唐雪嬌,楊 麗,吳豐鵬,高 敏,沈伯雄
新型殼聚糖衍生物吸附劑對Ni2+的吸附行為
唐雪嬌,楊 麗,吳豐鵬,高 敏,沈伯雄
(南開大學(xué)環(huán)境科學(xué)與工程學(xué)院,天津 300071)
利用Ni2+印跡法,通過交聯(lián)和胺化反應(yīng)自制新型多胺化球形Ni2+模板交聯(lián)殼聚糖吸附劑(P-C-CTS(Ni)),研究吸附劑對Ni2+的吸附行為,通過模型擬合和吸附動力學(xué)對吸附過程和方式進行討論.通過掃描電鏡表征,P-CCTS(Ni)呈球體,內(nèi)部具多孔結(jié)構(gòu).室溫下對不同濃度Ni2+溶液進行吸附研究,吸附數(shù)據(jù)與Freundlich 模型和BET模型擬合較好,證明該吸附劑呈多孔結(jié)構(gòu),吸附性能好,吸附過程為多層分子吸附. 吸附動力學(xué)研究表明該吸附劑在不同溫度下對Ni2+吸附過程均包括3個階段,即外表面擴散吸附、內(nèi)表面擴散吸附和平衡吸附. 30 ℃條件下,吸附數(shù)據(jù)對二級擴散方程擬合較好,二級速率常數(shù)k為8.119×10-3g/(mg·min),說明該吸附劑對Ni2+吸附機理以化學(xué)吸附為主,受化學(xué)吸附控制.
殼聚糖衍生物吸附劑;吸附等溫模型;吸附動力學(xué);擴散方程擬合
殼聚糖(chitosan,CTS)是甲殼素脫乙酰基產(chǎn)物,是一種天然氨基多糖,具有特殊的分子結(jié)構(gòu)和良好的理化特性,近幾年殼聚糖的開發(fā)利用受到越來越廣泛的關(guān)注[1-6].殼聚糖為基質(zhì)制備的生物吸附劑具有原材料豐富、成本低廉、吸附選擇性高和可生物降解等優(yōu)點,在環(huán)境修復(fù)領(lǐng)域具有更為廣闊的應(yīng)用前景[7-11].
殼聚糖在稀酸中主鏈會緩慢水解[12]等缺點嚴重制約其應(yīng)用,而單一交聯(lián)法會大大降低殼聚糖吸附性能[13-14].筆者前期研究中通過印跡法和交聯(lián)-胺化法相結(jié)合,合成新型多胺化Ni2+模板改性殼聚糖吸附劑,改善了殼聚糖的抗酸性和機械強度,提高了重復(fù)利用性能,同時基體上引入大量胺基,吸附能力大大提高,模板化和胺化使其吸附容量由1.072,mmol/g提高到2.746, mmol/g,增加156%[15-16].
筆者重點考察多胺化球形Ni2+模板交聯(lián)殼聚糖吸附劑(P-C-CTS(Ni))對Ni2+的吸附動力學(xué)特性,探討其吸附行為和規(guī)律,為其工業(yè)應(yīng)用提供基礎(chǔ)數(shù)據(jù).
1.1 儀器與材料
主要儀器有722分光光度計、DDHZ-300臺式恒溫振蕩器、DHSJ-4A型實驗室酸度計和日本SHIMADZU SS-550 掃描電子顯微鏡.
主要材料有殼聚糖粉末(脫乙酰度大于92%),四乙烯五胺(TEPA)、環(huán)氧氯丙烷(ECH)及其他試劑均為分析純,水為去離子水.
1.2 吸附劑制備和表征
取一定量NiSO4·6H2O及殼聚糖粉末,Ni2+含量為25,mg/g,置于4%乙酸溶液中,攪拌均勻,溶脹12 h.用注射器將殼聚糖乙酸溶液注入稀堿液中,制成直徑約2.0,mm小球.放置24 h后水洗至中性,得Ni-CTS,濕態(tài)保存.
稱取10.0,g,Ni-CTS(濕重),加入50,mL水和1.5,mL的交聯(lián)劑ECH,80,℃恒溫水浴5,h進行交聯(lián).完成后用水洗至中性,得C-Ni-CTS,再加入30,mL胺化劑TEPA和等體積的水,60,℃恒溫水浴中胺化5,h.水洗至中性,得P-C-Ni-CTS.將P-C-Ni-CTS加入稀H2SO4進行振蕩解吸,水洗至無Ni2+檢出,最后置于稀堿液中堿化1,h,水洗至中性,得P-CCTS(Ni),濕態(tài)保存,待用[15-16].
