• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    無有機模板劑水熱合成Co同晶取代的絲光沸石分子篩

    2012-12-12 02:42:10吳雅靜
    物理化學(xué)學(xué)報 2012年9期
    關(guān)鍵詞:程志化工學(xué)院物理化學(xué)

    王 琦 吳雅靜 王 軍,* 林 曉

    (1南京工業(yè)大學(xué)化學(xué)化工學(xué)院,材料化學(xué)工程國家重點實驗室,南京210009;2南京工業(yè)大學(xué)理學(xué)院,南京210009)

    1 Introduction

    Zeolite materials have been widely used as catalysts,ion-exchangers,and adsorbents due to their uniform micropores,high surface areas,adjustable acidities,and stable structures.Incorporation of transition metals like Fe,Ti,Ni,Co,or V into zeolites may cause new applications.1-5Particularly,Co-containing zeolites have attracted attention because they are efficient catalysts for reduction of NOx,6,7Fischer-Tropsch reaction,8,9and selective oxidation of alkanes.10,11However,in most of previous efforts,Co atoms were introduced into zeolites by impregnation and ion-exchange.In order to obtain single and highly dispersed Co sites without blocking the intrinsic micropores of zeolites,isomorphous substitution of Co ions into zeolite framework via a direct hydrothermal synthesis becomes an interesting topic.Nowadays,some framework-substituted Co-aluminophosphate(CoAPO)molecular sieves have been synthesized,12-14nevertheless,only a few Co-substituted aluminosilicate zeolites have been reported,such as MFI(mobil fifth), BEA(beta),ANA(analcime),and PHI(phillipsite)zeolites.15-17

    Mordenite(MOR)has been widely applied in petroleum industry for isomerization,dewaxing,and alkylation,18,19but Co-mordenite has been scarcely reported.Kato et al.20successfully synthesized a Co-mordenite by a dynamic hydrothermal treatment with a cobalt-ethylenediamine-N-monoacetic acid complex as the cobalt source.On the other hand,synthesizing heteroatomic zeolites always employs organic templates as the structural directing agencies.21-26For catalytic utilizations,the organic templates have to be removed by a high-temperature calcination so as to obtain the prerequisite open micropores. Consequently,the high-temperature treatment results in environmental pollution,large energy consumption,and high cost.27,28In earlier studies,Fe-and Zn-containing mordenites were obtained by a conventional static hydrothermal synthesis using sodium silicate as the silica source in the presence of organic templates.29,30Moreover,an organotemplate-free synthesis could cause the produce of Fe-mordenite,still needing the dynamic hydrothermal condition.31Although Kato et al.20did not use an organic template in the synthesis of Co-mordenite,as mentioned above,the research on the organotemplate-free synthesis is insufficient due to the demand of dynamic operation and the use of the organic-containing cobalt source.

    Herein,we report a direct static hydrothermal route for the incorporation of Co ions into the framework of mordenite with sodium silicate,aluminum sulfate,and cobalt nitrate as raw materials,and sodium hydroxide as the pH-adjusting agency,in the absence of any organic compounds,seeds,and pretreatments.The obtained products are complementarily characterized.

    2 Experimental

    2.1 Synthesis

    The hydrothermal synthesis of framework-substituted Co-mordenite in the absence of organic templates and seeds was carried out with the following procedures.Under vigorous stirring,10.51 g of sodium silicate(w(SiO2)=56%,w(Na2O)= 20%,AR,Wako,Japan)was added and dissolved into the aqueous solution containing 0.44 g of sodium hydroxide (w(NaOH)=96.0%,AR,Wuxi Yasheng Chem.Ind.Com.Ltd.) and 40 g of deionized water to obtain solution A.Solution B was made by adding 1.65 g of aluminum sulfate(w(Al2(SO4)3· 18H2O)=99%,AR,Shantou Xilong Chem.Ind.Com.Ltd.)into 10 g of deionized water,and solution C was gotten by adding 0.29 g of cobaltous nitrate(w(Co(NO3)2·6H2O)=99%,AR, Shantou Xilong Chem.Ind.Com.Ltd.)into 10 g of deionized water.Then,solutions B and C were added successively into solution A under stirring to give the gel mixture with a molar composition n(Na2O):n(SiO2):n(Al2O3):n(Co(NO3)2):n(H2O)=0.4: 1:0.025:0.01:40,which was stirred further at ambient temperature for 2 h.Finally,the slurry was transferred to a Teflon-lined stainless steel autoclave and left to crystallize statically at 170°C for 3 d.The resultant solid from the synthesis was separated by centrifugation,followed by washing with deionized water and air-drying at 70°C for 12 h.

    In the synthesis gels,the contents of Al2(SO4)3and Co(NO3)2were changed(n(SiO2)/n(Al2O3)=20-100,n(Co)/n(SiO2)=0-0.05)to investigate the applicability of the present new synthesis route,with otherwise conditions unaltered.The pure mordenite sample,used as the reference material in this study with a supposed 100%crystallinity,was prepared according to the above procedures from a Co-free gel mixture with molar composition n(Na2O):n(SiO2):n(Al2O3):n(H2O)=0.4:1:0.025:40.The relative crystallinities of Co-mordenite samples were calculated by comparing the summed intensity of the X-ray diffraction (XRD)peaks featured for MOR at 2θ values of 6.5°,8.7°,9.7°, 13.5°,15.3°,19.6°,22.3°,25.7°,26.4°,and 27.6°with that of the reference material.For comparison,colloidal silica(HS-40, Aldrich)was also used as the silica source in the organotemplate-free synthesis.

    2.2 Characterization

    Powder X-ray diffraction(XRD)patterns were collected on the powder diffractometer(Bruker D8 Advance,Germany)using Ni-filtered Cu Kαradiation source(λ=0.1542 nm)at 40 kV and 40 mA with a scanning speed of 0.02(°)·s-1.The unit cell parameters of the synthesized zeolites were calculated by XRD curves.32Co,Al,and Si contents were determined by an inductively coupled plasma(ICP)spectrometer(PerkinElmer Jarrell-Ash 1100,America).BET surface areas were evaluated with nitrogen sorption isotherms using an automatism isothermal adsorption instrument(Micromeritics ASAP2010,America)at 77 K.Scanning electron microscopy(SEM)images were characterized on an instrument(ThermoNicolet Quanta 200 FEI,America).The UV-Vis spectra were obtained using a spectrophotometer(PerkinElmerPE Lambda 950,America) equipped with a diffuse reflectance attachment.Thermogravimetric(TG)analysis was carried out on an instrument (NETZSCH STA 409PC,Germany)using a Pt pan,with the heating temperature from 35 to 800°C at a heating rate of 10°C· min-1.

