• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    總氣壓與Ar/O2流量比對直流對向靶磁控濺射TiO2薄膜光催化性能的影響

    2012-03-06 04:43:42
    物理化學(xué)學(xué)報(bào) 2012年9期
    關(guān)鍵詞:磁控濺射天津大學(xué)國家海洋局

    陳 芃 譚 欣 于 濤

    (1天津大學(xué)環(huán)境科學(xué)與工程學(xué)院,天津300072;2國家海洋局天津海水淡化與綜合利用研究所,天津300192; 3天津大學(xué)化學(xué)工程學(xué)院,天津300072)

    1 Introduction

    In 1972,Fujishima and Honda1discovered the phenomenon of photocatalytic splitting of water on a TiO2electrode under ultraviolet(UV)irradiation.Due to its non-toxicity,high activity,and chemical stability,many researchers have focused on the environmental applications of TiO2photocatalyst,including the production of self-clean materials,2decomposition of water,3,4dye-sensitized solar cells,5,6mineralization of toxic organic compounds7-9and so on.

    However,the filtration of TiO2powders has limited its practical or industrial applications.Thus,TiO2thin films have attracted a great deal of attention due to their excellent properties such as easy recycling and stable coating on various kinds of substrates.10Bahnemann and co-workers11,12have reported TiO2thin films on different substrates such as polycarbonate substrates and soda-lime glass for degradation of organic compounds.Kiwi and co-workers13focused on the stable parylene/ TiO2films for the photoinduced discoloration of methyl orange and the acceptable kinetics during the dye discoloration.However,most of the researches focused on the photocatalytic TiO2thin films prepared by wet process such as a sol-gel method, only a limited number of reports were concerned on the synthesis of TiO2films by physical deposition.Here we proposed a new device named direct current facing-target magnetron sputtering(DCFTMS)system for thin film deposition.Compared to the traditional film preparation methods including sol-gel method14and chemical vapor deposition,15TiO2thin films prepared by magnetron sputtering showed a higher uniformity and improved the combination between the films and the substrate.16Besides,parameters such as sputtering pressure,17power,18target-substrate distance,19and substrate temperature20can be controlled precisely during the sputtering process.Therefore,TiO2thin films with well-controlled stoichiometry,high purity,and strong adhesion can be fabricated by regulating sputtering parameters and post-annealing treatments.

    As a physical depositon method,magnetron sputtering has been developed very fast in recent years.In conventional magnetron sputtering system there is only one target paralleled to the substrate,which easily cause high energetic ion bombardment on the film surface during the sputtering process.21In DCFTMS system the substrate is vertical to a pair of facing targets with the aim of prevention of high energetic ions bombardment in the new system.This new technology has shown many advantages including high sputtering efficiency and stable substrate temperature.So far,there is seldom study focusing on the crystal structures and photocatalytic activities of TiO2thin films prepared by DCFTMS.In the previous work22we have investigated the influence of annealing temperature on the properties of TiO2thin films deposited by DC facing-target magnetron sputtering method.In this paper we focus on effects of different sputtering pressures and Ar/O2flow ratios on the photocatalytic activities of the prepared TiO2thin films.A pair of Ti plates were used as the sputtering targets in the TiO2thin film fabrication.Argon gas was selected as the sputtering gas for its inert properties.The characterizations of TiO2thin films including X-ray diffraction(XRD),field emission scanning electron microscopy(FESEM),atomic force microscopy(AFM),and UV-visible(UV-Vis)spectrophotometer were also investigated.

    2 Experimental

    2.1 Preparation of TiO2thin films

    TiO2thin films were prepared by DCFTMS with the vacuum pressure at approximately 6.0×10-4Pa.Schematic diagram of the reactive DCFTMS system is shown in Fig.1.The facing targets were a pair of Ti discs(purity of 99.99%)with 100 mm in diameters.Fluorine-doped SnO2(FTO)glasses(NSG,Japan) served as the substrate with an area of 20 cm×20 cm.Argon gas(purity of 99.999%)and oxygen gas(purity of 99.999%) were selected as the working gas and reactive gas,respectively. The sputtering deposition began when the plasma color changed to blue.In order to clean the target surface completely,the pair of Ti discs was pre-sputtered for 5 min.All of the TiO2thin films were sputter-deposited at room temperature using a power of 350 W.The total working pressure was controlled at 1.0,1.5,2.0 Pa by an ion gauge.The depositions were carried out with the Ar/O2flow ratios of 3:1,2:1,and 1:1. The substrate-target distance was kept at 70 mm for the deposition of all samples.After deposition,the prepared films were sintered at 550°C in the furnace with a speed of 4°C·min-1and then kept at 550°C for 2 h.

    2.2 Characterization

    The thicknesses of TiO2thin films were measured by a surface roughness tester(Vecco Dektak 6M,America).The crystal structure and phase composition of samples were characterized by XRD(Rigaku Rint-2500,Japan)with a 2θ method using Cu Kαradiation.The scanning rate was 2(°)·min-1.The surface morphology of the films was observed by FESEM(Hitachi S-4800,Japan).For a detailed study of the film surface,AFM (Digital MMAFM-2,America)was used with contact mode. The images with an area of 4 μm×4 μm were obtained.

    Fig.1 Schematic diagram of the reactive DCFTMS system

    2.3 Photocatalytic activity measurement

    The photocatalytic activities of the prepared TiO2thin films were evaluated by measuring the decomposition of gaseous iso-propanol(IPA)under UV light irradiation.In order to remove the impurity from film surfaces,samples were cleaned using nitrogen before measurement.The prepared TiO2thin films were placed at the center of the rector and then the IPA gas was injected with an initial concentration of 100×10-6.At the beginning of the reaction,the reactor was kept in the dark for 1 h to obtain the absorption balance of IPA.Then the reactor was irradiated using an UV light for 2 h at room temperature.The reaction products were calculated using a gas chromatograph(GC-2014,Shimadzu)equipped with a methanizer and a flame-ionized detector.