對50 ℃真空干燥至恒重的P-C-CTS(Ni)外觀及剖面進行掃描電鏡(SEM)分析.
1.3 吸附量測定方法
溶液中Ni2+濃度由丁二酮肟分光光度法測定.吸附劑對溶液中Ni2+的吸附量為
式中:Qt為吸附t時間后的吸附量,mg/g;0ρ為溶液中Ni2+的初始質(zhì)量濃度,mg/L;tρ為吸附t時間后溶液中Ni2+的質(zhì)量濃度,mg/L;m為吸附劑質(zhì)量(干重),g.
1.4 平衡吸附量和動力學(xué)數(shù)據(jù)獲取
吸附劑平衡吸附量測定方法:稱取一定量P-CCTS(Ni),加入初始質(zhì)量濃度范圍在0.1~2.0,g/L的Ni2+溶液25.0,mL,室溫下振蕩平衡24,h,測定溶液中Ni2+濃度(即平衡濃度ρe),由式(1)計算得到平衡吸附量Qe.
吸附劑在不同溫度(30,℃、40,℃、50,℃)下的吸附動力學(xué)數(shù)據(jù)的獲?。浩叫腥?份P-C-CTS(Ni)于不同溫度下進行動力學(xué)實驗,其中Ni2+初始質(zhì)量濃度0ρ=100,mg/L,溶液體積V=25.0,mL,同一振蕩條件下,1~8,h內(nèi)定期同時取樣測定各溶液中Ni2+的質(zhì)量濃度tρ,根據(jù)式(1)計算時間t內(nèi)的吸附量Qt.
2.1 SEM分析
50,℃真空干燥至恒重的P-C-CTS(Ni)外觀及剖面SEM照片分別如圖1和圖2所示.
圖1 P-C-CTS(Ni)外觀SEM照片F(xiàn)ig.1 SEM photogragh for appearances of P-C-CTS(Ni)
圖2 P-C-CTS(Ni)內(nèi)部剖面SEM照片F(xiàn)ig.2 SEM photogragh for internal cross-section of P-C-CTS(Ni)
由圖1可知,制備的P-C-CTS(Ni)經(jīng)過50,℃真空干燥后,仍呈球體,大小均勻,直徑為1.0,mm左右.
由圖2可知,P-C-CTS(Ni)內(nèi)部呈很多孔結(jié)構(gòu).這些孔結(jié)構(gòu)影響著吸附劑的吸附方式和規(guī)律.2.2 吸附等溫線擬合
圖3為P-C-CTS(Ni)對Ni2+平衡吸附量Qe隨溶液中Ni2+平衡的質(zhì)量濃度ρe的變化曲線,溶液pH為5.0~5.5,室溫.由圖3可知,隨著溶液中Ni2+平衡濃度ρe的增加,平衡吸附量Qe也相應(yīng)增大,吸附屬于Ⅴ型吸附[17],是典型的“S”型等溫線[18].在較低的平衡濃度時,溶劑相對溶質(zhì)有強烈的競爭吸附;當平衡濃度增大時,等溫線有一較快上升階段,這是被吸附的溶質(zhì)分子對液相中溶質(zhì)分子吸引的結(jié)果.然后又出現(xiàn)平緩階段,說明發(fā)生多層吸附;隨濃度增大發(fā)生與氣體吸附相類似的毛細凝結(jié)現(xiàn)象,也可說明該吸附劑具備多孔結(jié)構(gòu).
圖3 平衡吸附量Qe與Ni2+平衡質(zhì)量濃度ρe的關(guān)系曲線Fig.3 Relationship between adsorption capacities Qeand ρe
用Langmuir和Freundlich 模型描述吸附等溫線.以ρe/Qe-ρe和lg Qe-lg ρe分別作圖,見圖4.
Langmuir等溫方程為
式中:Qe為不同平衡濃度下的平衡吸附量,mg/g;Qm為吸附容量,mg/g;ρe為吸附后Ni2+的平衡質(zhì)量濃度,mg/L;a、K和n均為常數(shù).
圖4 吸附劑的吸附等溫線擬合Fig.4 Adsorption isotherm of sorbent
圖4 (a)曲線與Langmuir方程不符,圖4(b)曲線與Freundlich方程的標準偏差為0.083,5,符合較好,說明該吸附劑對Ni2+的吸附方式為多分子層吸附,固體表面是呈多孔不均勻的.與上述結(jié)論是一致的.