    3 Results and discussion

    3.1 Influence of n(Co)/n(SiO2)ratios

    Fig.1 shows the XRD patterns for the Co-mordenite samples synthesized with various n(Co)/n(SiO2)ratios in starting gels, with otherwise similar conditions.The Co-free sample exhibited a set of diffraction peaks well assignable to the MOR structure,19without detecting other crystalline phases.Moreover,all the Co-containing samples gave the same peaks as those of the pure mordenite,while peak intensities decreased with the increase of n(Co)/n(SiO2)ratios.

    Fig.1 XRD patterns for the Co-mordenites synthesized with various n(Co)/n(SiO2)ratios in starting gelsconditions:n(SiO2)/n(Al2O3)=40,n(H2O)/n(SiO2)=40,T=170°C,t=3 d; n(Co)/n(SiO2):(a)0,(b)0.01,(c)0.02,(d)0.03,(e)0.04,(f)0.05

    Table 1 lists unit cell parameters,crystallinities,and BET surface areas for the samples synthesized with various n(Co)/ n(SiO2)ratios in starting gels.The Co loadings in final solid products were lower than the concentrations in starting gels,indicating that not all the cobalt species could be incorporated into the solid products.Meanwhile,the Co loadings in the solids increased gradually with the rise of n(Co)/n(SiO2)ratios in starting gels up to 0.04(entries 1-5).More importantly,the unit cell volumes increased monotonically with the increase of n(Co)/n(SiO2)up to 0.04,which is indicative of the insertion of Co ions into the TO4(T denotes tetrahedrally bonded cation) framework sites of MOR structure.This consists with the much larger radii of Co ions(0.0745 nm)than that of Si4+(0.040 nm).The increase of Co contents causes a gradual decrease in crystallinities,which is probably caused by the distortion of TO4tetrahedron due to the insertion of Co ions.At a very high n(Co)/n(SiO2)ratio of 0.05,the unit cell volume decreased obviously(entry 6),still corresponding to the drop of the n(Co)/n(SiO2)ratio in solid product.It is thus drawn that the molar ratio 0.04 for n(Co)/n(SiO2)in the starting gel is an upper limit to produce Co-mordenite.

    The typical sample of entry 4 was ion exchanged with aqueous solution of NH4Cl(2 mol·L-1)at 90°C for 3 h and then calcined at 550°C for 3 h.This procedure was repeated three times,and the resultant sample was analyzed by ICP.The treated sample gave n(SiO2)/n(Al2O3)=24.1 and n(Co)/n(SiO2)= 0.021,very close to those for the untreated one,strongly indicating that the Co ions in MOR framework are rather stable.

    Ratios of n(SiO2)/n(Al2O3)are also listed in Table 1.Much lower n(SiO2)/n(Al2O3)ratios of around 20 were observed for the final solid products compared with the constant value of 40 in starting gels,i.e.,the increase of Co loadings did not significantly influence the amount of Al ions incorporated in MOR framework.This result may be relative to the condition of n(Na2O)/n(SiO2)=0.4,a high alkalinity used for the hydrothermal synthesis.

    BET surface areas and micropore volumes in Table 1 show that the pure mordenite had a high surface area of 434 m2·g-1, and the Co-mordenites also possessed considerably high surface areas of around 350 m2·g-1.This strongly demonstrates the existing of open micropores for these organotemplate-free synthesized samples.The micropore volumes for Co-mordenite samples were only slightly lower than that of the pure mordenite,which may arise from the lower crystallinities of Co-mordenites due to the isomorphous substitution of the large Co ions in the MOR framework.

    The thermal properties for the pure mordenite and the selected Co-mordenite sample(n(Co)/n(SiO2)=0.03)were tested by the TG analysis,as shown in Fig.2.The gradual mass loss up to 350°C for the two samples due to water desorption is verydistinguished from the drastic decease at 420-520°C due to the decomposition of the involved organic templates for the template-synthesized mordenite.33This confirms that the samples prepared herein do not bear any organic species,needless to be subjected to a high-temperature calcination.

    Table 1 Textural properties for the Co-mordenites synthesized with various n(Co)/n(SiO2)ratios in starting gels

    Fig.2 TG curves for the organotemplate-free synthesized pure mordenite and the Co-mordenite with a n(Co)/n(SiO2) ratio of 0.03 in the starting gel

    Fig.3 UV-Vis spectra for the Co-mordenites synthesized with various n(Co)/n(SiO2)ratios in starting gelsconditions:n(SiO2)/n(Al2O3)=40,n(H2O)/n(SiO2)=40,T=170°C,t=3 d; n(Co)/n(SiO2):(a)0,(b)0.01,(c)0.02,(d)0.03,(e)0.04,(f)0.05

    UV-Vis spectra provide convincing evidences for the isomorphous substitution of metal ions for Si4+in zeolite crystal lattice.34Fig.3 shows the UV-Vis spectra for the Co-mordenite samples synthesized with various n(Co)/n(SiO2)ratios in starting gels.All the Co-mordenites presented well-resolved triplet bands in the wavelength range of 500-650 nm,attributable to4A2→4T1(4P),4A2→4T1(4F),and4A2→4T2transitions of high-spin Co2+in tetrahedral coordination sites.17,35-41In contrast,the triplet band could not be found for the pure mordenite.Furthermore,except for the sample with a very high n(Co)/n(SiO2)ratio of 0.05,the relative intensities of the triplet bands increased with Co contents in initial gels,which again suggests that the more Co2+introduced into initial gels,the more Co2+incorporated in MOR frameworks.12,15The absence of the band at ca 300 nm featured for cobalt oxides excludes the possible existence of extra-framework Co species.42-44