    2.4 Photoinduced superhydrophilicity measurement

    The photoinduced hydrophilicity of samples was evaluated by a sessile drop method.The TiO2thin films were kept in a dry box under darkness for 24 h and then determined at every 15 min interval for 2 h under the UV irradiation.All water droplets were blown with nitrogen gas before the film was irradiated.The water contact angles were measured at five different positions using a goniometer,with the average value selected to be the contact angle.

    3 Results and discussion

    3.1 Structure and morphology

    The average thickness of all the prepared films was about 200 nm,measured using a surface roughness tester.Conditions of the fabrication of the TiO2thin films were investigated by optimizing the sputtering pressures and Ar/O2flow ratios.The XRD patterns of a series of TiO2samples deposited on FTO glasses are shown in Fig.2.It should be noted that the diffraction patterns of FTO substrates were much sharper than the TiO2patterns due to the thickness of the TiO2films.On the other hand,the XRD images clearly showed typical diffraction patterns of around 25°and 27°,which indicate anatase(101) phase and rutile(110)phase,respectively.

    All films deposited at Ar/O2flow ratio of 1:1 showed the best crystal structure under the same total pressure.As an important parameter,a threshold of Ar/O2flow ratio existed during the sputtering process.The number density of Ti atom on the substrate is directly related to the oxygen flow rate and its partial pressure in the reaction chamber.23

    Due to lack of oxygen atoms,it was not good for the formation of TiO2at low O2flow ratio.However,the sputtering process might stop if keeping increasing the O2flow ratio.In the DCFTMS system Ti targets would be oxidized by superfluous O atoms which were unconducive to the formation of TiO2.Besides,the excessive O2flow ratio caused the decreasing of the utilization of initial Ti targets.Therefore there was a threshold of the Ar/O2ratio existing in DCFTMS process.In our experiment,the threshold ofAr/O2flow ratio was 1:1.

    Fig.2 XRD patterns of the TiO2thin films deposited on FTO substrates with differentAr/O2flow ratios of 3:1,2:1,1:1The sputtering pressures(ptot)were(a)1.0 Pa,(b)1.5 Pa,and (c)2.0 Pa,respectively.

    On the other hand,the phase of deposited films changed from the mixture of anatase and rutile to pure anatase as the sputtering pressure increased.This might be related to the impinging particles with high energy under the high total pressure condition.In order to obtain crystalline TiO2thin films,the energy of the deposited particles should be higher than the crystalline nucleation energy of anatase or rutile.As the sputtering pressure increased from 1.0 to 2.0 Pa,the energy of impinging particles increased,conducing to the formation of anatase phase.The XRD patterns are consistent with the above analysis.As shown in Fig.2,the TiO2thin films deposited at 2.0 Pa with Ar/O2flow ratio of 1:1 showed the highest crystallinity with anatase phase only.

    Fig.3 FESEM images of TiO2thin films deposited on FTO substrates with differentAr/O2flow ratios under different total pressures

    In addition,the surface morphology of the TiO2thin films is an important factor in photocatalytic reaction.The FESEM images of TiO2thin films deposited on FTO substrates with different Ar/O2flow ratios under different total pressures are shown in Fig.3.The surfaces of the prepared films were composed of polygonal particles with about 100 nm in diameter.Moreover, the particles are not closely contacted,with some‘little crack’between the particles.This phenomenon could be explained by the affection of FTO layers during the deposition.It can be seen from FESEM images that the films deposited with higher Ar/O2flow ratios show higher surface roughness.Therefore, the reactants can be easily adsorbed on the film surface and the products can be quickly transferred out of the film.

    Fig.4 shows AFM images of TiO2thin films deposited with Ar/O2flow ratio of 1:1 under different total pressures.The prepared films became rougher and higher uniformity as the sputtering pressure increases during the deposition process.The effect of increasing pressure on the surface morphology of TiO2films may attribute to the high surface mobility caused by the increasing kinetic energy of sputtered atoms.

    3.2 Photocatalytic activity

    The photocatalytic performance of TiO2thin films was evaluated by the decomposition of IPA under UV irradiation.It could be seen from the FESEM images that the film was compact and no pore existed on the film surface.So the decrease in IPA was independent of the absorption during the photocatalytic reaction.Furthermore,the IPA concentration remained the same during 2 h in the absence of TiO2thin film,indicating the absence of IPAself-degradation under UV irradiation.

    Under UV irradiation,the electron and hole,which have high activity and ability for oxidizing many organic compounds,were generated and then transformed to the surface of TiO2films.24-26IPA was oxidized to acetone(CH3COCH3)and further to carbon dioxide(CO2).

    Fig.4 AFM images of TiO2thin films deposited on FTO substrates withAr/O2flow ratio of 1:1 under different total pressuresptot/Pa:(a)1.0,(b)1.5,(c)2.0

    Fig.5 and Fig.6 record the concentrations of acetone and CO2as a function of UV irradiation time respectively in presence of different samples.Acetone was the main product while both acetone and CO2were evolved from the photocatalytic degradation of IPA in our experiment.It was determined that under the same sputtering pressure conditions,the TiO2thin film deposited with Ar/O2flow ratio of 1:1 showed that the amounts of the generated acetone and CO2were the largest. XRD patterns of the film samples showed that the decreasing Ar/O2flow ratios resulted in the formation of anatase phase.It has been reported that the photocatalytic activities of TiO2thin film composed by the mixed phase of rutile and anatase increase with the increasing content of anatase.27,28Simultaneously,if the Ar/O2flow ratios were kept constant,then TiO2thin film deposited at 2.0 Pa would show that the amounts of the generated acetone and CO2were the largest.As evident from Fig.6,TiO2film deposited at 2.0 Pa with the Ar/O2flow ratio of 1:1 showed the highest photocatalytic activity.The concentration of acetone reached the maximum value of 93.2×10-6after 120 min irradiation.