以ρe/(Qe(ρs-ρe))-ρe/ ρs作圖,見圖5.
BET 吸附等溫方程為
式中:Cs為金屬離子的飽和質(zhì)量濃度,mg/L;b為常數(shù).
由圖5可知,當溶液中Ni2+初始質(zhì)量濃度大于0.5,g/L,ρe/(Qe(ρs-ρe))- ρe/ρs線性相關(guān)性良好,R2= 0.998 3,符合BET吸附模型.說明在較高Ni2+初始濃度溶液中,吸附劑表面實現(xiàn)多層分子吸附.
圖5 吸附劑的BET吸附等溫線Fig.5 BET adsorption isotherm of sorbent
2.3 吸附動力學(xué)
通過動力學(xué)實驗,得1~8,h吸附動力學(xué)曲線(見圖6).由圖6(a)可知,不同溫度下的吸附規(guī)律一致:在開始階段,Qt隨t的增加顯著增大;之后,隨反應(yīng)時間的增長,Qt的增加速度逐漸減??;大約240,min后Qt基本不變.相應(yīng)的吸附過程為3個階段:首先Ni2+主要被吸附在吸附劑外表面;達到飽和后,Ni2+開始沿吸附劑表層孔徑向內(nèi)部擴散,同時內(nèi)表面吸附發(fā)生;最后經(jīng)過一段時間達到吸附平衡.
由于圖6(a)中,1~2,h內(nèi)吸附過程比較復(fù)雜,為便于觀察,將圖6(a)中虛線內(nèi)曲線(1~2,h)單獨作圖,見圖6(b).由圖6(b)可知,不同溫度下3個曲線都存在一個短暫的吸附平衡階段,此階段是吸附劑外表面對Ni2+吸附達到瞬間平衡后溶液沿吸附劑表層孔徑向內(nèi)部開始擴散的過程,此時在內(nèi)部表面Ni2+吸附還未發(fā)生,所以溶液中的Ni2+含量未發(fā)生變化;之后Ni2+在孔徑內(nèi)開始發(fā)生吸附而使溶液中的Ni2+含量降低,但Ni2+在內(nèi)孔擴散和吸附速率相對較慢.此吸附現(xiàn)象也證明吸附劑具有多孔結(jié)構(gòu),與吸附等溫線所得結(jié)論一致.
由圖6(b)可知,不同溫度下,短暫平衡開始時刻不同,即外表面達到吸附平衡后含Ni2+溶液向孔徑內(nèi)擴散的開始時間不同.30,℃時吸附40,min后開始進入短暫平衡階段;40,℃時吸附30,min后開始進入短暫平衡階段;而50,℃時僅吸附20,min就開始.由此可知,溫度越高,Ni2+在吸附劑外表面達到吸附平衡所需時間越短,并且吸附量Qt越大,說明該吸附機制為化學(xué)吸附.這也與該吸附劑的制備路線吻合.通過胺化,吸附劑表面引入大量活性氨基,包括殼聚糖分子中的酰胺基都是吸附Ni2+的活性位點,通過胺基上氮原子的孤對電子對Ni2+發(fā)生螯合實現(xiàn)吸附.
圖6 不同溫度下P-C-CTS(Ni)對Ni2+的吸附量隨時間變化曲線Fig.6 Relationships of adsorption quantities of Ni2+to P-CCTS(Ni)and time at different temperatures
假設(shè)Ni2+在吸附劑外表面達到短暫吸附平衡時接近單層吸附飽和,以各個溫度下表面吸附短暫平衡時間內(nèi)t/Qt-t作圖,得3條直線,如圖7所示.其吸附動力學(xué)方程為
式中k為表觀吸附速率常數(shù).由斜率和截距可分別求得Qe和k值,結(jié)果列于表1中.
圖7 P-C-CTS(Ni)對Ni2+的吸附動力學(xué)曲線Fig.7 Adsorption kinetic curves for adsorptions of Ni2+to P-C-CTS(Ni)
由Arrhenius方程k=Ae-Ea/RT,得lg k=-E/2.303RT +alg A.由表1可知,lg,k與1/T并不呈線性關(guān)系,表明溫度對吸附速率的影響不服從Arrhenius方程.研究傳質(zhì)、化學(xué)反應(yīng)等吸附過程的控制機制,常用一級、二級和內(nèi)部擴散方程來測定試驗參數(shù).