    Fig.4 SEM images for the Co-mordenites synthesized with various n(Co)/n(SiO2)ratios in starting gelsconditions:n(SiO2)/n(Al2O3)=40,n(H2O)/n(SiO2)=40,T=170°C,t=3 d;n(Co)/n(SiO2):(a)0,(b)0.01,(c)0.02,(d)0.03,(e)0.04,(f)0.05

    The SEM images for the samples with various n(Co)/n(SiO2) ratios are illustrated in Fig.4.Ellipsoidal crystal particles were observed for Co-mordenites,similar to the pure mordenite and the previously reported result.19Also,the particle sizes for Co-mordenites generally increased with the Co contents in synthesis gels.Obviously,amorphous phases occurred for Co-mordenites at high Co content,which is responsible for the lowered crystallinities,as already shown in Fig.1 and Table 1.The color of the obtained Co-mordenite was violescent,suggesting that the Co ions do not exist in the pore of the MOR structure.20

    3.2 Influence of crystallization time

    The crystallization process for Co-mordenite was investigated by changing the crystallization time from 0 to 7 d on the sample with n(Co)/n(SiO2)=0.03 in the starting gel.The crystallization curve is plotted in Fig.5.The relative crystallinities increased quickly at the early stage of the hydrothermal treatment without observing an induction period.The increasing rate became slow at the time beyond 3 d.A long hydrothermal period of 7 d was needed to obtain a quite high crystallinity of 81%.In comparison,a short time of 3 d could result in a considerably high crystallinity 78%with a n(Co)/n(SiO2)ratio of 0.02(entry 3,Table 1).These results indicate that the obtained well crystallized Co-mordenite with a higher Co content requires longer crystallization time.

    3.3 Influence of n(SiO2)/n(Al2O3)ratios

    Fig.5 Crystallization curve for Co-mordenite synthesized at n(Co)/n(SiO2)=0.03,n(SiO2)/n(Al2O3)=40, n(H2O)/n(SiO2)=40,and T=170°C

    n(SiO2)/n(Al2O3)ratios in starting gels are known to affect significantly the syntheses of heteroatomic zeolites.25The aforesaid syntheses focused on a certain n(SiO2)/n(Al2O3)of 40;furthermore,Table 2 presents the results for the Co-mordenites at n(SiO2)/n(Al2O3)ratios of 20 and 50.It can be seen that whatever the n(SiO2)/n(Al2O3)ratios,the Co contents in solid products raised with the increase of n(Co)/n(SiO2)ratios in starting gels except for the high n(Co)/n(SiO2)ratio of 0.05.The unit cell volumes also increased with the Co loadings in the final products with simultaneously decreased crystallinities.These observations,together with the tendency of n(SiO2)/n(Al2O3)ratios for final products,are consistent with those in Table 1 at n(SiO2)/n(Al2O3)=40.It therefore seems that the present organotemplate-free method is applicable to a broad range of n(SiO2)/ n(Al2O3)ratios in starting gels;nevertheless,n(SiO2)/n(Al2O3) ratios for final products have not been significantly enhanced by a higher n(SiO2)/n(Al2O3)ratio in the starting gel.

    Comparing the samples at n(Co)/n(SiO2)=0.03 with different n(SiO2)/n(Al2O3)ratios of 20,40,and 50(entries 3 and 6 in Table 2,and entry 4 in Table 1),it is found that both the crystallinities and Co loadings in final products are enhanced with the raise of n(SiO2)/n(Al2O3)ratios in starting gels.Thus,a high n(SiO2)/n(Al2O3)ratio in gel mixture seems favorable to the insertion of Co ions into MOR framework.However,synthesizing an extremely high silica mordenite is still known as a challenging topic.Therefore,when a separate experiment for the very high n(SiO2)/n(Al2O3)ratio of 100 in the starting gel was conducted,it is not surprising that only a very low crystallinity of 38%for the resultant solid product was obtained.

    3.4 Preliminaryunderstandingoftheorganotemplatefree synthesis

    The present organotemplate-free synthesis uses sodium silicate as the Si source and NaOH as the alkalinity-adjusting agency.It is known that Na+may play a role as an inorganic template instead of organic ones that leads to nucleation for the growth of zeolite crystals.45-47It is thus proposed that in the present approach,the Na+ion in starting gels acts as a central body in its positive tetrahedral model,around which the dispersed silicate ions and Co ions would have condensed to form the Si-O-Co linkages,the primary building blocks of nuclei for mordenite crystals.

    To understand this proposal,several control tests were further carried out.If silica sol,rather than sodium silicate,was used as the silica source under the same synthesis conditions asthose in entry 2(Table 1),only an amorphous solid product was obtained.It is therefore supposed that in the gel stage,the highly condensed silica species could not react with Co ions to form the nuclei precursor of Si-O-Co linkage,which would fail to cause the creation of zeolite phases,even in the presence of Na+ions.However,when the 0.1%(w)mordenite crystalline seed was added into the above silica sol-based system,the pure phase of Co-mordenite was obtained(entry 7,Table 1),wherein the so-called“initial-bred nuclei”from the seed-amorphous interfacial layers in a seeded hydrothermal synthesis could be assumed.48Interestingly,when KOH was used as the alkalinityadjusting agency for the seeded silica sol-based system to form a sodium-free system,Co-mordenite could not be produced any more.These comparisons demonstrate the template role of Na+ions for the creation of MOR structure.As a result,without aid of a mordenite crystalline seed,sodium silicate is a necessary silica source for synthesizing Co-mordenite by the present organotemplate-free approach.

    Table 2 Textural properties for Co-mordenites synthesized with various n(Co)/n(SiO2)ratios in starting gels

    4 Conclusions

    We develop a facile organotemplate-free hydrothermal approach for synthesizing framework-substituted Co-mordenites. The synthesis simply uses sodium silicate,aluminum sulfate, and cobalt nitrate as Si,Al,and Co sources,with NaOH as the only additive to adjusting the alkalinity of starting gels. Co-mordenites are obtained with broad ranges of Al and Co contents in synthesis gels.Na+ions are proposed to serve as the inorganic structure-directing template and sodium silicate is the necessary silica source for this organotemplate-free method.The as-synthesized products have open micropores needless to use a high-temperature calcination,which is more environmentally benign and less energy consumption.

