時(shí)麗麗,張 莉,譚初兵,徐為人,杜冠華
(1.天津藥物研究院天津市新藥設(shè)計(jì)與發(fā)現(xiàn)重點(diǎn)實(shí)驗(yàn)室,天津 300193;2.中國(guó)醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)學(xué)院藥物研究所國(guó)家藥物篩選中心,北京 100050)
胰島素抵抗(insulin resistance,IR)是指正常濃度的胰島素生理效應(yīng)低于正常,主要表現(xiàn)為胰島素作用的靶組織(主要是肝臟、肌肉和脂肪)對(duì)胰島素作用的敏感性及反應(yīng)性降低,是導(dǎo)致肥胖、代謝綜合癥、非酒精性脂肪肝、2型糖尿病(type 2 diabetes metalles,T2DM)及其并發(fā)癥和心血管類疾病的主要因素[1-2]。近年來,研究發(fā)現(xiàn)IR與一些神經(jīng)性疾病也有著密切的關(guān)系,例如神經(jīng)退行性疾病、胎兒酒精譜系障礙等[3]。IR發(fā)病機(jī)制主要為胰島素受體前和受體后缺陷[4-5],前者主要表現(xiàn)為胰島素與靶組織受體結(jié)合異常,包括胰島素及其受體相對(duì)不足,胰島素及其受體結(jié)構(gòu)發(fā)生改變等,后者主要表現(xiàn)為胰島素信號(hào)通路傳導(dǎo)障礙等[6]。目前,越來越多的證據(jù)表明線粒體功能損傷和胰島素抵抗有著密切的關(guān)系,并認(rèn)為線粒體功能損傷是誘發(fā)IR的主要機(jī)制之一,本文將從遺傳因素、老化、ROS、線粒體生物合成等方面闡述線粒體功能損傷與IR的關(guān)系,并介紹IR治療中與線粒體相關(guān)的藥物作用機(jī)制。
線粒體的主要功能是代謝體內(nèi)的糖脂類物質(zhì),產(chǎn)生ATP和熱量,平衡機(jī)體能量的供需。線粒體功能的損傷以ATP生成量減少為主要特征,會(huì)導(dǎo)致機(jī)體內(nèi)能量供需失衡,從而誘發(fā)一系列的疾?。?],比如IR、T2DM等。線粒體功能損傷的原因有遺傳因素和環(huán)境因素,前者包括線粒體相關(guān)的基因和信號(hào)通路發(fā)生變化,后者包括體育鍛煉、攝食、老化、氧化應(yīng)激、線粒體生物合成等。
1.1 遺傳因素與IR 線粒體內(nèi)的蛋白是由核基因(nuclear DNA,nDNA)和線粒體基因(mitochondrial DNA,mtDNA)共同控制轉(zhuǎn)錄表達(dá)的,mtDNA編碼了線粒體內(nèi)13種蛋白的表達(dá),主要參與線粒體氧化磷酸化(oxidative phosphorylation,OXPHOS),線粒體特異的核蛋白體以及部分tRNAs。線粒體的氧化能力取決于OXPHOS各亞基的表達(dá)水平及線粒體的數(shù)量和容量,其進(jìn)行OXPHOS產(chǎn)生ATP的同時(shí),伴隨著氧自由基(reactive oxygen species,ROS)的生成。mtDNA無組蛋白保護(hù),直接暴露于ROS中,極易受到ROS的攻擊而受損,引起基因突變,影響線粒體內(nèi)OXPHOS蛋白的表達(dá)及活性,損傷線粒體的呼吸功能。OXPHOS蛋白的表達(dá)量下降及原于老化或氧化應(yīng)激引起的線粒體基因突變可能是誘發(fā)IR和其它代謝類疾病的機(jī)制之一。研究表明[8-9],在糖尿病患者的IR后代中,肌肉線粒體呼吸鏈內(nèi)的復(fù)合物活性有所下降。另外發(fā)現(xiàn),mtDNA16189 T- - >C、4216 T- - >C、4917A-->G的突變,可以引起禁食狀態(tài)下的高胰島素水平及禁食血糖升高[10-11];編碼 tRNA(Leu UUR)的線粒體基因 3243A-->G突變,引起了胰島素分泌受損[12];14577 T-->C,NADH脫氫酶6上的一個(gè)基因突變,引起線粒體復(fù)合物I活性和耗氧率分別下降65%和62%[13];UCP-1基因 -3826 A-->G及-112 A-->C的突變可導(dǎo)致機(jī)體葡萄糖耐量異常,引起 IR[14,15];UCP2 啟動(dòng)子的多態(tài)化,減少`了胰島素的分泌量,是誘發(fā)T2DM的高風(fēng)險(xiǎn)因素。所以,不管是與nDNA或mtDNA相關(guān)的遺傳因素影響的線粒體功能損傷都可能引起胰島素抵抗及相關(guān)的代謝類疾病。
