楊中發(fā),方正,王少芬,張正華
楊中發(fā)1,方正1,王少芬2,張正華1
(1.中南大學(xué) 化學(xué)化工學(xué)院,湖南 長沙,410083;2.長沙理工大學(xué) 化學(xué)與生物工程學(xué)院,湖南 長沙,410077)
采用熱電化學(xué)方法測定電極反應(yīng)電化學(xué)Peltier熱。實(shí)驗(yàn)中將高靈敏度熱敏電阻緊貼于工作電極表面,結(jié)合SRC?100溶解?反應(yīng)量熱儀與電化學(xué)工作站組裝成高精度熱電化學(xué)測試系統(tǒng),其控溫精度達(dá)±0.001 K。運(yùn)用該測試系統(tǒng)分別對5個不同濃度等物質(zhì)的量比的Fe(CN)63?/Fe(CN)64?體系陽極過程進(jìn)行恒電流極化,得到該電極反應(yīng)電極電勢和溫度變化與時間的關(guān)系曲線,運(yùn)用熱電化學(xué)方程,得到298.15K時Fe(CN)63?/Fe(CN)64?體系陽極過程電化學(xué)Peltier熱,分別為41.51 kJ/mol (0.075 mol/L),43.48 kJ/mol(0.10 mol/L),46.95 kJ/mol(0.15 mol/L),50.77 kJ/mol(0.20 mol/L)和54.81 kJ/mol(0.25 mol/L),由此獲得該溫度下的標(biāo)準(zhǔn)氫電極反應(yīng)在絕對標(biāo)度下的熵變。
熱電化學(xué);Peltier熱;標(biāo)準(zhǔn)氫電極;Fe(CN)63?/ Fe(CN)64?體系
熱電化學(xué)方法是將熱化學(xué)與電化學(xué)相結(jié)合的一種物理化學(xué)研究方法。它在測量電極過程電信號的同時研究其熱效應(yīng),通過搜集測量過程中電壓?電流?熱流?時間四維信息,并基于熱電化學(xué)基本原理分析實(shí)驗(yàn)數(shù)據(jù),可獲得比單純熱力學(xué)或電化學(xué)分析方法更全面的信息。電化學(xué)Peltier熱是指電荷可逆通過電極與溶液界面時產(chǎn)生的熱效應(yīng)。目前已有不少學(xué)者對電化學(xué)Peltier熱及其測量方法進(jìn)行了研究[1?6]。使用測溫元件測量電極表面溫度變化,能得到電極反應(yīng)瞬時熱效應(yīng),并易于測試單個電極反應(yīng)的熱效應(yīng),但目前還沒有一套能獨(dú)立承擔(dān)測溫的熱電測試系統(tǒng)。以往電化學(xué)Peltier熱的測試方法,由于溫度控制和數(shù)據(jù)采集處理困難等問題,不便使用[7?12]。本文作者采用自組裝的控溫達(dá)0.001 K的高精度恒溫環(huán)境熱電化學(xué)測試系統(tǒng),對 5個不同濃度下 Fe(CN)63?/Fe(CN)64?體系陽極過程進(jìn)行測試,運(yùn)用熱電化學(xué)數(shù)據(jù)處理方法得到各電極過程電化學(xué) Peltier熱和絕對標(biāo)度下標(biāo)準(zhǔn)氫電極反應(yīng)的熵變。
在相同溫度壓強(qiáng)下,設(shè)任何一個電極反應(yīng)在現(xiàn)行標(biāo)度下的電極電勢為φ(vs.SHE,Standard hydrogen electrode),即以標(biāo)準(zhǔn)氫電極作為標(biāo)準(zhǔn)電極所得的電極電勢。絕對標(biāo)度下電極電勢為φ*,二者關(guān)系為[13]:ΔL*可以分別為絕對標(biāo)度下的吉布斯自由能ΔG*,熵變ΔS*和焓變ΔH*;則ΔL對應(yīng)分別為現(xiàn)行標(biāo)度下的吉布斯自由能ΔG,熵變ΔS和焓變ΔH;z為電子轉(zhuǎn)移數(shù)。
電極反應(yīng)過程中電化學(xué)Peltier熱規(guī)定為[14]:其中:Π為電化學(xué)Peltier熱;ΔS*為絕對標(biāo)度下熵變;T為熱力學(xué)溫度。當(dāng)i→0時,電極過程為可逆過程,電化學(xué)Peltier熱為電極過程可逆熱效應(yīng)。