    (1) Wichterlova,B.;Dedecek,J.;Sobalik,Z.;Vondrova,A.;Klier, K.J.Catal.1997,169,194.doi:10.1006/jcat.1997.1687

    (2)Li,Y.;Armor,J.N.J.Chem.Soc.Chem.Commun.1997,2013.

    (3) Chen,H.H.;Shen,S.C.;Chen,X.;Kawi,S.Appl.Catal.B: Environ.2004,50,37.doi:10.1016/j.apcatb.2003.10.005

    (4) Schwidder,M.;Heikens,S.;De Toni,A.;Geisler,S.;Berndt, M.;Brueckner,A.;Gruenert,W.J.Catal.2008,259,96.doi: 10.1016/j.jcat.2008.07.014

    (5) Ratnasamy,P.;Kumar,R.;Catal.Lett.1993,22,227.doi: 10.1007/BF00810369

    (6)Wang,X.;Chen,H.Y.;Sachtler,W.M.H.J.Catal.2001,19, 281.

    (7)Hadjiivanov,K.;Mihaylov,M.Chem.Commun.2004,2200.

    (8) Fierro,G.;Eberhardt,M.A.;Houalla,M.;Hercules,D.M.; Hall,W.K.J.Phys.Chem.1996,100,8468.doi:10.1021/ jp960121e

    (9) ?apek,L.;D?de?ek,J.;Wichterlová,B.J.Catal.2004,227, 352.doi:10.1016/j.jcat.2004.08.001

    (10)Zhai,Z.B.;Miao,Y.C.;Sun,Q.L.;Tao,H.W.;Wang,W.; Wang,J.Q.Catal.Lett.2009,131,538.doi:10.1007/ s10562-009-9961-7

    (11)Zhao,R.H.;Dong,M.;Qin,Z.F.;Ding,J.F.;Guo,X.C.; Wang,J.G.Acta Phys.-Chim.Sin.2008,24,2304.[趙瑞花,董 梅,秦張峰,丁建飛,郭星翠,王建國.物理化學(xué)學(xué)報, 2008,24,2304.]doi:10.3866/PKU.WHXB20081226

    (12)Gao,Q.;Weckhuysen,B.M.;Schoonheydt,R.A.Microporous Mesoporous Mat.1999,27,75.doi:10.1016/S1387-1811(98) 00274-1

    (13)Fan,W.;Li,R.;Dou,T.;Tatsumi,T.;Weckhuysen,B.M. Microporous Mesoporous Mat.2005,84,116.doi:10.1016/ j.micromeso.2005.04.025

    (14) Duan,F.;Li,J.;Chen,P.;Yu,J.;Xu,R.Microporous Mesoporous Mat.2009,126,26.doi:10.1016/j.micromeso. 2009.05.015

    (15) Janas,J.;Shishido,T.;Che,M.;Dzwigaj,S.Appl.Catal.B: Environ.2009,89,196.doi:10.1016/j.apcatb.2008.11.028

    (16) Pai,S.;Newalkar,B.L.;Choudary,N.V.Microporous Mesoporous Mat.2006,96,135.doi:10.1016/j.micromeso. 2006.06.027

    (17) Nagase,T.;Chatterjee,A.;Tanaka,A.P.;Tanco,M.L.;Tazaki, K.Chem.Lett.2004,33,1416.doi:10.1246/cl.2004.1416

    (18) Meier,W.M.Z.Kristallogr.1961,115,439.doi:10.1524/ zkri.1961.115.5-6.439

    (19) Degnan,T.F.,Jr.J.Catal.2003,216,32.doi:10.1016/ S0021-9517(02)00105-7

    (20) Kato,M.;Ikeda,T.;Kodaira,T.;Takahashi,S.Microporous Mesoporous Mat.2011,142,444.doi:10.1016/j.micromeso. 2010.12.030

    (21) Qiao,K.;Zhang,F.M.;Pan,D.L.;Zhang,N.F.;Jian,P.M. Chin.J.Inorg.Chem.2008,24,748.[喬 虧,張富民,潘多麗,張鳥飛,菅盤銘.無機化學(xué)學(xué)報,2008,24,748.]

    (22)Watanabe,K.;Ogura,M.Microporous Mesoporous Mat.2008, 114,229.doi:10.1016/j.micromeso.2008.01.008

    (23) Chen,B.;Huang,Y.Microporous Mesoporous Mat.2009,123, 71.doi:10.1016/j.micromeso.2009.03.025

    (24) Niphadkar,P.S.;Kotwal,M.S.;Deshpande,S.S.;Bokade,V. V.;Joshi,P.N.Mater.Chem.Phys.2009,114,344.doi:10.1016/ j.matchemphys.2008.09.026

    (25) Xia,Q.H.;Tatsumi,T.Mater.Chem.Phys.2005,89,89.doi: 10.1016/j.matchemphys.2004.08.034

    (26)Yang,D.H.;Zhao,J.F.;Zhang,J.L.;Dou,T.;Wu,Z.H.;Chen, Z.J.Acta Phys.-Chim.Sin.2012,28,720. [楊冬花,趙君芙,張軍亮,竇 濤,吳忠華,陳中軍.物理化學(xué)學(xué)報,2012,28, 720.]doi:10.3866/PKU.WHXB201201031

    (27) Song,J.W.;Dai,L.;Ji,Y.Y.;Xiao,F.S.Chem.Mater.2006,18, 2775.doi:10.1021/cm052593o

    (28) Zhang,W.;Wu,Y.J.;Gu,J.;Zhou,H.L.;Wang,J.Mater.Res. Bull.2011,46,1451.doi:10.1016/j.materresbull.2011.05.006

    (29) Chandwadkar,A.J.;Bhat,R.N.;Ratnasamy,P.Zeolites 1991, 11,42.doi:10.1016/0144-2449(91)80354-3

    (30)Dong,M.;Wang,J.G.;Sun,Y.H.Microporous Mesoporous Mat.2001,43,237.doi:10.1016/S1387-1811(01)00211-6

    (31)Wu,P.;Komastsu,T.;Yashima,T.Microporous Mesoporous Mat.1998,20,139.doi:10.1016/S1387-1811(97)00005-X

    (32) Treacy,M.M.J.;Higgins,J.B.Collection of Simulated XRD Powder Patterns for Zeolites,5th ed.;Elsevier:Netherlands, 2007;p 284.