1.2 老化與IR 隨著年齡的增長(zhǎng),老化是不可避免的一種生理現(xiàn)象。引起老化的理論基礎(chǔ)有:DNA損傷累積、線粒體功能障礙、端??s短丟失、基因表達(dá)變化和氧化損傷等,但引發(fā)老化的精確分子機(jī)制仍不清楚。老化的機(jī)體內(nèi),線粒體的數(shù)量減少,形態(tài)發(fā)生改變,線粒體呼吸功能下降、ATP生成能力降低、ROS生成增加[7,16]。有研究發(fā)現(xiàn),在胰島素抵抗的老年機(jī)體內(nèi),氧化磷酸化能力降低了40%。肝臟細(xì)胞內(nèi)脂質(zhì)累積是胰島素抵抗的一個(gè)重要指標(biāo)之一,也是引發(fā)非酒精性脂肪肝、非酒精性脂肪肝炎、肝硬化等的重要因素?;虮磉_(dá)研究發(fā)現(xiàn),在老年人的機(jī)體內(nèi)脂肪酸氧化相關(guān)基因表達(dá)量下降,機(jī)體脂肪堆積,尤其是內(nèi)臟脂肪堆積嚴(yán)重,引起細(xì)胞脂毒性,引發(fā)線粒體功能損傷[17-18]。線粒體功能損傷,脂質(zhì)氧化功能降低,導(dǎo)致脂肪酸代謝物的累積,例如甘油二酯(diacylglycerol,DG)、長(zhǎng)鏈脂酰 CoA(long-chain fatty acyl-CoA,LCFA-CoA)、乙酰CoA(acetyl-CoA)等。細(xì)胞內(nèi)DG的聚集,可以變構(gòu)激活PKCs,激活的PKCs可以磷酸化胰島素受體底物-1(insulin receptor substrate-1,IRS-1)的Ser/Thr位點(diǎn),抑制IRS-1酪氨酸磷酸化,降低了PI3K及AKT的活性,阻斷胰島素信號(hào)的傳遞,引起胰島素抵抗[19]。在PKCθ基因缺失的小鼠體內(nèi),脂類誘導(dǎo)的胰島素抵抗被抑制[20],此證據(jù)表明與線粒體功能損傷相關(guān)的PKC激活可能引起胰島素抵抗。另外,乙酰CoA抑制了丙酮酸脫氫酶(pyruvate dehydrogenase,PDH)的活性,降低了葡萄糖的氧化[21]。線粒體損傷后糖脂代謝能力下降,進(jìn)一步加重糖脂毒性,激活I(lǐng)KKb、Junk等炎癥通路,促進(jìn)TNF-α生成,誘導(dǎo)細(xì)胞凋亡,加重或惡化相關(guān)病理[22-24]。機(jī)體的老化伴隨著線粒體生物功能下降,引起糖脂代謝的降低,糖脂聚集誘發(fā)糖脂毒性,糖脂毒性損傷能量代謝信號(hào)通路進(jìn)一步降低糖脂代謝活性,此可能為老年胰島素抵抗及其相關(guān)代謝類疾病的發(fā)病機(jī)制之一。
1.3 ROS與IR 線粒體是機(jī)體內(nèi)產(chǎn)生ROS的主要部位,其中大部分產(chǎn)生于線粒體復(fù)合物I(NADH-CoQ還原酶)、Ⅲ(bc1復(fù)合物)。當(dāng)有過多的電子進(jìn)入線粒體電子傳遞鏈后,電子傳遞體都達(dá)到飽和,過量的電子會(huì)傳遞給O,產(chǎn)生氧自由基,而不是ATP,即線粒體內(nèi)膜內(nèi)外質(zhì)子梯度較高且氧耗較少時(shí),ROS的生成率最大。線粒體內(nèi)雖然存在著ROS清除機(jī)制,包括過氧化物歧化酶(superoxide dismutase,SOD)、過氧化氫酶和GSH,但是過多的ROS仍然損傷了線粒體蛋白、mtDNA和線粒體膜上的脂類,從而引起了線粒體損傷,此也是老化的機(jī)制之一[25-26]。低水平的ROS和高水平的ATP是胰島β細(xì)胞分泌胰島素必需的,但線粒體功能損傷后導(dǎo)致的持續(xù)、高產(chǎn)量的ROS生成反而會(huì)減少ATP生成,損傷β細(xì)胞,抑制胰島素釋放。另外,ROS通過激活I(lǐng)KKβ,IKKβ可以磷酸化IRS-1Ser位點(diǎn),阻止了IRS-1與胰島素受體的結(jié)合,從而阻止胰島素信號(hào)的傳遞,引起 IR[27-28]。IKKβ 還可以激活炎癥相關(guān)的因子,引發(fā)炎癥,加重IR[29]。