根椐熱力學(xué)定律,在絕對標(biāo)度下有:
實(shí)驗(yàn)裝置與文獻(xiàn)[13]中的相同, 為自組裝熱電化學(xué)工作站。它由 CHI660B型電化學(xué)工作站(上海辰華儀器公司生產(chǎn))和SRC?100溶解反應(yīng)量熱儀(武漢大學(xué)化學(xué)與分子科學(xué)學(xué)院熱化學(xué)實(shí)驗(yàn)室生產(chǎn))組成。采用自制U型電解槽以保持電解液與水浴本體的熱傳導(dǎo),確保反應(yīng)過程中電解液溫度穩(wěn)定。將高靈敏度熱敏電阻(MF?54型80 k?武漢海創(chuàng)電子有限公司生產(chǎn))直接貼在鉑電極背面,并用環(huán)氧樹脂固定制成工作電極,以檢測電極反應(yīng)過程中瞬時熱效應(yīng);輔助電極為鉑電極,參比電極為飽和甘汞電電極。與量熱儀配套的超級恒溫槽能提供穩(wěn)定的恒溫環(huán)境,控溫精度可長時間保持在?1×10?3~1×10?3K 范圍內(nèi)。將工作電極中熱敏電阻連接在溶解反應(yīng)量熱儀上,與儀器中另外3個精密電阻組成惠斯通電橋,電極反應(yīng)過程中產(chǎn)生的熱效應(yīng)通過惠斯通電橋轉(zhuǎn)變?yōu)殡妱菪盘栞敵?。?shí)驗(yàn)測得輸出電勢信號與溫度變化關(guān)系為:ΔV(mV)=170.2ΔT?0.006 9。當(dāng)陽極有電流通過時,電極表面溫度變化、電流和電極電勢同時分別由量熱儀和電化學(xué)工作站記錄。
利用溫度的變化確定熱量Q,通過電流和電極電勢確定We′。數(shù)據(jù)處理方法如下:
試劑為分析純 K3Fe(CN)6(天津化學(xué)試劑研究所生產(chǎn))和 K4Fe(CN)6(湘中精細(xì)化學(xué)品廠生產(chǎn)),采用電導(dǎo)率≤0.5 μS/cm 的去離子水將 K3Fe(CN)6和K4Fe(CN)6按物質(zhì)的量1:1配制成不同濃度溶液,并加入1 mol/L的KCl作支持電解質(zhì)。
實(shí)驗(yàn)控制溫度為298.15 K,分別對不同濃度溶液進(jìn)行恒電流掃描,掃描時間為120 s,得到各濃度下電極電勢和溫度變化引起的電信號變化對時間的關(guān)系曲線。其中 0.025 mol/L 溶液的φ(vs.SHE)?t和 ΔV?t關(guān)系曲線如圖1所示。曲線積分采用數(shù)據(jù)處理軟件自動完成,各濃度體系的實(shí)驗(yàn)數(shù)據(jù)及k,Π=(Q)i→0,ΔH0(c)和We=(We′)i→0見表1。從表1中可以得到不同濃度的Fe(CN/Fe(CN體系陽極 Peltier熱分別為 41.51 kJ/mol(0.075 mol/L),43.48 kJ/mo(0.10 mol/L),46.95 kJ/mol(0.15 mol/L),50.77 kJ/mol(0.20 mol/L)和 54.81 kJ/mol(0.25 mol/L)。不同濃度時ΔH0(c)對濃度c關(guān)系如圖2所示。當(dāng)外推到濃度為零時,有ΔH0(c)(c→0)=?80.358 kJ/mol,由 ΔH(c→0)[15]及式(8)計算得到ΔS*(H+/H2)為 86.91 J/(K·mol)。與文獻(xiàn)[13]和文獻(xiàn)[16]中得到的絕對標(biāo)度下標(biāo)準(zhǔn)氫電極反應(yīng)熵變值非常接近。
圖 1 0.25 mol/LFe(CN/Fe(CN體系 φ(vs. SHE)?t和ΔV?t關(guān)系曲線Fig.1 Curves of φ(vs. SHE) vs t and ΔV vs t for 0.25 mol/L Fe(CN/Fe(CN system
