间| 亚洲国产欧美人成| 欧美成人午夜免费资源| 蜜臀久久99精品久久宅男| 能在线免费看毛片的网站| 免费av观看视频| 高清日韩中文字幕在线| 建设人人有责人人尽责人人享有的 | 久久午夜福利片| 80岁老熟妇乱子伦牲交| 亚洲国产精品专区欧美| 国产乱来视频区| 全区人妻精品视频| 国产黄片视频在线免费观看| 久热这里只有精品99| 精品久久久久久久久亚洲| 下体分泌物呈黄色| 欧美最新免费一区二区三区| 国产亚洲最大av| 中文字幕人妻熟人妻熟丝袜美| av播播在线观看一区| 日本一二三区视频观看| 黄色配什么色好看| av一本久久久久| 精品人妻一区二区三区麻豆| 亚洲天堂av无毛| 久久久久网色| 国产高清不卡午夜福利| 综合色丁香网| 亚洲丝袜综合中文字幕| 免费av毛片视频| 国产精品一二三区在线看| 亚洲欧美精品自产自拍| 国产成人a∨麻豆精品| 日韩成人伦理影院| 一边亲一边摸免费视频| 久久久久久久国产电影| 午夜福利在线在线| 老司机影院成人| 亚洲经典国产精华液单| 在线观看美女被高潮喷水网站| 男人添女人高潮全过程视频| 视频区图区小说| 麻豆精品久久久久久蜜桃| 欧美三级亚洲精品| 女人十人毛片免费观看3o分钟| 久久久精品免费免费高清| 我的女老师完整版在线观看| 国产91av在线免费观看| 欧美亚洲 丝袜 人妻 在线| 大香蕉97超碰在线| 欧美最新免费一区二区三区| 国产黄片视频在线免费观看| 在线播放无遮挡| 久久人人爽人人爽人人片va| 青春草国产在线视频| 国产毛片a区久久久久| 久久国产乱子免费精品| 美女xxoo啪啪120秒动态图| 精品一区二区三区视频在线| 老女人水多毛片| 亚洲欧美一区二区三区黑人 | 中文在线观看免费www的网站| 三级国产精品欧美在线观看| 97在线视频观看| 性色av一级| 三级经典国产精品| 国产男人的电影天堂91| 国产精品99久久99久久久不卡 | 少妇高潮的动态图| 国产亚洲午夜精品一区二区久久 | 亚洲精品成人久久久久久| videossex国产| 久久这里有精品视频免费| 日本与韩国留学比较| 国产免费一区二区三区四区乱码| 18禁在线播放成人免费| 亚洲精品456在线播放app| 插逼视频在线观看| 视频区图区小说| 午夜老司机福利剧场| 男人添女人高潮全过程视频| 夜夜看夜夜爽夜夜摸| 日韩不卡一区二区三区视频在线| 久久久久久久精品精品| 亚洲欧美中文字幕日韩二区| 99热这里只有是精品50| 不卡视频在线观看欧美| 亚洲精品成人久久久久久| 禁无遮挡网站| 亚洲精品一二三| 最新中文字幕久久久久| 国产精品熟女久久久久浪| 97超碰精品成人国产| kizo精华| 午夜亚洲福利在线播放| av专区在线播放| 国产精品av视频在线免费观看| 国产69精品久久久久777片| 22中文网久久字幕| 热99国产精品久久久久久7| 一个人看的www免费观看视频| 美女xxoo啪啪120秒动态图| 亚洲人成网站在线观看播放| 久久久久久国产a免费观看| 夜夜爽夜夜爽视频| xxx大片免费视频| 观看免费一级毛片| 成人国产av品久久久| 日韩av不卡免费在线播放| 男人和女人高潮做爰伦理| 亚洲色图av天堂| 久久久久久久精品精品| 精品少妇黑人巨大在线播放| 搡老乐熟女国产| a级一级毛片免费在线观看| 亚洲综合色惰| 亚洲久久久久久中文字幕| 纵有疾风起免费观看全集完整版| 午夜免费鲁丝| 男女无遮挡免费网站观看| 久久精品久久久久久噜噜老黄| 欧美一区二区亚洲| 国产大屁股一区二区在线视频| 亚洲精品日韩av片在线观看| 老司机影院成人| 日韩国内少妇激情av| 精品久久久久久电影网| av女优亚洲男人天堂| 91狼人影院| 免费不卡的大黄色大毛片视频在线观看| 少妇 在线观看| 三级经典国产精品| 五月玫瑰六月丁香| 