盡管ROS激活Ser/Thr激酶的機(jī)制至今尚不明確,但利用抗氧化劑降低ROS的生成,增加UCP2/3的表達(dá),可以改善線粒體功能和IR。體育鍛煉可以增加機(jī)體對(duì)ATP的利用,電子傳遞與ATP的生成/利用達(dá)到平衡,ROS的產(chǎn)生降低,線粒體的功能得到改善,這可能是身體鍛煉改善IR的機(jī)制之一。在MCAT鼠的線粒體內(nèi)過量表達(dá)catalase后發(fā)現(xiàn),線粒體呼吸功能增加30%,能量代謝被促進(jìn)了7%,ATP合成明顯增加,阻止了脂毒性誘發(fā)的胰島素抵抗[30]。因此,減少線粒體內(nèi)的ROS含量,降低線粒體氧化應(yīng)激損傷,可以預(yù)防老化及一些病理因素引起的線粒體損傷,可起到預(yù)防及減輕IR作用。
1.4 線粒體生物合成與IR 在IR、肥胖和T2DM動(dòng)物模型的肌肉組織內(nèi)發(fā)現(xiàn)線粒體的數(shù)量降低,體積減小,線粒體呼吸能力減弱。線粒體呼吸能力的減弱主要是因?yàn)榫€粒體內(nèi)OXPHOS蛋白表達(dá)量的降低[31,32],線粒體生物合成減少。線粒體的生物合成的機(jī)制之一是由氧化物酶體增殖物激活受體γ輔激活子1(peroxisome proliferator activated receptor gamma coactivator-1,PGC-1)家族,包括 PGC-1α、PGC-1β 和PPARC激發(fā)引起的。細(xì)胞對(duì)能量需求的情況下如細(xì)胞生長(zhǎng)、缺氧、葡萄糖缺乏或鍛煉等,PGC-1家族轉(zhuǎn)錄因子激活,增強(qiáng)線粒體重塑或/和生物合成,恢復(fù)細(xì)胞內(nèi)能量平衡。PGC-1α是在研究UCP的轉(zhuǎn)錄調(diào)控時(shí)被發(fā)現(xiàn)的,在肌肉、肝臟和和棕色脂肪組織內(nèi)大量表達(dá),其表達(dá)量隨著機(jī)體鍛煉、寒冷或是饑餓狀態(tài),細(xì)胞內(nèi)需要ATP量增加時(shí)進(jìn)一步增加。PGC-1α不僅調(diào)控脂質(zhì)代謝,還調(diào)控線粒體代謝酶基因的表達(dá),促進(jìn)線粒體生物合成及再生,提高線粒體的密度,改善IR[33-35]。體外實(shí)驗(yàn)表明在 PGC-1α 高表達(dá)的肌細(xì)胞內(nèi),mtDNA量和氧耗增加2倍,而線粒體密度增加50%[36]。轉(zhuǎn)基因動(dòng)物實(shí)驗(yàn)結(jié)果表明,PGC-1α過表達(dá),大鼠肌肉組織內(nèi)OXPHOS表達(dá)量提升,棕櫚酸氧化增加,胰島素敏感性增強(qiáng),胰島素介導(dǎo)的葡萄糖攝取增加,ROS生成降低,炎癥信號(hào)減少。肝臟內(nèi)糖原合成增加,胰島素抑制的肝糖生成減少[37-38]。PGC-1α作為核轉(zhuǎn)錄輔助因子,主要輔助核呼吸因子(nuclear respiratory factor,NRF-1/2)和 PPAR-α/γ 的轉(zhuǎn)錄調(diào)控。NFR-1主要調(diào)控mtDNA的表達(dá),包括OXPHOS相關(guān)基因和線粒體轉(zhuǎn)錄因子A(mitochondrial transcription factor,mtTfam),其中mtTfam在調(diào)控mtDNA表達(dá)及線粒體基因組復(fù)制中起重要作用。在胰島素抵抗、T2DM患者的肌肉組織內(nèi)PGC-1α表達(dá)量明顯下降,NRF-1的表達(dá)量在糖尿病的肌肉組織內(nèi)也明顯下降[39]。另外,在胰島素抵抗的機(jī)體內(nèi)PGC-1α表達(dá)量的降低導(dǎo)致了肌肉組織內(nèi)線粒體的數(shù)量明顯減少。
調(diào)控線粒體生物合成的另一個(gè)重要的蛋白為單磷酸腺苷激活蛋白激酶(AMP-activated protein kinase,AMPK)。AMPK的激活劑AICAR,能通過激活A(yù)MPK,調(diào)節(jié)PGC-1α和NRFs的活性,促進(jìn)線粒體的生物合成[40-41]。另有研究發(fā)現(xiàn),體育鍛煉可以激活A(yù)MPK,隨之PGC-1α被AMPK直接磷酸化Thr/Ser而激活,促進(jìn)線粒體的生物合成,提高線粒體的呼吸功能,改善 IR[42]。