    For all the prepared samples,the concentration of the generated CO2changed in a low range during the whole reaction process.However,among all the prepared TiO2thin films,the sample deposited at 2.0 Pa with Ar/O2flow ratio of 1:1 still showed the highest CO2yield of around 11.1×10-6after 120 min irradiation.

    Fig.5 CO2concentration during the photocatalytic degradation of IPAin the presence of TiO2thin films deposited on FTO substrates with differentAr/O2flow ratios of 3:1,2:1,1:1 under different pressuresptot/Pa:(a)1.0,(b)1.5,(c)2.0

    The superior photocatalytic activity of TiO2film deposited at 2.0 Pa with Ar/O2flow ratio of 1:1 can be attributed to the high degree of crystallization and typical crystal structure.The higher sputtering pressures are good for the formation of anatase phase but inhibit the growth of rutile phase.Besides,both of XRD and FESEM images show that the crystalline perfection of TiO2thin film increases with the increasing sputtering pressure.Compared to other samples,TiO2thin films deposited at 2.0 Pa exhibitd a higher crystallinity and photocatalytic activity.Therefore,it can be referred that crystalline perfection played an important role in the photocatalytic process of TiO2thin films.

    3.3 Chemical stability

    This paper investigates the chemical stability of the prepared TiO2thin films with the highest photocatalytic activity,which is on the basis of the possible application for TiO2films.The repetitive experiment,namely the decomposition of IPA in the presence of TiO2thin film deposited at 2.0 Pa with Ar/O2flow ratio of 1:1 was done for 5 cycles in our study.In order to remove the impurities from the film surface,the TiO2thin films were heated at 150°C in muffle furnace for 2 h before the photocatalytic reaction.According to the above experiments,acetone was the main product in the decomposition of IPA.Therefore,the concentration of the generated acetone was used to measure the chemical stability of TiO2thin film.Fig.7 shows the change of acetone concentration during the degradation of IPA.The photocatalytic activity evidently decreased both in the second and third cycles,after which the value remained stable.The decreased photocatalytic activity of TiO2thin film may be due to the adsorbed species of reactant.However,the concentration of acetone could reach up to 83.2×10-6after 2 h irradiation in the fifth cycle,which was still higher than that of the other samples with different sputtering pressures and Ar/O2flow ratios.This phenomenon proved that the TiO2thin film deposited at 2.0 Pa with Ar/O2flow ratio of 1:1 kept high stability during the degradation of IPA.

    Fig.6 Acetone concentration during the photocatalytic degradation of IPAin the presence of the TiO2thin films deposited on FTO substrates with differentAr/O2flow ratios of 3:1,2:1,1:1 under different pressuresptot/Pa:(a)1.0,(b)1.5,(c)2.0

    Fig.7 Evaluation of stability of TiO2thin film deposited at 2.0 Pa withAr/O2flow ratio of 1:1 from the repetitive photocatalytic degradation of IPA

    3.4 Photoinduced superhydrophilicity

    Photoinduced superhydrophilicity of the sample was determined by changes in contact angles for water under UV irradiation.The mechanism of photoinduced superhydrophilicity can be explained as follows:as UV-induced surface structure changed,the amount of OH groups on the TiO2film surface increased.29

    Fig.8 UV irradiation time dependence on water contact angle of TiO2thin film deposited at 2.0 Pa withAr/O2flow ratio of 1:1Inset images illustrating water contact angles of samples:(a)at the beginning, (b)after 15 min,(c)after 90 min of UV irradiation

    Fig.8 shows the relationship between irradiation time and contact angles for water on the sample.The initial water contact angle was 71°,which meant that the prepared film was initially hydrophobic.After 15 min of UV illumination,the water contact angle decreased from 71°to 28°.It could be seen that the water contact angle decreased with increasing irradiation time under UV light.The water contact angle finally decreased to 3°,indicating that the sample became superhydrophicity.According to the mechanism of photoinduced superhydrophilicity,the amount of water molecules adsorbed on the surface hydroxyls increased with UV irradiation,resulting in the high hydrophilicity of the prepared TiO2thin film.

    4 Conclusions

    In our study,TiO2thin films were successfully deposited on FTO substrates by DC facing-target magnetron sputtering.The deposition parameters,including the sputtering pressures and Ar/O2flow ratios were optimized.Our work can be summarized as follows.

    (1)The decreasing Ar/O2flow ratios are beneficial for the formation of the mixed phase of anatase and rutile.The higher sputtering pressures result in the increase of crystalline perfection of TiO2thin film and inhibit the growth of rutile.The TiO2thin films deposited at 2.0 Pa with Ar/O2flow ratio of 1:1 showed the highest degree of crystallinity and only the crystal structure of anatase phase.

    (2)A threshold of Ar/O2flow ratios,which proved to be 1:1 in our experiment,existed for the TiO2thin film formation. Sputtering pressure of 2.0 Pa was considered to be the most suitable ptot.The TiO2thin film deposited at 2.0 Pa with Ar/O2flow ratio of 1:1 showed significantly higher photocatalytic activity than other samples and confirmed with high chemical stability.The concentration of the generated acetone and CO2could reach up to 93.2×10-6and 11.1×10-6after 120 min UV irradiation,respectively.

    (3)The TiO2thin films deposited at 2.0 Pa with Ar/O2flow ratio of 1:1 showed photoinduced superhydrophilicity after 90 min UV irradiation.