亚洲成人一二三区av| 在线天堂最新版资源| 午夜免费鲁丝| 美女被艹到高潮喷水动态| 久久精品国产自在天天线| 亚洲国产色片| 久久鲁丝午夜福利片| 97超视频在线观看视频| 国产精品一二三区在线看| 免费观看在线日韩| 成人特级av手机在线观看| 亚洲精品一区蜜桃| 亚洲精品日韩在线中文字幕| 嫩草影院入口| 国产午夜精品一二区理论片| 久久久久久久久大av| 建设人人有责人人尽责人人享有的 | 青春草亚洲视频在线观看| 亚洲精品乱码久久久v下载方式| 男女啪啪激烈高潮av片| 欧美成人a在线观看| 午夜免费男女啪啪视频观看| 精品久久久久久电影网| 久久国内精品自在自线图片| 亚洲最大成人中文| 有码 亚洲区| 亚洲精品一区蜜桃| 日韩av在线免费看完整版不卡| av福利片在线观看| 交换朋友夫妻互换小说| 日韩大片免费观看网站| 五月伊人婷婷丁香| 听说在线观看完整版免费高清| 熟女人妻精品中文字幕| 天天一区二区日本电影三级| 国产精品国产三级国产av玫瑰| 99热6这里只有精品| 搞女人的毛片| 日日撸夜夜添| 国产美女午夜福利| 欧美区成人在线视频| 校园人妻丝袜中文字幕| 国产乱人偷精品视频| 国产极品天堂在线| 国产亚洲av嫩草精品影院| 看十八女毛片水多多多| 精品久久久久久久久av| 涩涩av久久男人的天堂| 亚洲精品亚洲一区二区| 插阴视频在线观看视频| 尾随美女入室| 欧美日韩在线观看h| 六月丁香七月| 国产高清三级在线| 你懂的网址亚洲精品在线观看| 青春草亚洲视频在线观看| 免费在线观看成人毛片| 九草在线视频观看| 午夜免费鲁丝| 国产伦精品一区二区三区四那| 国产伦精品一区二区三区视频9| 欧美成人一区二区免费高清观看| 一本久久精品| 麻豆成人av视频| 亚洲欧美成人综合另类久久久| 黄色怎么调成土黄色| 一级爰片在线观看| 精品久久久久久久久亚洲| 日韩免费高清中文字幕av| 亚洲丝袜综合中文字幕| 日韩制服骚丝袜av| 久久久久性生活片| 两个人的视频大全免费| 91久久精品国产一区二区成人| 一级爰片在线观看| 99久久精品热视频| 啦啦啦啦在线视频资源| 久久热精品热| 男人和女人高潮做爰伦理| 国产精品一区二区在线观看99| 欧美性猛交╳xxx乱大交人| 日本一本二区三区精品| 九九久久精品国产亚洲av麻豆| 一级黄片播放器| 永久网站在线| av卡一久久| 内射极品少妇av片p| 麻豆国产97在线/欧美| 国产高清三级在线| 久久久久精品久久久久真实原创| 免费黄色在线免费观看| 国产免费一级a男人的天堂| videossex国产| 国产黄片美女视频| 日本av手机在线免费观看| 另类亚洲欧美激情| 18禁裸乳无遮挡动漫免费视频 | 亚洲av成人精品一二三区| 国产日韩欧美亚洲二区| 一个人看的www免费观看视频| 18禁在线无遮挡免费观看视频| 国产有黄有色有爽视频| 最近的中文字幕免费完整| 中文字幕av成人在线电影| 在线免费十八禁| av在线观看视频网站免费| 亚洲精品456在线播放app| 免费播放大片免费观看视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 各种免费的搞黄视频| 成人美女网站在线观看视频| 国产成人福利小说| av在线亚洲专区| 久久97久久精品| 黄色日韩在线| 乱系列少妇在线播放| freevideosex欧美| 狠狠精品人妻久久久久久综合| 亚洲精品乱久久久久久| 欧美变态另类bdsm刘玥| 国产免费视频播放在线视频| 国产有黄有色有爽视频| 久久精品国产亚洲网站| 婷婷色综合大香蕉| 亚洲不卡免费看| 亚洲一级一片aⅴ在线观看| 亚洲三级黄色毛片| 黄色怎么调成土黄色| 国产精品.