因此,調(diào)控線粒體生物合成及再生,增加線粒體密度,促進(jìn)mtDNA轉(zhuǎn)錄及線粒體蛋白表達(dá),提升線粒體生物功能是改善胰島素抵抗及其相關(guān)代謝類疾病的新的治療思路。
1.5 UPSs與IR 解偶聯(lián)蛋白(uncouple protein,UCP)是存在于線粒體內(nèi)膜,能消除線粒體內(nèi)膜的質(zhì)子電化學(xué)梯度,致使線粒體呼吸作用中的氧化磷酸化解偶聯(lián),抑制ATP合成,使機(jī)體產(chǎn)生的化學(xué)能以熱能形式散失,從而影響能量代謝率。UCP的生理功能主要是調(diào)節(jié)線粒體氧化磷酸化解偶聯(lián)而生理產(chǎn)熱、減少ROS的生成、負(fù)性調(diào)控胰島素釋放。目前已經(jīng)發(fā)現(xiàn)了5個(gè)亞型,分別是UCP1,在褐色脂肪組織中特異性表達(dá);UCP2,組織廣泛表達(dá);UCP3,主要在骨骼肌中表達(dá);UCP4~5,腦組織中特異性表達(dá)。UCP1主要調(diào)控機(jī)體適宜產(chǎn)熱;UCP2/UCP3與產(chǎn)熱功能基本無關(guān),但其過量表達(dá)可降低ROS生成,增強(qiáng)機(jī)體代謝率,防止體重過度增加及預(yù)防胰島素抵抗,而其表達(dá)量低或基因突變都可導(dǎo)致肥胖,誘發(fā)IR[43]。研究發(fā)現(xiàn),在2型糖尿病患者肌肉組織內(nèi)UCP3表達(dá)量降低了50%[44],肌肉組織中UCP3高表達(dá)的轉(zhuǎn)移基因小鼠,可以抵抗高脂誘導(dǎo)的IR。脂毒性使胰島素信號(hào)通路中的PI3K磷酸化受阻,UCP3通過降低PKCθ的活性緩解胰島素信號(hào)通路傳導(dǎo)的障礙[45]。
在胰島β細(xì)胞內(nèi),線粒體功能受UCPs的表達(dá)量及活性調(diào)控。β細(xì)胞內(nèi)的線粒體功能受損,ROS生成增多,損傷β細(xì)胞,抑制胰島素的釋放。UCP2可通過負(fù)反饋被激活,對(duì)OXPHOS進(jìn)行解偶聯(lián),降低ROS的生成,從而保護(hù)過量的ROS對(duì)β細(xì)胞的損傷,但同時(shí)降低了ATP的產(chǎn)量,ATP的降低也會(huì)抑制胰島素的釋放。因此,UCP2的活性必須能緩和ROS引發(fā)的毒性,但又不至于將ATP產(chǎn)量降低到影響胰島素釋放方可,這種巧妙的平衡起到保護(hù)β細(xì)胞作用[46]。
1.6 Sirt3與IR Sirt3(sirtuin 3)是沉默信息調(diào)節(jié)因子2(Sir2)家族成員之一,定位于線粒體基質(zhì),是一種脫乙?;福谀芰看x中起著重要的作用,被認(rèn)為是“長(zhǎng)壽基因”。Sirt3可以通過去乙酰化恢復(fù)線粒體內(nèi)一系列代謝酶的活性,例如,可以直接脫乙?;⒓せ町悪幟仕崦福?7-48]。Sirt3還可以促進(jìn)MnSOD活性,增加NAPDH水平,提升線粒體內(nèi)還原型谷胱甘肽量,降低ROS的生成[49],阻止氧化應(yīng)激,促進(jìn)線粒體功能[50-52]。Sirt3依賴的線粒體調(diào)節(jié)器是一種抗衰老機(jī)制,在Sirt3基因敲除的小鼠體內(nèi),小鼠老化加快,脂代謝發(fā)生紊亂,脂毒性增加[53-54]。在高脂誘導(dǎo)的小鼠體內(nèi)Sirt3活性明顯降低,線粒體功能損傷。在Sirt3基因敲除的肌細(xì)胞內(nèi),PGC-1α促進(jìn)線粒體生物合成的效應(yīng)也隨之降低,說明Sirt3也參與了PGC-1α介導(dǎo)的線粒體生物合成功能,這可能是PGC-1α改善IR的另一作用機(jī)制[55]。還有研究發(fā)現(xiàn),在Sirt3基因敲除的人肝細(xì)胞中AMPK的激活幅度明顯降低,表明AMPK的激活部分依賴于Sirt3的活性[56]。Sirt3對(duì)線粒體功能的恢復(fù)作用,可以調(diào)節(jié)機(jī)體的能量代謝,參與線粒體再生功能,被認(rèn)作是調(diào)控代謝類疾病的一個(gè)新的潛在靶點(diǎn)[57]。本實(shí)驗(yàn)室研究發(fā)現(xiàn)丹酚酸A具有良好的改善胰島素抵抗作用,其作用機(jī)制可能是通過調(diào)控 AMPK-PGC-1α-Sirt3軸,調(diào)控線粒體生物合成,改善線粒體功能。