    In summary,the DC facing-target magnetron sputtering is one of the useful and promising methods for the preparation of photocatalysts with the uniformed structure,high density coatings of large surface areas with a strong adhesion.The control for parameters in deposition process is important for fabricating TiO2thin films with high effective photocatalytic properties.

    Acknowledgements:The authors thank Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology for the help on the TiO2thin film preparation.And the authors are grateful to Photocatalytic Materials Center at National Institute for Materials Science(Japan)for fruitful scientific discussions.

    (1) Fujishima,A.;Honda,K.Nature 1972,238,37.doi:10.1038/ 238037a0

    (2)Tung,W.S.;Daoud,W.A.J.Mater.Chem.2011,21,7858.doi: 10.1039/c0jm03856c

    (3)Mohapatra,S.K.;Misra,M.;Mahajan,V.K.;Raja,K.S. J.Phys.Chem.C 2007,111,8677.doi:10.1021/jp071906v

    (4)Tong,H.;Ouyang,S.X.;Bi,Y.P.;Umezawa,N.;Oshikiri,M.; Ye,J.H.Adv.Mater.2012,24,229.doi:10.1002/ adma.201102752

    (5) Chandiran,A.K.;Sauvage,F.;Etgar,L.;Gr?tzel,M.J.Phys. Chem.C 2011,115,9232.doi:10.1021/jp1121068

    (6)Park,K.H.;Dhayal,M.Electrochem.Commun.2009,11,75. doi:10.1016/j.elecom.2008.10.020

    (7) Liu,Z.Y.;Zhang,X.T.;Nishimoto,S.;Murakami,T.; Fujishima,A.Environ.Sci.Technol.2008,42,8547.doi: 10.1021/es8016842

    (8) Jing,Y.;Li,L.S.;Zhang,Q.Y.;Lu,P.;Liu,P.H.;Lu,X.H. J.Hazard.Mater.2011,189,40.doi:10.1016/j. jhazmat.2011.01.132

    (9) Chong,M.N.;Jin,B.;Chow,C.W.K.;Saint,C.Water Res. 2010,44,2997.doi:10.1016/j.watres.2010.02.039

    (10) Yu,Z.Y.;Mielczarski,E.;Mielczarski,J.;Laub,D.;Buffat,P.; Klehm,U.;Albers,P.;Lee,K.;Kulik,A.;Kiwi-Minsker,L.; Renken,A.;Kiwi,J.Water Res.2007,41,862 doi:10.1016/j. watres.2006.11.020

    (11) Fateh,R.;Ismail,A.A.;Dillert,R.;Bahnemann,D.W.J.Phys. Chem.C 2011,115,10405.doi:10.1021/jp200892z

    (12)Ismail,A.A.;Bahnemann,D.W.ChemSusChem 2010,3(9), 1057.doi:10.1002/cssc.201000158

    (13)Yu,Z.Y.;Keppner,H.;Laub,D.;Mielczarski,E.;Mielczarski, J.;Kiwi-Minsker,L.;Renken,A.;Kiwi,J.Appl.Catal. B-Environ.2008,79,63.doi:10.1016/j.apcatb.2007.10.006

    (14) Choi,J.;Park,H.;Hoffmann,M.R.J.Mater.Res.2010,25, 149.doi:10.1557/JMR.2010.0024

    (15) Kuo,C.S.;Tseng,Y.H.;Huang,C.H.;Li,Y.Y.J.Mol.Catal. A:Chem.2007,270,93.doi:10.1016/j.molcata.2007.01.031

    (16)Xiao,L.X.;Duan,L.Q.;Chai,J.Y.;Wang,Y.;Chen,Z.J.;Qu, B.;Gong,Q.H.Acta Phys.-Chim.Sin.2011,27,749.[肖立新,段來強(qiáng),柴俊一,王 蕓,陳志堅(jiān),曲 波,龔旗煌.物理化學(xué)學(xué)報(bào),2011,27,749.]doi:10.3866/PKU.WHXB20110310

    (17)Chen,D.Y.;Tsao,C.C.;Hsu,C.Y.Curr.Appl.Phys.2012,12, 179.doi:10.1016/j.cap.2011.05.027

    (18)Anpo,M.Bull.Chem.Soc.Jpn.2004,77,1427.doi:10.1246/ bcsj.77.1427

    (19)Matsuoka,M.;Kitano,M.;Takeuchi,M.;Tsujimaru,K.;Anpo, M.;Thomas,J.M.Catal.Today 2007,122,51.doi:10.1016/j. cattod.2007.01.042

    (20)Shen,J.;Wo,S.T.;Cui,X.L.;Cai,Z.W.;Yang,X.L.;Zhang, Z.J.Acta Phys.-Chim.Sin.2004,20,1191. [沈 杰,沃松濤,崔曉莉,蔡臻煒,楊錫良,章壯健.物理化學(xué)學(xué)報(bào),2004,20, 1191.]doi:10.3866/PKU.WHXB20041005

    (21) Bai,H.L.;Jiang,E.Y.;Wu,P.;Lou,Z.D.Chin.Sci.Bull.1999, 17,1057.

    (22) Chen,P.;Tan,X.;Yu,T.Journal of Tianjin University 2012,in press.[陳 芃,譚 欣,于 濤.天津大學(xué)學(xué)報(bào),2012,印刷中.]

    (23) Zhang,W.J.;Li,Y.;Zhu,S.L.;Wang,F.H.Surf.Coat.Tech. 2004,182,192.doi:10.1016/j.surfcoat.2003.08.050

    (24) Ikeda,K.;Sakai,H.;Baba,R.;Hashimoto,K.;Fujishima,A. J.Phys.Chem.B 1997,101,2617.doi:10.1021/jp9627281

    (25) Ohko,K.;Hashimoto,K.;Fujishima,A.J.Phys.Chem.A 1997, 101,8057.doi:10.1021/jp972002k

    (26) Pihosh,Y.;Turkevych,I.;Ye,J.H.;Goto,M.;Kasahara,A.; Kondo,M.;Tosa,M.J.Electrochem.Soc.2009,156,K160.