表1 不同溫度下的吸附動力學(xué)參數(shù)Tab.1 Adsorption kinetic parameters at different temperatures
一級動力模型為
式中k1為一級吸附速率常數(shù),min-1.通過lg(Qe-Qt)-t直線圖可得Ni2+在不同濃度范圍內(nèi)速率常數(shù)k1和相關(guān)系數(shù).
二級動力模型為
式中k2為二級吸附速率常數(shù),g/(mg·min).通過t/Qt-t直線圖可得到速率參數(shù)k2和相關(guān)系數(shù)R22.
內(nèi)部擴散模型為
式中ki為內(nèi)部擴散速率,mg/(g·min0.5).ki為Qt-t0.5直線的斜率,相關(guān)系數(shù)為R32.
對30 ℃時吸附動力學(xué)曲線進行一級、二級和內(nèi)部擴散方程擬合,得P-C-CTS(Ni)對Ni2+吸附動力學(xué)參數(shù),結(jié)果列于表2中.
表2 30,℃條件下吸附劑在前30 min內(nèi)對Ni2+吸附動力學(xué)參數(shù)Tab.2 Kinetic parameters for Ni2+adsorption at 30,℃ for the first period of 30,min
二級模型以化學(xué)吸附為速控步驟.依據(jù)相關(guān)系數(shù),用二級方程表示P-C-CTS(Ni)對Ni2+的吸附行為較好,可得二級吸附速率常數(shù)k2為8.119×10-3g/(mg·min),說明該吸附過程以化學(xué)吸附為主,受化學(xué)吸附控制.
自制多胺化球形Ni2+模板交聯(lián)殼聚糖吸附劑(PC-CTS(Ni)),研究該吸附劑對Ni2+的吸附行為.在pH 5.0~5.5、室溫下吸附劑對Ni2+的等溫吸附為典型的“S”型,等溫吸附線與Freundlich模型吻合較好,說明該吸附劑對Ni2+的吸附方式為多分子層吸附,固體表面是呈多孔不均勻的;在較高Ni2+質(zhì)量濃度(>0.5,g/L)時,等溫吸附與BET模型吻合很好,驗證了吸附劑表面為多層分子吸附;吸附動力學(xué)研究表明該吸附劑在不同溫度(30,℃、40,℃和50,℃)下對Ni2+吸附過程均包括3個階段(外表面擴散吸附、內(nèi)表面擴散吸附和平衡吸附);對30,℃吸附動力學(xué)曲線分別進行一級、二級和內(nèi)部擴散方程擬合,結(jié)果表明,吸附數(shù)據(jù)對二級擴散方程擬合較好,二級速率常數(shù)k為8.119×10-3,g/(mg·min),表明吸附劑對Ni2+吸附以化學(xué)吸附為主.
[1] Schiffman J D,Schauer C L. Cross-linking chitosan nanofibers[J]. Biomacromolecules,2007,8(2):594-601.
[2] Monvisade P,Siriphannon P. Chitosan intercalated montmorillonite:Preparation,characterization and cationic dye adsorption[J]. Applied Clay Science,2009,42(3/4):427-431.
[3] Sahin M,Kocak N,Arslan G,et al. Synthesis of crosslinked chitosan with epichlorohydrin possessing two novel polymeric ligands and its use in metal removal[J]. Journal of Inorganic and Organometallic Polymers and Materials,2011,21(1):69-80.
[4] Chiou Shaohua,Wu Wenteng. Immobilization of candida rugosa lipase on chitosan with activation of the hydroxyl groups[J]. Biomaterials,2004,25(2):197-204.
[5] Park S,Lee S J,Chung H,et al. Cellular uptake pathway and drug release characteristics of drugencapsulated glycol chitosan nanoparticles in live cells[J]. Microscopy Research and Technique,2010,73(9):857-865.
[6] Fajardo P,Martins J T,F(xiàn)ucinos C,et al. Evaluation of a chitosan-based edible film as carrier of natamycin to improve the storability of saloio cheese[J]. Journal of Food Engineering,2010,101(4):349-356.
[7] Zonoozi M H,Moghaddam M R A,Arami M. Study on the removal of acid dyes suing chitosan as a natural coagulant/coagulant aid[J]. Water Science and Technology,2011,63(3):403-409.
[8] Fu H T,Kobayashi T. Self-assembly functionalized membranes with chitosan microsphere/polyacrylic acid layers and its application for metal ion removal[J]. Journal of Materials Science,2010,45(24):6694-6700.
[9] Saitoh T,Asano K,Hiraide M. Removal of phenols in water using chitosan-conjugated thermo-responsive polymers[J]. Journal of Hazardous Meterials,2011,185(2/3):1369-1373.