營(yíng)養(yǎng)失衡和不良的生活方式引起了線粒體功能損傷相關(guān)的多種病理現(xiàn)象,基因表達(dá)改變、線粒體生物合成降低、氧化應(yīng)激增加、老化等也是引起線粒體功能損傷的基礎(chǔ)。反之,損傷的線粒體增加ROS的生成,引起了線粒體脂肪酸代謝紊亂,累積了DG、LCFA-CoA,進(jìn)一步損傷線粒體,形成了惡性循環(huán)。增加的ROS和累積的脂質(zhì)激活了部分Ser/Thr激酶和炎癥信號(hào)通路,從而抑制了胰島素信號(hào)的傳遞,引起了IR,因此,線粒體功能損傷可能是誘發(fā)胰島素抵抗的機(jī)制之一。
噻唑烷二酮類藥物是臨床上用作改善IR最常用的藥物,此類藥物增強(qiáng)胰島素敏感性,改善肝臟、脂肪、心臟等組織器官的胰島素抵抗和胰島β細(xì)胞的功能,其發(fā)揮作用的分子機(jī)制之一可能是通過激活PPARγ,促進(jìn)線粒體生物合成,改善IR[58-60]。二甲雙胍也是臨床上用作改善IR的常用藥物,二甲雙胍可降低線粒體內(nèi)ROS的生成,激活A(yù)MPK,增加PGC-1α的表達(dá),改善IR,其發(fā)揮作用的機(jī)制之一可能是通過 AMPK-PGC-1α/NRFs軸,促進(jìn)線粒體生物合成[61]。另外,組織內(nèi)血管緊張素Ⅱ增加可促進(jìn)NAPDH氧化酶的活性,提高ROS的生成,導(dǎo)致線粒體結(jié)構(gòu)和功能的損傷,抑制血管緊張素Ⅱ活性的藥物及血管緊張素轉(zhuǎn)化酶抑制劑可降低ROS生成,促進(jìn)線粒體生物合成,改善線粒體功能,提升胰島素敏感性[62]。在IR患者和動(dòng)物模型中,血管緊張素受體阻滯劑也可以明顯增加胰島素的敏感性,阻斷血管緊張素誘導(dǎo)的氧化應(yīng)激。降低血管緊張素受體介導(dǎo)的ROS生成,改善線粒體功能及胰島素介導(dǎo)的代謝活性,可能是作用于血管緊張素系統(tǒng)類藥物發(fā)揮藥理作用的機(jī)制之一,但其詳細(xì)分子機(jī)制尚不明確,有待進(jìn)一步探討。
ROS產(chǎn)生的增加引起了線粒體功能損傷,反之,功能損傷的線粒體又產(chǎn)生更多的ROS和脂代謝副產(chǎn)物,LCFA-CoA和DG,長(zhǎng)期形成了惡性循環(huán)。用抗氧化劑干擾此惡性循環(huán)可能是較有效的治療措施。α-硫辛酸(α-lipoic acid)可以有效地降低血糖,增加大鼠骨骼肌GLUT4的含量,同時(shí)可以對(duì)抗ROS引起的胰島素信號(hào)通路的抑制作用[63-64]。Tempol,作為一種抗氧化劑,可改善心血管系統(tǒng)功能障礙,使血管緊張素Ⅱ引發(fā)的胰島素抵抗正常化,改善線粒體結(jié)構(gòu)形態(tài),增強(qiáng)線粒體功能。由此而知,以促進(jìn)線粒體生物合成和降低線粒體氧化應(yīng)激,減少ROS生成為作用靶標(biāo)的藥物可通過改善線粒體功能而有利于胰島素抵抗的治療。
調(diào)控線粒體生物合成、提高線粒體功能的機(jī)制雖然還沒有完全清楚,有待進(jìn)一步研究,但是,線粒體功能損傷有可能在代謝類疾病和心血管類疾病的發(fā)病中起著重要的作用。線粒體數(shù)量的降低和功能的損傷可能是IR的發(fā)病機(jī)制之一,因此調(diào)節(jié)線粒體功能和和生物合成可能成為潛在的治療IR及其相關(guān)疾病的新策略。
[1] Sookoian S,Rosselli M S,Gemma C,et al.Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease:impact of liver methylation of the peroxisome proliferator-activated receptor gamma coactivator 1alpha promoter[J].Hepatology,2010,52(6):1992-2000.