    (27)Li,G.H.;Chen,L.;Graham,M.E.;Gray,K.A.J.Mol.Catal. A:Chem.2007,275,30.doi:10.1016/j.molcata.2007.05.017

    (28)Cao,Y.Q.;Long,H.J.;Chen,Y.M.;Cao,Y.A.Acta Phys.-Chim.Sin.2009,25,1088.[曹永強(qiáng),龍繪錦,陳詠梅,曹亞安.物理化學(xué)學(xué)報(bào),2009,25,1088.]doi:10.3866/PKU. WHXB20090619

    (29) Kako,T.;Ye,J.H.Langmuir 2007,23,1924.doi:10.1021/ la062903x

    猜你喜歡
    磁控濺射天津大學(xué)國家海洋局
    《天津大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》簡介
    C/C復(fù)合材料表面磁控濺射ZrN薄膜
    復(fù)雜腔體件表面磁控濺射鍍膜關(guān)鍵技術(shù)的研究
    學(xué)生寫話
    微波介質(zhì)陶瓷諧振器磁控濺射金屬化
    國家海洋局確定2014年十大海洋科技重點(diǎn)工作
    水道港口(2014年1期)2014-04-27 14:14:35
    射頻磁控濺射制備MoS2薄膜及其儲(chǔ)鋰性能研究
    天津大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)2014年總目次
    天津大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)2013年總目次
    我國主要省份風(fēng)暴潮災(zāi)情損失對比分析
    婷婷丁香在线五月| 久久婷婷人人爽人人干人人爱| 亚洲最大成人手机在线| 国产精品一及| 一进一出好大好爽视频| 国产极品精品免费视频能看的| 国产高清videossex| 夜夜爽天天搞| 国产成年人精品一区二区| 中文字幕av在线有码专区| 国产一区二区在线av高清观看| 99久久精品一区二区三区| 国产黄a三级三级三级人| 成人欧美大片| 成年女人永久免费观看视频| 欧美一级a爱片免费观看看| 免费电影在线观看免费观看| 精品人妻一区二区三区麻豆 | 国产一区二区三区视频了| 黑人欧美特级aaaaaa片| 精品一区二区三区视频在线 | 亚洲在线自拍视频| 黄片小视频在线播放| 一级毛片女人18水好多| 久久香蕉国产精品| 国产精品三级大全| 两性午夜刺激爽爽歪歪视频在线观看| 黄色视频,在线免费观看| 香蕉久久夜色| 日韩欧美免费精品| 岛国在线观看网站| 欧美成人a在线观看| 国产精品亚洲一级av第二区| 午夜福利视频1000在线观看| 亚洲精品在线美女| 国产淫片久久久久久久久 | 国内精品久久久久久久电影| 最好的美女福利视频网| 成人鲁丝片一二三区免费| 久久精品国产自在天天线| 国产久久久一区二区三区| 国产91精品成人一区二区三区| 两个人看的免费小视频| www.色视频.com| 久久人妻av系列| 一二三四社区在线视频社区8| 看免费av毛片| 一个人免费在线观看的高清视频| 欧美乱码精品一区二区三区| 在线观看美女被高潮喷水网站 | 欧美xxxx黑人xx丫x性爽| 三级国产精品欧美在线观看| 欧美乱妇无乱码| 亚洲精品在线观看二区| 国产v大片淫在线免费观看| 色噜噜av男人的天堂激情| 尤物成人国产欧美一区二区三区| 中文字幕人妻丝袜一区二区| 中文字幕高清在线视频| 一个人免费在线观看的高清视频| 韩国av一区二区三区四区| 两个人视频免费观看高清| 在线观看免费视频日本深夜| 禁无遮挡网站| 男人舔奶头视频| 精品99又大又爽又粗少妇毛片 | a在线观看视频网站| 久久久久久人人人人人| 两人在一起打扑克的视频| 一区福利在线观看| 精品久久久久久久久久免费视频| 成人特级av手机在线观看| 在线十欧美十亚洲十日本专区| 午夜老司机福利剧场| 在线观看av片永久免费下载| 国产单亲对白刺激| 国产欧美日韩一区二区三| 国产精品野战在线观看| 搡老妇女老女人老熟妇| 欧美区成人在线视频| 狂野欧美白嫩少妇大欣赏| 久久精品国产自在天天线| 亚洲在线观看片| 一夜夜www| 精品一区二区三区视频在线观看免费| bbb黄色大片| 国产精品av视频在线免费观看| 国产亚洲精品久久久com| 婷婷精品国产亚洲av在线| 特大巨黑吊av在线直播| 国产高清视频在线观看网站| 久久久久免费精品人妻一区二区| 午夜老司机福利剧场| 色在线成人网| 国产探花在线观看一区二区| 波多野结衣巨乳人妻| 日韩精品中文字幕看吧| 中文亚洲av片在线观看爽| 99热6这里只有精品| 久久九九热精品免费| 欧美丝袜亚洲另类 | 亚洲av五月六月丁香网| 色综合婷婷激情| 亚洲午夜理论影院| 1024手机看黄色片| 美女黄网站色视频| 老司机在亚洲福利影院| 