圖2 Fe(CN/Fe(CN)體系ΔH0(c)與濃度c的關(guān)系Fig.2 Relationship between ΔH0(c) and concentration c for Fe(CNFe(CNsystem
表1 不同濃度下 Fe(CN/Fe(CN體系實(shí)驗(yàn)數(shù)據(jù)Table 1 Experimental results for Fe(CNFe(CN at various concentrations
表1 不同濃度下 Fe(CN/Fe(CN體系實(shí)驗(yàn)數(shù)據(jù)Table 1 Experimental results for Fe(CNFe(CN at various concentrations
注:表中 6.9×10?6來自實(shí)驗(yàn)確定的 ΔV(mV)=170.2ΔT?0.006 9。
c/(m o l·L?1) i/m A ∫t i t0 d∫t ?6 0 V ?1( 6.9 1 0 )d/( )d Δ+ × ?∫t 0 t V A i t 0.0 7 5趨于0 0.5 0.8 1.0 1.2 1.5 0 0.0 6 0 0.0 9 6 0.1 2 0 0.1 4 4 0.1 8 0 1.2 3 9 1.1 5 9 1.1 3 0 1.1 0 1 1.0 7 3 1.0 1 5 0.1 0 0趨于0 0.5 0.8 1.0 1.2 1.5 2.0 0 0.0 6 0 0.0 9 6 0.1 2 0 0.1 4 4 0.1 8 0 0.2 4 0 1.2 2 8 1.1 5 5 1.1 3 2 1.1 1 6 1.0 7 7 1.0 4 8 0.9 7 2 0.1 5 0趨于0 1.0 1.2 1.5 1.8 2.0 2.5 3.0 0 0.1 2 0 0.1 4 4 0.1 8 0 0.2 1 6 0.2 4 0 0.3 0 0 0.3 6 0 1.2 6 4 1.1 9 1 1.1 8 5 1.1 7 0 1.1 4 5 1.1 4 1 1.1 0 4 1.0 5 9 0.2 0 0趨于0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0 0.1 2 0 0.1 8 0 0.2 4 0 0.3 0 0 0.3 6 0 0.4 2 0 0.4 8 0 1.2 4 7 1.2 0 7 1.1 9 4 1.1 6 6 1.1 6 3 1.1 4 3 1.1 1 5 1.0 9 4 0.2 5 0趨于0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0 0.1 2 0 0.1 8 0 0.2 4 0 0.3 0 0 0.3 6 0 0.4 2 0 0.4 8 0 0.5 4 0 0.6 0 0 1.2 5 4 1.2 1 0 1.2 0 3 1.1 8 3 1.1 6 5 1.1 5 1 1.1 3 7 1.1 1 5 1.0 8 9 1.0 6 7 0.4 6 9 0.4 9 6 0.5 0 6 0.5 1 4 0.5 2 0 0.5 3 3 0.5 6 6?0.3 6 7 8 8.7 3 4 3.4 8 4 5.2 5 0.4 8 0 0.5 0 7 0.5 1 1 0.5 1 7 0.5 2 4 0.5 2 8 0.5 4 1 0.5 5 9?0.3 8 5 9 3.2 6 4 6.9 5 4 6.3 1 0.4 8 8 0.5 0 5 0.5 1 3 0.5 1 8 0.5 2 6 0.5 3 4 0.5 4 3 0.5 5 4?0.4 2 2 9 7.8 5 5 0.7 7 4 7.0 8 0.4 9 1 0.5 1 0 0.5 1 7 0.5 2 3 0.5 2 9 0.5 3 6 0.5 4 4 0.5 5 3 0.5 6 4 0.5 7 8?0.4 5 3 1 0 2.1 8 5 4.8 1 4 7.3 7∫t 0 ?+η it V i t( )d/d∫t 0 k/A Δ H0(c)/(k J·m o l?1)?Π/(k J·m o l?1)We/(k J·m o l?1)0.4 7 4 0.5 0 0 0.5 1 3 0.5 2 3 0.5 3 5 0.5 5 0?0.3 4 7 8 7.2 4 4 1.5 1 4 5.7 3