[2] Gallagher E J,Leroith D,Karnieli E.Insulin resistance in obesity as the underlying cause for the metabolic syndrome[J].Mt Sinai J Med,2010,77(5):511-23.
[3] de la Monte S M,Wands J R.Role of central nervous system insulin resistance in fetal alcohol spectrum disorders[J].J Popul Ther Clin Pharmacol,2010,17(3):e390 -404.
[4] Odawara M,Asakura Y,Tada K,et al.Mitochondrial gene mutation as a cause of insulin resistance[J].Diabetes Care,1995,18(2):275.
[5] Kanamori A,Tanaka K,Umezawa S,et al.Insulin resistance in mitochondrial gene mutation[J].Diabetes Care,1994,17(7):778-9.
[6] Yamada Y,Seino Y.Genetic factors and insulin resistance[J].Nippon Rinsho,2000,58(2):315-9.
[7] Ritz P,Berrut G.Mitochondrial function,energy expenditure,aging and insulin resistance[J].Diabetes Metab,2005,31 Spec No 2:5S67-5S73.
[8] Gebhart S S,Shoffner J M,Koontz D,et al.Insulin resistance associated with maternally inherited diabetes and deafness[J].Metabolism,1996,45(4):526-31.
[9] Gianotti T F,Sookoian S,Dieuzeide G,et al.A decreased mitochondrial DNA content is related to insulin resistance in adolescents[J].Obesity(Silver Spring),2008,16(7):1591 -5.
[10] Poulton J,Brown M S,Cooper A,et al.A common mitochondrial DNA variant is associated with insulin resistance in adult life[J].Diabetologia,1998,41(1):54-8.
[11] Crispim D,Canani L H,Gross J L,et al.The European-specific mitochondrial cluster J/T could confer an increased risk of insulinresistance and type 2 diabetes:an analysis of the m.4216T > C and m.4917A > G variants[J].Ann Hum Genet,2006,70(Pt 4):488-95.
[12] Kadowaki T,Kadowaki H,Mori Y,et al.A subtype of diabetes mellitus associated with a mutation of mitochondrial DNA[J].N Engl J Med,1994,330(14):962 -8.
[13] Tawata M,Hayashi J I,Isobe K,et al.A new mitochondrial DNA mutation at 14577 T/C is probably a major pathogenic mutation for maternally inherited type 2 diabetes [J].Diabetes,2000,49(7):1269-72.
[14] Urhammer S A,Hansen T,Borch-Johnsen K,et al.Studies of the synergistic effect of the Trp/Arg64 polymorphism of the beta3-adrenergic receptor gene and the-3826 A-->G variant of the uncoupling protein-1 gene on features of obesity and insulin resistance in a population-based sample of 379 young danish subjects[J].J Clin Endocrinol Metab,2000,85(9):3151-4.
[15] Fukuyama K,Ohara T,Hirota Y,et al.Association of the -112A>C polymorphism of the uncoupling protein 1 gene with insulin resistance in Japanese individuals with type 2 diabetes[J].Biochem Biophys Res Commun,2006,339(4):1212-6.
[16] Guillet C,Boirie Y.Insulin resistance:a contributing factor to age-related muscle mass loss[J].Diabetes Metab,2005,31 Spec No 2:5S20-6.
[17] Yokono K.Possible role of mitochondrial dysfunction in insulin resistance in the elderly[J].Nippon Rinsho,2006,64(1):39 -44.
[18] Bhashyam S,Parikh P,Bolukoglu H,et al.Aging is associated with myocardial insulin resistance and mitochondrial dysfunction[J].Am J Physiol Heart Circ Physiol,2007,293(5):H3063 -71.