久久久国产成人精品二区| 女生性感内裤真人,穿戴方法视频| 亚洲精品一卡2卡三卡4卡5卡| 国产97色在线日韩免费| 国产国拍精品亚洲av在线观看 | 99久久久亚洲精品蜜臀av| 在线观看舔阴道视频| 亚洲一区二区三区色噜噜| 国产黄片美女视频| 熟妇人妻久久中文字幕3abv| 免费一级毛片在线播放高清视频| 国产精品 欧美亚洲| 中出人妻视频一区二区| 免费搜索国产男女视频| 午夜福利欧美成人| 国产精品亚洲美女久久久| 一级毛片高清免费大全| 午夜激情欧美在线| 亚洲精品美女久久久久99蜜臀| 国产精品亚洲av一区麻豆| 国产精品一区二区三区四区久久| 精品久久久久久久久久免费视频| 成年女人永久免费观看视频| 欧美一级a爱片免费观看看| 最近最新免费中文字幕在线| 国产激情欧美一区二区| a在线观看视频网站| av欧美777| 少妇熟女aⅴ在线视频| x7x7x7水蜜桃| 国产黄a三级三级三级人| 精品国产超薄肉色丝袜足j| svipshipincom国产片| 精品免费久久久久久久清纯| 亚洲av成人不卡在线观看播放网| 国产成人av激情在线播放| 色精品久久人妻99蜜桃| 欧美bdsm另类| 两性午夜刺激爽爽歪歪视频在线观看| 在线免费观看不下载黄p国产 | 好男人在线观看高清免费视频| 国内揄拍国产精品人妻在线| 又黄又粗又硬又大视频| 久久久久性生活片| 中文字幕熟女人妻在线| 嫩草影视91久久| 一区二区三区国产精品乱码| 1024手机看黄色片| 中文字幕人妻丝袜一区二区| 亚洲成人免费电影在线观看| 国产精品永久免费网站| 免费搜索国产男女视频| av国产免费在线观看| 无限看片的www在线观看| x7x7x7水蜜桃| 最近视频中文字幕2019在线8| 又粗又爽又猛毛片免费看| 国产精品野战在线观看| 操出白浆在线播放| 成年女人永久免费观看视频| 亚洲成人久久性| 国产色婷婷99| 麻豆国产av国片精品| 亚洲精品美女久久久久99蜜臀| 国产99白浆流出| 免费在线观看日本一区| 精品欧美国产一区二区三| www.999成人在线观看| 全区人妻精品视频| 久久人妻av系列| 亚洲成av人片免费观看| 深夜精品福利| 12—13女人毛片做爰片一| 可以在线观看毛片的网站| 精品熟女少妇八av免费久了| 欧美一区二区国产精品久久精品| 亚洲av成人不卡在线观看播放网| 日韩欧美在线乱码| 国产精品亚洲av一区麻豆| 一夜夜www| 久久这里只有精品中国| 一个人看的www免费观看视频| 日本在线视频免费播放| 国产成人影院久久av| www.999成人在线观看| 国产爱豆传媒在线观看| 久久久久久久久中文| 欧美中文日本在线观看视频| 欧美激情在线99| 九九久久精品国产亚洲av麻豆| 日韩中文字幕欧美一区二区| 天堂网av新在线| 无人区码免费观看不卡| 在线观看美女被高潮喷水网站 | 日本在线视频免费播放| 男人的好看免费观看在线视频| 男女床上黄色一级片免费看| 每晚都被弄得嗷嗷叫到高潮| 国产av麻豆久久久久久久| 9191精品国产免费久久| 午夜福利在线在线| 少妇人妻一区二区三区视频| 国产一区在线观看成人免费| 九九久久精品国产亚洲av麻豆| 日韩欧美三级三区| 一卡2卡三卡四卡精品乱码亚洲| 两个人视频免费观看高清| 岛国视频午夜一区免费看| 国产精品影院久久| 精品福利观看| 成人一区二区视频在线观看| 少妇的丰满在线观看| 99riav亚洲国产免费| 久久久久久国产a免费观看| 精品久久久久久,| av天堂中文字幕网| 一级毛片高清免费大全| 一个人看的www免费观看视频| 欧美日韩黄片免| 亚洲av成人不卡在线观看播放网| 国产成人系列免费观看| 日韩欧美一区二区三区在线观看| 99精品欧美一区二区三区四区| 国产三级黄色录像| 欧美成人a在线观看| 综合色av麻豆| 高清日韩中文字幕在线| 男女午夜视频在线观看| 熟女电影av网| 国产精品亚洲美女久久久| 欧美大码av| 很黄的视频免费| 亚洲精品久久国产高清桃花| or卡值多少钱| 国内揄拍国产精品人妻在线| 日韩免费av在线播放| 成年版毛片免费区| 亚洲av中文字字幕乱码综合| 日本在线视频免费播放| 国产中年淑女户外野战色| 成人无遮挡网站| 琪琪午夜伦伦电影理论片6080| avwww免费| 午夜免费男女啪啪视频观看 | 久久亚洲真实| 琪琪午夜伦伦电影理论片6080| 男女做爰动态图高潮gif福利片| 精品一区二区三区人妻视频| 岛国在线观看网站| 少妇的逼水好多| 日本在线视频免费播放| 国产视频内射| 男人和女人高潮做爰伦理| 一夜夜www| 欧美日韩中文字幕国产精品一区二区三区| 亚洲美女视频黄频| 国产精品影院久久| 淫妇啪啪啪对白视频| 校园春色视频在线观看| 国内精品久久久久久久电影| 亚洲五月婷婷丁香| 欧美成人性av电影在线观看| 欧美一区二区国产精品久久精品| 91麻豆精品激情在线观看国产| 久久国产乱子伦精品免费另类| 人妻夜夜爽99麻豆av| 欧美最新免费一区二区三区 | 日韩av在线大香蕉| 亚洲性夜色夜夜综合| 色吧在线观看| 国产不卡一卡二| 亚洲乱码一区二区免费版| 国产精品综合久久久久久久免费| 欧美日韩综合久久久久久 | 一个人看视频在线观看www免费 | av欧美777| 午夜福利在线在线| 国产免费一级a男人的天堂| 亚洲成av人片在线播放无| 毛片女人毛片| 免费av毛片视频| 少妇熟女aⅴ在线视频| 一进一出抽搐动态| 91麻豆精品激情在线观看国产| 在线播放无遮挡| 午夜精品在线福利| 全区人妻精品视频| 亚洲欧美精品综合久久99| 久久香蕉国产精品| 日韩中文字幕欧美一区二区| 熟女少妇亚洲综合色aaa.