(1) 將熱電化學(xué)方法用于測定 Fe(CN)63?/Fe(CN)64?體系電極反應(yīng)電化學(xué) Peltier熱。結(jié)合SRC-100溶解反應(yīng)量熱儀與電化學(xué)工作站自組裝成高精度熱電化學(xué)測試系統(tǒng)。
(2)測定了 5個不同濃度下等物質(zhì)的量比的Fe(CN)63?/Fe(CN)64?體系陽極過程熱和電功,采用外推法得到這些濃度下 Fe(CN)63?/Fe(CN)64?體系陽極過程Peltier熱,分別為41.51 kJ/mol(0.075 mOl/L),43.48 kJ/mol(0.10 mol/L),46.95 kJ/mol(0.15 mol/L),50.77 kJ/mol(0.20 mol/L)和 54.81 kJ/mol(0.25 mol/L)。
(3) 在298.15 K時標(biāo)準(zhǔn)氫電極反應(yīng)在絕對標(biāo)度下的熵變 ΔS*(H+/H2)為 86.91 J/(K·mol)。
[1]Maeda Y, Kumagai K. Electrochemical Peltier in the polypyrrole-electrolyte system[J]. Thermochimica Acta, 1995,267: 139?148.
[2]Decker F, Fracastoro-decker M, Cella N, et al. Acoustic detection of the electrochemical Peltier effect[J]. Electrochim Acta, 1990,35(1): 25?26.
[3]Reita T. The electrochemical Peltier effect observed with electrode reactions of Fe(Ⅱ)/Fe(Ⅲ) redox couples at a gold electrode[J]. J Electroanal Chem,1975, 65(1): 263?273.
[4]Boudeville P. Thermometric determination of electrochemical Peltier heat (thermal effect associated with electron transfer) of some redox couples[J]. Inorg Chim Acta, 1994, 226(1/2): 69?78.
[5]Hironori N, Toshiyuki N, Yasuhiko I. The single electrode Peltier heats of Li/Li+, H2/H+and Li+/Pd-Li couples in molten LiCI-KCI systems[J]. Electrchim Acta, 2004, 49(27): 4987?4991.
[6]Jung D H, Moon I K, Jeong Y H. Peltier AC calorimeter[J].Thermochimica Acta, 2002, 391(1/2):7?12.
[7]Reita T. An experimental study of the electrochemical Peltier heat[J]. J Electroanal Chem, 1973, 45(3): 500?503.
[8]ZHANG Hong-zhong, ZHANG Pin-ming, FANG Zheng.Coupling microcalorimeter with electrchemical instruments for thermoelectrochemical research[J]. Thermochimica Acta, 1997,303: 11?15.