久久久| 日本一二三区视频观看| 欧美成人午夜免费资源| 又大又黄又爽视频免费| 新久久久久国产一级毛片| 免费不卡的大黄色大毛片视频在线观看| 黄色欧美视频在线观看| 深爱激情五月婷婷| 久久鲁丝午夜福利片| 日本一二三区视频观看| 久久久亚洲精品成人影院| 啦啦啦啦在线视频资源| 色吧在线观看| 美女被艹到高潮喷水动态| 嫩草影院新地址| 免费大片黄手机在线观看| 亚洲国产精品成人综合色| 身体一侧抽搐| 亚洲精品第二区| 少妇人妻 视频| 极品少妇高潮喷水抽搐| 亚洲欧洲日产国产| 五月开心婷婷网| 婷婷色综合www| 边亲边吃奶的免费视频| 国产69精品久久久久777片| 亚洲欧洲国产日韩| 国产探花在线观看一区二区| 少妇裸体淫交视频免费看高清| 夫妻性生交免费视频一级片| 国产亚洲精品久久久com| 男人舔奶头视频| 女的被弄到高潮叫床怎么办| 成人国产麻豆网| 成人欧美大片| 天美传媒精品一区二区| 国产免费福利视频在线观看| 亚洲成人久久爱视频| 日韩中字成人| 国产一区有黄有色的免费视频| av在线天堂中文字幕| 天天一区二区日本电影三级| av国产久精品久网站免费入址| 日韩av在线免费看完整版不卡| 美女视频免费永久观看网站| 视频区图区小说| 中文字幕制服av| 久久精品国产自在天天线| 国产精品蜜桃在线观看| 国产午夜精品久久久久久一区二区三区| 国产精品久久久久久精品电影小说 | 国产乱来视频区| 男人舔奶头视频| 少妇熟女欧美另类| 老师上课跳d突然被开到最大视频| 日韩人妻高清精品专区| 日本欧美国产在线视频| 精品国产露脸久久av麻豆| 久久6这里有精品| 女人久久www免费人成看片| 亚洲色图综合在线观看| 搞女人的毛片| 欧美日韩视频高清一区二区三区二| 中文资源天堂在线| 亚洲av成人精品一二三区| 久久久久久久大尺度免费视频| 亚洲欧美日韩无卡精品| 狂野欧美白嫩少妇大欣赏| 精品熟女少妇av免费看| 色婷婷久久久亚洲欧美| av.在线天堂| 丰满少妇做爰视频| 看十八女毛片水多多多| 校园人妻丝袜中文字幕| 亚洲精华国产精华液的使用体验| 97超视频在线观看视频| 久久人人爽人人片av| 日韩av不卡免费在线播放| 国产精品国产三级国产专区5o| 国内少妇人妻偷人精品xxx网站| 一区二区三区乱码不卡18| 国产精品一区二区在线观看99| 久久99热这里只频精品6学生| 十八禁网站网址无遮挡 | 日韩一区二区视频免费看| 国产av不卡久久| 99热这里只有精品一区| 亚洲自拍偷在线| 亚洲成人一二三区av| 成人毛片a级毛片在线播放| 三级国产精品片| 91久久精品电影网| 91在线精品国自产拍蜜月| 国产成人午夜福利电影在线观看| 日日摸夜夜添夜夜爱| 午夜福利网站1000一区二区三区| 狂野欧美激情性bbbbbb| 国产亚洲5aaaaa淫片| 男人狂女人下面高潮的视频| 九色成人免费人妻av| 十八禁网站网址无遮挡 | 一级毛片我不卡| av在线观看视频网站免费| 免费黄频网站在线观看国产| 综合色av麻豆| 亚洲电影在线观看av| 国产乱来视频区| 97超视频在线观看视频| 久久精品国产亚洲av涩爱| 日日摸夜夜添夜夜爱| 久久久午夜欧美精品| 久久精品国产亚洲av天美| 嫩草影院精品99| 精品国产一区二区三区久久久樱花 | 91在线精品国自产拍蜜月| 制服丝袜香蕉在线| 国产欧美日韩一区二区三区在线 | 国产午夜精品一二区理论片| 免费观看无遮挡的男女| 男女啪啪激烈高潮av片| tube8黄色片| 偷拍熟女少妇极品色| 在线看a的网站| 欧美极品一区二区三区四区| 久久久精品94久久精品| 成年版毛片免费区| 久久99热6这里只有精品| 国产亚洲5aaaaa淫片| 乱码一卡2卡4卡精品| 少妇裸体淫交视频免费看高清| 寂寞人妻少妇视频99o| 久久久久久久大尺度免费视频| 亚洲内射少妇av| 国产熟女欧美一区二区| 超碰97精品在线观看| 国产精品三级大全|