    (33)Mohamed,M.M.;Salama,T.M.;Othman,I.;Ellah,I.A. Microporous Mesoporous Mat.2005,84,84.doi:10.1016/ j.micromeso.2005.05.017

    (34) Hunger,M.;Weitkamp,J.Angew.Chem.Int.Edit.2001,40, 2954.doi:10.1002/1521-3773(20010817)40:16<2954:: AID-ANIE2954>3.0.CO;2-#

    (35) Duran,A.;Fernandez Navarro,J.M.;Casariego,P.;Joglar,A. J.Non-Cryst.Solids 1986,812,391.

    (36) Fujii,Y.;Kyuno,E.;Tsuchiya,R.Bull.Chem.Soc.Jpn.1970, 43,786.doi:10.1246/bcsj.43.786

    (37)Weckhuysen,B.M.;Verberckmoes,A.A.;Uytterhoeven,M.G.; Mabbs,F.E.;Collison,D.;de Boer,E.;Schoonheydt,R.A. J.Phys.Chem.B.2000,104,37.doi:10.1021/jp991762n

    (38)Weckhuysen,B.M.;Rao,R.R.;Martens,J.A.;Schoonheydt,R. A.Eur.J.Inorg.Chem.1999,565.

    (39) Hartmann,M.;Kevan,L.Chem.Rev.1999,99,635.doi: 10.1021/cr9600971

    (40)Verberckmoes,A.A.;Weckhuysen,B.M.;Schoonheydt,R.A. Microporous Mesoporous Mat.1998,22,165.doi:10.1016/ S1387-1811(98)00091-2

    (41)Fan,W.;Weckhuysen,B.M.;Schoonheydt,R.A.Phys.Chem. Chem.Phys.2001,3,3240.

    (42) Dzwigaj,S.;Che,M.J.Phys.Chem.B 2006,110,12490.doi: 10.1021/jp0623387

    (43)Thomson,S.;Luca,V.;Howe,R.F.Phys.Chem.Chem.Phys. 1999,1,615.

    (44)Eldewik,A.;Howe,R.F.Microporous Mesoporous Mat.2001, 48,65.doi:10.1016/S1387-1811(01)00331-6

    (45) Persson,A.E.;Schoeman,B.J.;Sterte,J.Zeolites 1995,15, 611.doi:10.1016/0144-2449(95)00070-M

    (46) Cheng,Z.L.;Chao,Z.S.;Lin,H.Q.;Wan,H.L.Chin.J.Inorg. Chem.2003,19,396.[程志林,晁自勝,林海強,萬惠霖.無機化學(xué)學(xué)報,2003,19,396.]

    (47) Shin,D.K.;Shi,H.N.;Kyeong,H.S.;Wha,J.K.Microporous Mesoporous Mat.2004,72,185.doi:10.1016/j.micromeso. 2004.04.024

    (48) Jansen,J.C.;Stocker,M.;Kargc,H.G.;Weilkamp,J.Stud. Surf.Sci.Catal.1994,85,43.doi:10.1016/S0167-2991(08) 60764-8