| 久久香蕉国产精品| 精品国产超薄肉色丝袜足j| 搞女人的毛片| 成人18禁在线播放| 欧美另类亚洲清纯唯美| 在线看三级毛片| 国产成人aa在线观看| 日本一二三区视频观看| 一区二区三区免费毛片| 免费人成视频x8x8入口观看| 制服丝袜大香蕉在线| 国产一区二区三区在线臀色熟女| 亚洲精品国产精品久久久不卡| 岛国视频午夜一区免费看| 久久久久久久久大av| 久久这里只有精品中国| 午夜福利欧美成人| 少妇人妻一区二区三区视频| av中文乱码字幕在线| 男人舔奶头视频| 久久精品人妻少妇| 亚洲专区中文字幕在线| 日韩欧美 国产精品| 两个人的视频大全免费| 欧美日韩黄片免| 国产99白浆流出| 精品国产超薄肉色丝袜足j| 国产精品久久久久久久电影 | 亚洲第一电影网av| 欧美日韩瑟瑟在线播放| 99国产极品粉嫩在线观看| 国产高清视频在线观看网站| 老鸭窝网址在线观看| 欧美中文日本在线观看视频| 中文资源天堂在线| 天天一区二区日本电影三级| 国产精品国产高清国产av| 国产精品99久久99久久久不卡| 婷婷精品国产亚洲av| 国产老妇女一区| 精品国产超薄肉色丝袜足j| 人妻夜夜爽99麻豆av| 中文字幕av成人在线电影| 久久欧美精品欧美久久欧美| 免费看a级黄色片| 亚洲国产精品999在线| 91av网一区二区| 日本 av在线| www.色视频.com| 性色avwww在线观看| 小蜜桃在线观看免费完整版高清| 动漫黄色视频在线观看| 99久久精品热视频| 欧美在线一区亚洲| 又爽又黄无遮挡网站| 免费av观看视频| 日韩免费av在线播放| 九色成人免费人妻av| 亚洲avbb在线观看| 精品久久久久久久人妻蜜臀av| 国产精品99久久久久久久久| h日本视频在线播放| 日本黄大片高清| 亚洲精品在线观看二区| 3wmmmm亚洲av在线观看| 18禁国产床啪视频网站| 19禁男女啪啪无遮挡网站| 久久久国产精品麻豆| 午夜亚洲福利在线播放| 天天躁日日操中文字幕| 久久午夜亚洲精品久久| 国产成人av教育| 亚洲第一欧美日韩一区二区三区| 黄片大片在线免费观看| 欧美一区二区国产精品久久精品| 国产成人系列免费观看| 国产视频一区二区在线看| 国产激情偷乱视频一区二区| 欧美黄色淫秽网站| 嫁个100分男人电影在线观看| 久久久久久大精品| 搡女人真爽免费视频火全软件 | 国产视频一区二区在线看| 一进一出抽搐gif免费好疼| 美女大奶头视频| 久久久久久久久久黄片| 听说在线观看完整版免费高清| 欧美成人a在线观看| 亚洲成人久久爱视频| 熟女少妇亚洲综合色aaa.| 国内精品久久久久精免费| 亚洲无线观看免费| 国产老妇女一区| a级一级毛片免费在线观看| 无限看片的www在线观看| 亚洲 欧美 日韩 在线 免费| 国产三级在线视频| 97超视频在线观看视频| 我要搜黄色片| 久久久色成人| 国产精品久久久久久久久免 | 久久久久久久午夜电影| 国产精品久久久久久人妻精品电影| 亚洲欧美日韩高清专用| 欧美成人免费av一区二区三区| 真实男女啪啪啪动态图| 久久精品亚洲精品国产色婷小说| 精品一区二区三区视频在线观看免费| 欧美日本亚洲视频在线播放| 精品国产美女av久久久久小说| 国产精品自产拍在线观看55亚洲| 一边摸一边抽搐一进一小说| 老司机午夜十八禁免费视频| 在线播放国产精品三级| 国产熟女xx| 老汉色∧v一级毛片| avwww免费| 亚洲性夜色夜夜综合| 亚洲五月婷婷丁香| 99久久综合精品五月天人人| 美女被艹到高潮喷水动态| 欧美日韩精品网址| 精品人妻1区二区| 欧美黑人欧美精品刺激| 女人十人毛片免费观看3o分钟| 亚洲人与动物交配视频| 一本精品99久久精品77| 国产成+人综合+亚洲专区| 色哟哟哟哟哟哟| 久久99热这里只有精品18| 免费看美女性在线毛片视频| 日韩高清综合在线| 婷婷丁香在线五月| 午夜免费男女啪啪视频观看 | 精品一区二区三区av网在线观看| 在线十欧美十亚洲十日本专区| 精品人妻偷拍中文字幕| 丰满人妻一区二区三区视频av | 国产亚洲精品久久久com| 国产淫片久久久久久久久 | 国产中年淑女户外野战色| 蜜桃久久精品国产亚洲av| 日韩欧美国产一区二区入口| 亚洲五月婷婷丁香| 无限看片的www在线观看| 舔av片在线| 人妻丰满熟妇av一区二区三区| 国产精品av视频在线免费观看| 制服丝袜大香蕉在线| 国产精品日韩av在线免费观看| 一本久久中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 