[9]Boudeville P, Tallec A. Electrochemistry and calorimetry IV:Determination of electrochemical Peltier heat[J]. Thermochim Acta, 1988, 126(15): 221?234.
[10]WANG Hui-xiang, WANG Dian-zuo, LI Bai-dan, et al.Improved methods to determine the electrochemical Peltier heat using a thermistor(1): Improved heat-sensor electrodes and lumped-heat-capacity analysis[J]. J Electronal Chem, 1995,392(1):13?19.
[11]JIANG Zhi-yu, ZHANG Jie, DONG Liang-jun, et al Determination of the entropy chang of the electrode reaction by an AC electrochemical-thermal method[J]. J Electroanal Chem,1999, 469(1): 1?10.
[12]YU Hua-guang, Liu Yi, TAN Zhi-cheng, et al. A solution reaction isoperibol calorimeter and standard molar enthpies of formation of Ln(hp)2Ac (Ln=La,pr)[J]. Thermochim Acta, 2003,401(15): 217?224.
[13]FANG Zheng, WANG Shao-fen, ZHANG Zheng-hua, et al. The electrochemical Peltier heat of the standard hydrogen electrode reaction[J]. Thermochimica Acta, 2008, 473(1/2): 40?44.
[14]FANG Zheng, ZHANG Quan-ru, ZHANG Heng-zhong.Thermoelectrochemisty and its application to metallurgical research[J]. J Mater Sci Technol, 2001, 17(1): 20?24.
[15]Dean J A. LANGE’S handbook of chemistry thirteenth edition[M]. New York:McGraw-Hill Book Company, 1985:1481?1482.
[16]黃子卿. 電解質(zhì)溶液理論導(dǎo)論[M]. 北京: 科學(xué)出版社 1983:53?54.HUANG Zi-qing. Introduction to theory of electrolyte solution[M]. Beijing: Science Press, 1983: 53?54.
(編輯 張?jiān)鴺s)
Electrochemical Peltier heats of anodic process for Fe(CN/Fe(CNsystem
YANG Zhong-fa1, FANG Zheng1, WANG Shao-fen2, ZHANG Zheng-hua1
(1. School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China;2. School of Chemistry and Biology Engineering, Changsha University of Science and Technology, Changsha 410077, China)
The thermo-electrochemical technique was applied to study the electrochemical Peltier heat of electrode reaction. In this experiment, a precision system for thermo-electrochemical measurements with controlled temperature of±0.001 K was set up, which consists of SRC?100 solution isoperibol calorimeter and an electrochemical workstation. A thermo-sensitive resistor was directly attached to the surface of working electrode to measure the change in potential signal due to temperature change of electrode. The curves of the electrode potential and temperature change against time for equal molar ratio of Fe(CN)63?/Fe(CN)64?couple with 5 sets of different concentrations were obtained under the condition of various constant-current polarizations. Using the thermo-electrochemical method for data-processing, the electrochemical Peltier heat of anodic process of Fe(CN)63?/Fe(CN)64?couple under various concentrations at 298.15 K are determined as 41.51 kJ/mol (0.075 mol/L), 43.48 kJ/mol (0.10 mol/L),46.95 kJ/mol(0.15 mol/L),50.77 kJ/mol(0.20 mol/L)and 54.81 kJ/mol(0.25 mol/L),respectively. The entropy change derived from these Peltier heat for the standard hydrogen electrode on absolute scale at this temperature is also given.
thermo-electrochemistry; Peltier heat; standard hydrogen electrode; Fe(CN)63?/Fe(CN)64?system
O642.3;O646
A
1672?7207(2011)02?0312?05
2009?12?07;
2010?03?05
國家自然科學(xué)基金資助項(xiàng)目(50874119)
方正(1944?),男,安徽桐城人,教授,博士生導(dǎo)師,從事冶金熱力學(xué)、熱電化學(xué)等研究;電話:0731-88660356;E-mail:zfang@csu.edu.cn