    猜你喜歡
    程志化工學(xué)院物理化學(xué)
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    中醫(yī)情志關(guān)懷在婦產(chǎn)科護理中的應(yīng)用
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    Chemical Concepts from Density Functional Theory
    程志宏印象
    中國篆刻(2017年5期)2017-07-18 11:09:30
    《化工學(xué)報》贊助單位
    小溪
    岷峨詩稿(2014年2期)2014-11-15 03:21:29
    成人二区视频| 亚洲精品乱码久久久v下载方式| 99精品在免费线老司机午夜| 波野结衣二区三区在线| 少妇被粗大猛烈的视频| 少妇裸体淫交视频免费看高清| 亚洲欧美清纯卡通| 亚洲在线自拍视频| 亚洲欧美精品自产自拍| 国产精品国产三级国产av玫瑰| 天天躁日日操中文字幕| 女人被狂操c到高潮| 日韩欧美在线乱码| 亚洲精品亚洲一区二区| 国产视频首页在线观看| 最近2019中文字幕mv第一页| 国产精品电影一区二区三区| 日本免费一区二区三区高清不卡| 国产精品三级大全| 久久精品夜色国产| 久久久欧美国产精品| 欧美一区二区精品小视频在线| 99热网站在线观看| 性插视频无遮挡在线免费观看| 蜜桃亚洲精品一区二区三区| 欧美激情久久久久久爽电影| 国产不卡一卡二| 观看美女的网站| 久久人人爽人人片av| 免费人成在线观看视频色| 国产成人精品久久久久久| 国产私拍福利视频在线观看| 欧美色视频一区免费| 观看免费一级毛片| 亚洲av二区三区四区| 少妇丰满av| 亚洲欧美日韩卡通动漫| 99热这里只有精品一区| 欧美日韩综合久久久久久| 最好的美女福利视频网| 精品免费久久久久久久清纯| 亚洲人与动物交配视频| 日韩在线高清观看一区二区三区| 国产三级中文精品| 综合色av麻豆| 日本撒尿小便嘘嘘汇集6| 国产成人午夜福利电影在线观看| 国产极品天堂在线| 69人妻影院| 免费看日本二区| 麻豆成人av视频| 亚洲真实伦在线观看| 国产精品爽爽va在线观看网站| 欧美xxxx性猛交bbbb| 联通29元200g的流量卡| 午夜福利在线在线| 日日干狠狠操夜夜爽| 又爽又黄无遮挡网站| 欧美人与善性xxx| 91aial.com中文字幕在线观看| 舔av片在线| 日韩一区二区三区影片| 国产精品不卡视频一区二区| 精华霜和精华液先用哪个| 少妇裸体淫交视频免费看高清| 国产精品伦人一区二区| 网址你懂的国产日韩在线| 在线观看一区二区三区| 国产成人影院久久av| 国产精品麻豆人妻色哟哟久久 | 亚洲在久久综合| 自拍偷自拍亚洲精品老妇| 成人漫画全彩无遮挡| 51国产日韩欧美| 看黄色毛片网站| 国产精品久久久久久亚洲av鲁大| 噜噜噜噜噜久久久久久91| a级毛色黄片| 国产午夜精品论理片| 黄片无遮挡物在线观看| 一夜夜www| 老司机福利观看| 黄色一级大片看看| 日日撸夜夜添| 一本久久中文字幕| 国产在线男女| 看非洲黑人一级黄片| 免费人成视频x8x8入口观看| 尤物成人国产欧美一区二区三区| 高清午夜精品一区二区三区 | 免费一级毛片在线播放高清视频| ponron亚洲| 精品午夜福利在线看| 国产淫片久久久久久久久| 黄色欧美视频在线观看| 欧美又色又爽又黄视频| 亚洲av熟女| 亚洲美女搞黄在线观看| 国语自产精品视频在线第100页| 菩萨蛮人人尽说江南好唐韦庄 | 天天躁日日操中文字幕| av在线老鸭窝| 欧美区成人在线视频| 丰满的人妻完整版| 熟女人妻精品中文字幕| 国产探花极品一区二区| 久久久成人免费电影| 久久午夜福利片| 一本精品99久久精品77| 亚洲精品亚洲一区二区| 毛片一级片免费看久久久久| 久久久精品大字幕| 国产精品无大码| 狠狠狠狠99中文字幕| 日本三级黄在线观看| 中文亚洲av片在线观看爽| 精品午夜福利在线看| 久久精品夜色国产| 亚洲av二区三区四区| 亚洲精品色激情综合| 亚洲欧美中文字幕日韩二区| 天天一区二区日本电影三级| 久久久成人免费电影| 男人和女人高潮做爰伦理| 久久久a久久爽久久v久久| 国产午夜精品论理片| 久久国产乱子免费精品| 久久午夜福利片| 亚洲在线观看片| 伦理电影大哥的女人| 久久99精品国语久久久| 国产乱人偷精品视频| 免费观看在线日韩| 激情 狠狠 欧美| 女的被弄到高潮叫床怎么办| 成年女人看的毛片在线观看| 黄色视频,在线免费观看| 桃色一区二区三区在线观看| 女同久久另类99精品国产91| 久久久久久久午夜电影| 欧美成人免费av一区二区三区| 国产精品.久久久| 国产私拍福利视频在线观看| 成年免费大片在线观看| 国产老妇女一区| 长腿黑丝高跟| 男人狂女人下面高潮的视频| 夜夜看夜夜爽夜夜摸| 长腿黑丝高跟| 国产91av在线免费观看| 亚洲电影在线观看av| 色哟哟·www| 成年免费大片在线观看| 寂寞人妻少妇视频99o| 国产精品三级大全| 国产精品久久久久久久久免| 国产熟女欧美一区二区| 免费观看a级毛片全部| 亚洲av成人av| 午夜亚洲福利在线播放| 一本久久中文字幕| 亚洲国产精品国产精品| 免费观看精品视频网站| 亚洲欧美日韩东京热| 成人毛片a级毛片在线播放| 国产乱人视频| 十八禁国产超污无遮挡网站| 欧美日本视频| 干丝袜人妻中文字幕| 精品人妻熟女av久视频| 一卡2卡三卡四卡精品乱码亚洲| av在线老鸭窝| 小说图片视频综合网站| 成人特级黄色片久久久久久久| 婷婷精品国产亚洲av| 看非洲黑人一级黄片| 一边亲一边摸免费视频| 一级毛片久久久久久久久女| 日本欧美国产在线视频| 国产老妇伦熟女老妇高清| 国产高清三级在线| 欧美三级亚洲精品| 国产真实伦视频高清在线观看| 国产高清激情床上av| 亚洲最大成人中文| 悠悠久久av| 男女下面进入的视频免费午夜| 久久久久久大精品| 国产麻豆成人av免费视频| 三级毛片av免费| 国产午夜精品论理片| 成人特级黄色片久久久久久久| 免费av毛片视频| 日日干狠狠操夜夜爽| 