[10] Cao Jie,Tan Yebang,Che Yuju,et al. Novel complex gel beads composed of hydrolyzed polyacrylamide and chitosan:An effective adsorbent for the removal of heavy metal from aqueous solution[J]. Bioresource Technology,2010,101(7):2558-2561.
[11] Liu Tingyi,Zhao Lin,Sun Desheng,et al. Entrapment of nanoscale zero-valent iron in chitosan beads for hexavalent chromium removal from wastewater[J]. Journal of Hazardous Materials,2010,184(1/2/3):724-730.
[12] 黃金明,金鑫榮. 天然高分子殼聚糖作為吸附劑的吸附特性研究[J]. 高等學(xué)校化學(xué)學(xué)報,1992,13(4):535-536.
Huang Jinming,Jin Xinrong. A study of adsorption property of natural polymer chitosan as adsorption[J]. Chemical Research in Chinese Universities,1992,13(4):535-536(in Chinese).
[13] Koyama Y,Taniguchi A. Studies on chitin X. homogeneus crosslinking of chitosan for enhanced ion adsorption[J]. Journal of Applied Polymer Science,1986,31(7):1951-1954.
[14] Hsien Tzu-Yang,Rorrer G L. Heterogeneous crosslinking of chitosan gel beads:Kinetics,modeling and influence on cadmium ion adsorption capacity[J]. Industrial and Engineering Chemistry Research,1997,36(9):3631-3638.
[15] 張寶貴,唐雪嬌,曹 夢,等. 一種新型殼聚糖衍生物吸附劑的制備及應(yīng)用:CN,CN101007264[P]. 2008-11-12.
Zhang Baogui,Tang Xuejiao,Cao Meng,et al. The Synthesis and Application of a Novel Chitosan Derivatives Adsorbent:CN,CN101007264[P]. 2008-11-12 (in Chinese).
[16] 唐雪嬌,曹 夢,畢成良,等. 新型吸附劑的合成、表征及其對Ni(Ⅱ)的吸附研究[J]. 化學(xué)學(xué)報,2007,65(23):2771-2775.
Tang Xuejiao,Cao Meng,Bi Chengliang,et al. Study on the synthesis and characterization of a novel adsorbent and adsorption property to Ni(Ⅱ)[J]. Acta Chimica Sinica,2007,65(23):2771-2775(in Chinese).
[17] 顏肖慈,羅明道. 界面化學(xué)[M]. 北京:化學(xué)工業(yè)出版社,2005.
Yan Xiaoci,Luo Mingdao. Intersurface Chemstry[M]. Beijing:Chemical Industry Press,2005(in Chinese).
[18] 朱 瑤,趙振國. 界面化學(xué)基礎(chǔ)[M]. 北京:化學(xué)工業(yè)出版社,1996.
Zhu Yao,Zhao Zhenguo. Intersurface Chemstry Fundamentals[M]. Beijing:Chemical Industry Press,1996(in Chinese).
Adsorption Behavior of Ni2+onto New Chitosan Derivative Sorbent
TANG Xue-jiao,YANG Li,WU Feng-peng,GAO Min,SHEN Bo-xiong
(School of Environmental Science and Engineering,Nankai University,Tianjin 300071,China)
A new chitosan derivative sorbent (P-C-CTS(Ni)) was prepared by crosslinking and amination reactions with Ni2+imprinting method. The adsorption behaviors of P-C-CTS(Ni) were investigated by model-fitting and kinetics studies. The appearance and porous structure of P-C-CTS(Ni)were characterized by SEM. Under varied concentration of Ni2+at room temperature, the isotherm adsorptions were fitting both Freundlich model and BET model,indicating that the sorbent had porous structure and carried out a multilayer molecule adsorption process. The results show that there are three steps for Ni2+adsorption at different temperatures (surface diffusion adsorption, internalsurface diffusion adsorption and balance adsorption). The data at 303 K correlate well with the second-order kinetic model,the sorption rate constant being 8.119×10-3g/(mg·min), which indicates that chemical sorption is the main sorption mechanism and controls the adsorption procedures.
chitosan derivative sorbent;adsorption isotherm;adsorption kinetics;diffusion equation fitting
Q539
A
0493-2137(2011)11-0979-05
2011-03-30;
2011-05-17.
國家自然科學(xué)基金資助項目(50976050);中央高?;究蒲袠I(yè)務(wù)費專項資金資助項目(65010451).
唐雪嬌(1980— ),女,博士,講師.
唐雪嬌,tangxuejiao@nankai.edu.cn.