[19] Ruderman N B,Saha A K,Vavvas D,et al.Malonyl-CoA,fuel sensing,and insulin resistance[J].Am J Physiol,1999,276(1 Pt 1):E1-E18.
[20] Kim J K,F(xiàn)illmore J J,Sunshine M J,et al.PKC-theta knockout mice are protected from fat-induced insulin resistance[J].J Clin Invest,2004,114(6):823 -7.
[21] Belfiore F,Iannello S.Insulin resistance in obesity:metabolic mechanisms and measurement methods[J].Mol Genet Metab,1998,65(2):121-8.
[22] Summers S A.Ceramides in insulin resistance and lipotoxicity[J].Prog Lipid Res,2006,45(1):42 -72.
[23] Petersen K F,Shulman G I.Etiology of insulin resistance[J].Am J Med,2006,119(5 Suppl 1):S10-6.
[24] Solis HJA,Garcia R I,Perez C M,et al.Non-alcoholic fatty liver disease.From insulin resistance to mitochondrial dysfunction[J].Rev Esp Enferm Dig,2006,98(11):844-74.
[25] Fridlyand L E,Philipson L H.Reactive species and early manifestation of insulin resistance in type 2 diabetes[J].Diabetes Obes Metab,2006,8(2):136-45.
[26] Park S Y,Lee W.The depletion of cellular mitochondrial DNA causes insulin resistance through the alteration of insulin receptor substrate-1 in rat myocytes[J].Diabetes Res Clin Pract,2007,77 Suppl 1:S165-71.
[27] Bloch-Damti A,Bashan N.Proposed mechanisms for the induction of insulin resistance by oxidative stress[J].Antioxid Redox Signal,2005,7(11-12):1553-67.
[28] Nishikawa T,Kukidome D,Sonoda K,et al.Impact of mitochondrial ROS production in the pathogenesis of insulin resistance[J].Diabetes Res Clin Pract,2007,77(Suppl 1):S161 -4.
[29] Draznin B.Molecular mechanisms of insulin resistance:serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha:the two sides of a coin [J].Diabetes,2006,55(8):2392-7.
[30] Lee H Y,Choi C S,Birkenfeld A L,et al.Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance[J].Cell Metab,2010,12(6):668-74.
[31] Wredenberg A,F(xiàn)reyer C,Sandstrom M E,et al.Respiratory chain dysfunction in skeletal muscle does not cause insulin resistance[J].Biochem Biophys Res Commun,2006,350(1):202 -7.
[32] Fex M,Nitert M D,Wierup N,et al.Enhanced mitochondrial metabolism may account for the adaptation to insulin resistance in islets from C57BL/6J mice fed a high - fat diet[J].Diabetologia,2007,50(1):74-83.
[33] Hoeks J,Hesselink M K,Russell A P,et al.Peroxisome proliferator-activated receptor-gamma coactivator-1 and insulin resistance:acute effect of fatty acids[J].Diabetologia,2006,49(10):2419-26.
[34] Vianna C R,Huntgeburth M,Coppari R,et al.Hypomorphic mutation of PGC-1beta causes mitochondrial dysfunction and liver insulin resistance[J].Cell Metab,2006,4(6):453 -64.
[35] Schrauwen P.High-fat diet,muscular lipotoxicity and insulin re-sistance[J].Proc Nutr Soc,2007,66(1):33 -41.
[36] Wu Z,Puigserver P,Andersson U,et al.Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1[J].Cell,1999,98(1):115 -24.
[37] Benton C R,Nickerson J G,Lally J,et al.Modest PGC-1 overexpression in muscle in vivo is sufficient to increase insulin sensitivity and palmitate oxidationin subsarcolemmal,not intermyofibrillar,mitochondria[J].J Biol Chem,2008,283:4228-40.
[38] Liang H,Balas B,Tantiwong P,et al.Whole body overexpression of PGC-1 has opposite effects on hepatic and muscle insulin sensitivity[J].Am J Physiol Endocrinol Metab,2009,296:E945 -54.
[39] Gemma C,Sookoian S,Dieuzeide G,et al.Methylation of TFAM gene promoter in peripheral white blood cells is associated with insulin resistance in adolescents[J].Mol Genet Metab,2010,100(1):83-7.
[40] Liu H Y,Cao S Y,Hong T,et al.Insulin is a stronger inducer of insulin resistance than hyperglycemia in mice with type 1 diabetes mellitus(T1DM)[J].J Biol Chem,2009,284(40):27090-100.
[41] Buhl E S,Jessen N,Pold R,et al.Long-term AICAR administration reduces metabolic disturbances and lowers blood pressure in rats displaying features of the insulin resistance syndrome[J].Diabetes,2002,51(7):2199 -206.