日韩一区二区三区影片| 日韩一区二区三区影片| 国内精品一区二区在线观看| 黄色日韩在线| 亚洲真实伦在线观看| 91久久精品国产一区二区三区| 好男人在线观看高清免费视频| 成人综合一区亚洲| 欧美成人a在线观看| 熟女人妻精品中文字幕| 亚洲久久久久久中文字幕| 久久久久免费精品人妻一区二区| 寂寞人妻少妇视频99o| 我的女老师完整版在线观看| 一级毛片久久久久久久久女| 在线播放国产精品三级| 国产白丝娇喘喷水9色精品| 婷婷色综合大香蕉| 我要看日韩黄色一级片| 12—13女人毛片做爰片一| 床上黄色一级片| 午夜老司机福利剧场| 桃色一区二区三区在线观看| 国产精品野战在线观看| av天堂中文字幕网| 在线观看av片永久免费下载| 中文字幕熟女人妻在线| 99久国产av精品| 在线观看66精品国产| 日韩中字成人| 成人无遮挡网站| 黄色欧美视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 日韩欧美国产在线观看| 欧美区成人在线视频| 国内揄拍国产精品人妻在线| 99国产精品一区二区蜜桃av| 亚洲av不卡在线观看| 天天一区二区日本电影三级| 国产精品一区二区在线观看99 | 国产精品日韩av在线免费观看| 99久国产av精品国产电影| 久久久久性生活片| 国产免费男女视频| 国产免费一级a男人的天堂| 男女那种视频在线观看| 成人综合一区亚洲| 亚洲真实伦在线观看| 国产黄色小视频在线观看| 午夜激情福利司机影院| 麻豆精品久久久久久蜜桃| 欧美极品一区二区三区四区| 十八禁国产超污无遮挡网站| 卡戴珊不雅视频在线播放| 成人漫画全彩无遮挡| 在线免费十八禁| 欧美最黄视频在线播放免费| 91久久精品电影网| 日日撸夜夜添| 一夜夜www| 免费在线观看成人毛片| 国产激情偷乱视频一区二区| 国产极品精品免费视频能看的| 97超视频在线观看视频| 春色校园在线视频观看| 国产精品电影一区二区三区| 波多野结衣高清无吗| 久久久久久久久久黄片| 久久人人精品亚洲av| 长腿黑丝高跟| 男插女下体视频免费在线播放| 一本精品99久久精品77| 夜夜看夜夜爽夜夜摸| 啦啦啦啦在线视频资源| 亚洲av成人精品一区久久| 亚洲第一区二区三区不卡| 青青草视频在线视频观看| 成人二区视频| 国产精品乱码一区二三区的特点| 日本与韩国留学比较| 一级毛片久久久久久久久女| 午夜激情福利司机影院| 日本一本二区三区精品| 成人特级黄色片久久久久久久| 国产国拍精品亚洲av在线观看| 午夜老司机福利剧场| 亚洲国产精品合色在线| 女同久久另类99精品国产91| 久久精品影院6| 禁无遮挡网站| 国产探花在线观看一区二区| 边亲边吃奶的免费视频| 国产成人精品婷婷| 好男人在线观看高清免费视频| 亚洲av成人精品一区久久| 亚洲成人久久性| 麻豆国产97在线/欧美| 在现免费观看毛片| 成人美女网站在线观看视频| 夜夜看夜夜爽夜夜摸| 99久久精品热视频| 久久午夜福利片| 色尼玛亚洲综合影院| 三级男女做爰猛烈吃奶摸视频| 午夜a级毛片| 免费看美女性在线毛片视频| 亚洲va在线va天堂va国产| 色尼玛亚洲综合影院| 国产精品1区2区在线观看.| www.色视频.com| 嫩草影院入口| 亚洲国产精品久久男人天堂| 亚洲,欧美,日韩| 日日啪夜夜撸| 国产一区二区亚洲精品在线观看| 一本久久中文字幕| 老师上课跳d突然被开到最大视频| 久久精品人妻少妇| 免费看美女性在线毛片视频| 日韩亚洲欧美综合| 青春草视频在线免费观看| 亚洲一区二区三区色噜噜| 日韩欧美一区二区三区在线观看| 日本爱情动作片www.在线观看| 久久精品久久久久久久性| 国产成人一区二区在线| 国产av在哪里看| 成人漫画全彩无遮挡| 久久精品国产亚洲网站| 亚洲国产日韩欧美精品在线观看| 久久久久久九九精品二区国产| 亚洲av免费在线观看| 一夜夜www| 亚洲精品乱码久久久v下载方式| 国产精品99久久久久久久久| 国内少妇人妻偷人精品xxx网站| 久久精品国产清高在天天线| 最近中文字幕高清免费大全6| 婷婷色av中文字幕| 国产成人一区二区在线| 久久精品人妻少妇| 国产精品一及| 一级毛片我不卡| 级片在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 一区二区三区高清视频在线| 久久欧美精品欧美久久欧美| 哪里可以看免费的av片| 一区二区三区四区激情视频 | 色尼玛亚洲综合影院| 成人高潮视频无遮挡免费网站| 国产免费一级a男人的天堂| 男人舔女人下体高潮全视频| 亚洲最大成人av| 午夜激情欧美在线| av专区在线播放| 悠悠久久av| 久久精品影院6| 精品一区二区三区视频在线| 乱码一卡2卡4卡精品| 看免费成人av毛片| 中文欧美无线码| 成年女人永久免费观看视频| 给我免费播放毛片高清在线观看| 又爽又黄a免费视频| 波野结衣二区三区在线| 自拍偷自拍亚洲精品老妇| 久久99热这里只有精品18| АⅤ资源中文在线天堂| 91久久精品国产一区二区成人| 最近的中文字幕免费完整| 99在线人妻在线中文字幕| 久久久久久久午夜电影| 日本撒尿小便嘘嘘汇集6| 欧美潮喷喷水| 国产熟女欧美一区二区| 我的女老师完整版在线观看| 久久韩国三级中文字幕| 国产日本99.免费观看| 美女被艹到高潮喷水动态| 成人特级黄色片久久久久久久| 久久中文看片网| 欧美成人a在线观看| 老司机福利观看| 免费看光身美女| 久久精品国产自在天天线| 日日干狠狠操夜夜爽| 校园春色视频在线观看| 色综合色国产| 我的女老师完整版在线观看| 国产亚洲av嫩草精品影院| 亚洲欧美成人精品一区二区| 日韩精品青青久久久久久| 激情 狠狠 欧美| 午夜激情欧美在线| 亚洲av中文字字幕乱码综合| 男的添女的下面高潮视频| 国产毛片a区久久久久| 日本与韩国留学比较| 精品免费久久久久久久清纯| 啦啦啦啦在线视频资源| 日韩在线高清观看一区二区三区| 最好的美女福利视频网| 一级毛片久久久久久久久女| 又爽又黄无遮挡网站| 日本熟妇午夜| 黄片无遮挡物在线观看| 中文字幕熟女人妻在线| a级毛色黄片| 国产免费男女视频| 看非洲黑人一级黄片| av在线播放精品| 亚洲一区高清亚洲精品| 国产精品不卡视频一区二区| 欧美一区二区精品小视频在线| 色吧在线观看| 国产真实乱freesex| 中文资源天堂在线| 亚洲自拍偷在线| 91在线精品国自产拍蜜月| 欧美另类亚洲清纯唯美| 亚洲av二区三区四区| 高清日韩中文字幕在线| 高清毛片免费观看视频网站| 午夜久久久久精精品| 麻豆久久精品国产亚洲av| 色吧在线观看| 亚洲国产色片| 欧美日本视频| 久久精品国产自在天天线| av视频在线观看入口| 久久久久久久久久久丰满| 成年版毛片免费区| 久久精品夜夜夜夜夜久久蜜豆| 日韩高清综合在线| 日韩大尺度精品在线看网址| 日韩欧美 国产精品| 中文字幕熟女人妻在线| 亚洲av电影不卡..