老司机深夜福利视频在线观看| 好男人电影高清在线观看| 亚洲国产欧洲综合997久久,| 亚洲五月天丁香| 日韩欧美精品免费久久 | 每晚都被弄得嗷嗷叫到高潮| 丰满人妻一区二区三区视频av | 亚洲欧美日韩高清专用| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | x7x7x7水蜜桃| a级一级毛片免费在线观看| 精品一区二区三区人妻视频| 99热只有精品国产| 国产成人影院久久av| 久久伊人香网站| 国产黄片美女视频| 日本 av在线| 老鸭窝网址在线观看| 亚洲avbb在线观看| 九九在线视频观看精品| 男女之事视频高清在线观看| 国产精品野战在线观看| 变态另类丝袜制服| 日韩欧美在线二视频| 亚洲 国产 在线| 久久亚洲真实| 中文字幕av在线有码专区| 热99在线观看视频| 狂野欧美白嫩少妇大欣赏| 国产黄片美女视频| 亚洲欧美一区二区三区黑人| 亚洲性夜色夜夜综合| bbb黄色大片| 欧美日本视频| 日韩成人在线观看一区二区三区| 香蕉丝袜av| 特大巨黑吊av在线直播| 亚洲av五月六月丁香网| 国产精品久久久人人做人人爽| 午夜老司机福利剧场| 亚洲天堂国产精品一区在线| 欧美三级亚洲精品| 国产欧美日韩精品亚洲av| 操出白浆在线播放| 欧美高清成人免费视频www| 男女午夜视频在线观看| 天美传媒精品一区二区| 熟女少妇亚洲综合色aaa.| 国产精品98久久久久久宅男小说| 国产私拍福利视频在线观看| 中文在线观看免费www的网站| 中文字幕人成人乱码亚洲影| x7x7x7水蜜桃| 久久精品91蜜桃| 69av精品久久久久久| 小蜜桃在线观看免费完整版高清| 丰满的人妻完整版| 老司机午夜十八禁免费视频| 一区二区三区激情视频| 国产精品免费一区二区三区在线| 真人一进一出gif抽搐免费| 免费一级毛片在线播放高清视频| 国产男靠女视频免费网站| 最近最新中文字幕大全免费视频| 成人18禁在线播放| 国产免费一级a男人的天堂| 最近视频中文字幕2019在线8| 99久国产av精品| 熟女电影av网| 欧美日韩中文字幕国产精品一区二区三区| 国产日本99.免费观看| 伊人久久精品亚洲午夜| 丰满的人妻完整版| 熟女人妻精品中文字幕| 久久精品亚洲精品国产色婷小说| 一区福利在线观看| 久久久色成人| 欧美日韩国产亚洲二区| 啦啦啦免费观看视频1| 久久久久九九精品影院| 真人做人爱边吃奶动态| 村上凉子中文字幕在线| 欧美成人一区二区免费高清观看| 免费人成在线观看视频色| 色在线成人网| 99riav亚洲国产免费| 亚洲中文日韩欧美视频| 一区福利在线观看| 一级作爱视频免费观看| 搞女人的毛片| 亚洲av美国av| e午夜精品久久久久久久| 欧美最新免费一区二区三区 | 国产av麻豆久久久久久久| 亚洲国产精品999在线| 男人的好看免费观看在线视频| 色综合婷婷激情| 99久久精品热视频| 国产麻豆成人av免费视频| 在线十欧美十亚洲十日本专区| 精品乱码久久久久久99久播| 免费在线观看成人毛片| 亚洲色图av天堂| 国产成人福利小说| 成人亚洲精品av一区二区| 免费在线观看影片大全网站| 狠狠狠狠99中文字幕| 精品久久久久久久久久免费视频| 久久人人精品亚洲av| 18禁裸乳无遮挡免费网站照片| 国产亚洲精品综合一区在线观看| 国产精品久久久人人做人人爽| 狂野欧美白嫩少妇大欣赏| 黄色成人免费大全| 九九热线精品视视频播放| 日本在线视频免费播放| 欧美又色又爽又黄视频| 俺也久久电影网| 老司机深夜福利视频在线观看| 五月玫瑰六月丁香| 成人亚洲精品av一区二区| 精品电影一区二区在线| 欧美xxxx黑人xx丫x性爽| 搡老熟女国产l中国老女人| 在线免费观看的www视频| 国产精品久久久久久久久免 | 日本黄色片子视频| 麻豆久久精品国产亚洲av| 免费人成视频x8x8入口观看| 18+在线观看网站| 男女床上黄色一级片免费看| 精品午夜福利视频在线观看一区| 久久久久久人人人人人| 成人无遮挡网站| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品美女久久久久99蜜臀| 亚洲欧美日韩高清专用| 欧美日本视频| 国产高清视频在线观看网站| 熟女少妇亚洲综合色aaa.| 午夜免费成人在线视频| 日韩av在线大香蕉| 尤物成人国产欧美一区二区三区| 婷婷精品国产亚洲av在线| www.www免费av| 欧美一级a爱片免费观看看| 亚洲自拍偷在线| 在线免费观看不下载黄p国产 | 亚洲熟妇熟女久久| 一本精品99久久精品77| 久久精品国产自在天天线| 在线看三级毛片| 老熟妇仑乱视频hdxx| 俺也久久电影网| 黄色日韩在线| 亚洲七黄色美女视频| 在线观看舔阴道视频| 有码 亚洲区| 淫妇啪啪啪对白视频| 久久久久久久久大av| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产精品999在线| aaaaa片日本免费| 精品人妻偷拍中文字幕| 欧美色视频一区免费|