[42] Jager S,Handschin C,St-Pierre J,et al.AMP-activated protein kinase(AMPK)action in skeletal muscle via direct phosphorylation of PGC-1alpha[J].Proc Natl Acad Sci U S A,2007,104(29):12017-22.
[43] Aller R,De Luis D A,Izaola O,et al.Role of -55CT polymorphism of UCP3 gene on non alcoholic fatty liver disease and insulin resistance in patients with obesity[J].Nutr Hosp,2010,25(4):572-6.
[44] Chan C B,Harper M E.Uncoupling proteins:role in insulin resistance and insulin insufficiency[J].Curr Diabetes Rev.2006,2(3):271-83.
[45] Choi C S,F(xiàn)illmore J J,Kim J K,et al.Overexpression of uncoupling protein 3 in skeletal muscle protects against fat-induced insulin resistance[J].J Clin Invest,2007,117(7):1995 -2003.
[46] Duffy L M,Chapman A L,Shaw P J,et al.The role of mitochondria in the pathogenesis of amyotrophic lateral sclerosis[J].Neuropathol Appl Neurobiol,2011,37(4):336 -52.
[47] Choudhury M,Jonscher K R,F(xiàn)riedman J E.Reduced mitochondrial function in obesity-associated fatty liver:SIRT3 takes on the fat[J].Aging(Albany NY),2011,3(2):175 -8.
[48] Shimazu T,Hirschey M D,Hua L,et al.SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production[J].Cell Metab,2010,12(6):654-61.
[49] Tao R,Coleman M C,Pennington J D,et al.Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates Mn-SOD activity in response to stress[J].Mol Cell,2010,40(6):893-904.
[50] Kim S H,Lu H F,Alano C C.Neuronal Sirt3 protects against excitotoxic injury in mouse cortical neuron culture[J].PLoS One,2011,6(3):e14731.
[51] Maeda S,Koya D,Araki S I,et al.Association between single nucleotide polymorphisms within genes encoding sirtuin families and diabetic nephropathy in Japanese subjects with type 2 diabetes[J].Clin Exp Nephrol.2011,15(3):381 -90.
[52] Someya S,Yu W,Hallows W C,et al.Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction[J].Cell,2010,143(5):802 -12.
[53] Hallows W C,Yu W,Smith B C,et al.Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction[J].Mol Cell,2011,41(2):139 -49.
[54] Bao J,Scott I,Lu Z,et al.SIRT3 is regulated by nutrient excess and modulates hepatic susceptibility to lipotoxicity[J].Free Radic Biol Med,2010,49(7):1230-7.
[55] Kong X,Wang R,Xue Y,et al.Sirtuin 3,a new target of PGC-1alpha,plays an important role in the suppression of ROS and mitochondrial biogenesis[J].PLoS One,2010,5(7):e11707.
[56] Shi T,F(xiàn)an G Q,Xiao S D.SIRT3 reduces lipid accumulation via AMPK activation in human hepatic cells[J].J Dig Dis,2010,11(1):55-62.
[57] Sebastian C,Mostoslavsky R.SIRT3 in calorie restriction:can you hear me now[J].Cell,2010,143(5):667 -8.
[58] Satoh J.Insulin-sensitizing agents:metformin and thiazolidinedione derivatives[J].Nippon Rinsho,2003,61(7):1224 -9.
[59] Bandyopadhyay G K,Yu J G,Ofrecio J,et al.Increased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis;thiazolidinedione treatment reverses these defects[J].Diabetes,2006,55(8):2277-85.
[60] Mensink M,Hesselink M K,Russell A P,et al.Improved skeletal muscle oxidative enzyme activity and restoration of PGC-1 alpha and PPAR beta/delta gene expression upon rosiglitazone treatment in obese patients with type 2 diabetes mellitus[J].Int J Obes(Lond),2007,31(8):1302-10.
[61] Suwa M,Egashira T,Nakano H,et al.Metformin increases the PGC-1alpha protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo[J].J Appl Physiol,2006,101(6):1685 -92.
[62] Erbe D V,Gartrell K,Zhang Y L,et al.Molecular activation of PPARgamma by angiotensin II type 1-receptor antagonists[J].Vascul Pharmacol,2006,45(3):154 -62.
[63] Orzechowski A.Justification for antioxidant preconditioning(or how to protect insulin-mediated actions under oxidative stress)[J].J Biosci,2003,28(1):39 -49.
[64] Lopes J P,Oliveira S M,Soares F J.Oxidative stress and its effects on insulin resistance and pancreatic beta-cells dysfunction:relationship with type 2 diabetes mellitus complications[J].Acta Med Port,2008,21(3):293 -302.