在线观看| 三级经典国产精品| 国产精品av视频在线免费观看| 1024手机看黄色片| 久久亚洲国产成人精品v| 午夜a级毛片| 亚洲va在线va天堂va国产| 国产在线男女| 亚洲精品成人久久久久久| 美女内射精品一级片tv| 国产av麻豆久久久久久久| 亚洲欧美日韩无卡精品| 97热精品久久久久久| 成人综合一区亚洲| 深夜a级毛片| 性色avwww在线观看| 欧美潮喷喷水| 99国产极品粉嫩在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产探花在线观看一区二区| 亚洲精品日韩在线中文字幕 | 精品欧美国产一区二区三| 国产一级毛片在线| 精品久久久久久久人妻蜜臀av| 亚洲最大成人中文| 日本成人三级电影网站| 精品熟女少妇av免费看| 最好的美女福利视频网| 蜜臀久久99精品久久宅男| 天天躁日日操中文字幕| 亚洲av成人精品一区久久| 深夜a级毛片| 日本欧美国产在线视频| 亚洲无线观看免费| 国产私拍福利视频在线观看| 久久精品夜色国产| 变态另类成人亚洲欧美熟女| 亚洲精品国产成人久久av| 变态另类成人亚洲欧美熟女| 美女黄网站色视频| 一个人观看的视频www高清免费观看| 黄色一级大片看看| 亚洲国产欧美在线一区| 极品教师在线视频| 边亲边吃奶的免费视频| 精品免费久久久久久久清纯| 午夜久久久久精精品| 国内少妇人妻偷人精品xxx网站| 有码 亚洲区| 国产精品一二三区在线看| 国产老妇女一区| 我要看日韩黄色一级片| 亚洲国产精品久久男人天堂| 12—13女人毛片做爰片一| 国产黄片视频在线免费观看| 国产色婷婷99| www日本黄色视频网| 好男人在线观看高清免费视频| 国产av一区在线观看免费| 中文字幕av成人在线电影| 国产三级中文精品| 丝袜美腿在线中文| 免费一级毛片在线播放高清视频| 中文欧美无线码| 欧美成人一区二区免费高清观看| 日韩欧美在线乱码| 高清日韩中文字幕在线| 久久久久性生活片| 精品熟女少妇av免费看| 最近视频中文字幕2019在线8| 国产乱人偷精品视频| 日产精品乱码卡一卡2卡三| 好男人视频免费观看在线| 少妇的逼水好多| 精品国产三级普通话版| 精品无人区乱码1区二区| 三级经典国产精品| 国产精品日韩av在线免费观看| 国产日本99.免费观看| 午夜久久久久精精品| 国产三级在线视频| 成人av在线播放网站| av天堂中文字幕网| 美女xxoo啪啪120秒动态图| 国产在线精品亚洲第一网站| 久久精品国产自在天天线| 热99re8久久精品国产| 久久精品91蜜桃| 卡戴珊不雅视频在线播放| 美女被艹到高潮喷水动态| 国产蜜桃级精品一区二区三区| 美女高潮的动态| ponron亚洲| 最近手机中文字幕大全| 日韩欧美在线乱码| 又粗又硬又长又爽又黄的视频 | 亚洲高清免费不卡视频| 国产伦精品一区二区三区四那| 久久久久久久久大av| 欧美成人免费av一区二区三区| 人人妻人人澡欧美一区二区| 国产真实乱freesex| 在线a可以看的网站| 嫩草影院新地址| 在线播放无遮挡| 亚洲内射少妇av| 级片在线观看| 3wmmmm亚洲av在线观看| 中文字幕精品亚洲无线码一区| 人体艺术视频欧美日本| 日日摸夜夜添夜夜爱| 中国美白少妇内射xxxbb| 亚州av有码| 尤物成人国产欧美一区二区三区| 中文欧美无线码| 久久精品国产亚洲网站| 热99在线观看视频| 狂野欧美白嫩少妇大欣赏| 日本黄大片高清| 欧美成人一区二区免费高清观看| 天天一区二区日本电影三级| 我要看日韩黄色一级片| a级一级毛片免费在线观看| 爱豆传媒免费全集在线观看| 亚洲不卡免费看| 3wmmmm亚洲av在线观看| 欧美丝袜亚洲另类| 91久久精品电影网| 看非洲黑人一级黄片| 日韩一区二区三区影片| 欧美精品一区二区大全| 成人无遮挡网站| 亚洲色图av天堂| 日本爱情动作片www.在线观看| 日韩在线高清观看一区二区三区| 久久久久久久午夜电影| 国产精品电影一区二区三区| 床上黄色一级片| 欧美最黄视频在线播放免费| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 男女下面进入的视频免费午夜| 麻豆av噜噜一区二区三区| 亚洲精品亚洲一区二区| 国产精品一区www在线观看| 99久久久亚洲精品蜜臀av| 亚洲av免费高清在线观看| 欧美区成人在线视频| videossex国产| 婷婷精品国产亚洲av| 毛片一级片免费看久久久久| 少妇熟女aⅴ在线视频| 亚洲七黄色美女视频| 国产精品99久久久久久久久| 综合色丁香网| 国产精品99久久久久久久久| 一级毛片久久久久久久久女| 日日摸夜夜添夜夜添av毛片| 噜噜噜噜噜久久久久久91| 少妇的逼水好多| 国产一区二区激情短视频| 成人一区二区视频在线观看| 久久精品影院6| 日韩视频在线欧美| 亚洲国产欧美在线一区| 国产成人精品一,二区 | 中出人妻视频一区二区| 国产不卡一卡二| 亚洲精品乱码久久久v下载方式| avwww免费| 高清毛片免费看| 国产成人91sexporn| 观看免费一级毛片| 国产精品一区二区三区四区久久| 黄色欧美视频在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 白带黄色成豆腐渣| 麻豆国产97在线/欧美| 别揉我奶头 嗯啊视频| av天堂在线播放| 99久国产av精品国产电影| 不卡视频在线观看欧美| 床上黄色一级片| 国内久久婷婷六月综合欲色啪|