• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    簡(jiǎn)易方法制備交叉碳納米管-石墨烯異質(zhì)結(jié)

    2010-12-12 02:41:28李丹娜陽(yáng)申王振興郭雪峰
    物理化學(xué)學(xué)報(bào) 2010年4期
    關(guān)鍵詞:雪峰工程學(xué)院異質(zhì)

    甘 霖 劉 松 李丹娜 谷 航 曹 陽(yáng)申 茜 王振興 王 青 郭雪峰

    (北京大學(xué)化學(xué)與分子工程學(xué)院,分子動(dòng)態(tài)與穩(wěn)態(tài)結(jié)構(gòu)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京分子科學(xué)國(guó)家實(shí)驗(yàn)室,北京 100871)

    The engineering of molecular devices relies on the control and exploration of the electronic properties of the junctions. These properties include the intrinsic electronic device functions as well as the ability of the molecules to interact with the electrodes.Among these functions,rectification behavior is one of the most exciting device functions,which was first envisioned by Aviram and Ratner[1].The Aviram-Ratner molecular diode consists of a donor and an acceptor separated with a σ bridge in which the forward current is from the acceptor to the donor.To date,most experimental studies of molecular diodes have been carried out using Langmuir-Blodgett films[2-3]and self-assembled monolayers(SAMs)[4-6].However,the study of the diode behaviors in these molecular junctions is significantly limited due to the requirement of sophisticated and time-consuming device fabrication and the unavailability of the molecules with desired structures.

    Another efficient approach to realize the rectification behaviors at the molecular level is to form T-or Y-shaped heterojunctions between different nanomaterials.In the past decade,much effort has been made to create nano-heterojunctions between nanotubes(NTs)and nanowires(NWs)because they could provide building blocks for nanoelectronics and nanophotonics[7-9]. Although several types of nano-heterojunctions between nanotubes and nanowires have been made[8-13],the key question of the fabrication of the nano-heterojunctions remained a significant challenge.This is due to the difficulty of direct growth of T-or Y-shaped heterojunctions.In this work,we report a facile technique for producing a large number of crossed nanotubegraphene heterojunctions through a nondestructive polymethyl methacrylate(PMMA)-mediated nanotransfer printing approach[14-15]and selective oxygen plasma etching.Then through only one-step electron beam lithography,we can easily fabricate the corresponding nanodevices.

    Single-walled carbon nanotubes(SWNTs)[16]and single-layer graphene(SLG)[17],two star molecules of carbon nanomaterials, have been proposed as the ideal systems for nanoelectronics and molecular electronics in both academic and industrial communities[18-22].Nanojunctions consisting of two crossed SWNTs were fabricated to form two-and three-terminal devices,which showed a rectifying Schottky barrier[23].However,a question remains: what will happen when individual SWNTs are joined with SLG to form multi-terminal devices and,ultimately,complex circuits?To answer this question,in this study we focus on the technical development of building SWNT-SLG heterojunctions formed by graphene that lie across nanotubes on silicon wafer substrates(Fig.1).

    1 Results and discussion

    Fig.1 Schematic structure of the crossed SWNT-SLG heterojunctionsInset shows the assumption that deformations in both SWNT and SLG could happen at the junction due to their interaction with SiO2substrates.

    A schematic procedure for fabricating the SWNT-SLG heterojunctions is given in Fig.2.Although the final SWNT-SLG heterojunctions are obtained through 9 steps,each step is quite simple without either traditional photolithography or complicated electron beam lithography.Within one or two days,one could use this facile procedure to mass produce SWNT-SLG heterojunctions.Firstly we synthesize SLG through a chemical vapor deposition process(CVD).Currently,several promising synthesis methods have been developed to grow SLG.These include epitaxial graphene on SiC[24-25],graphene oxide reduction[26-27],direct growth out of thin nickel film[28-29],and most recently on copper foils[30].Among these methods,the latest copper foil-based synthesis is the most effective in producing large continuous SLGs with promising electrical properties.In our procedure,we use 25 μm thick copper films(Alfa Aesar)to grow our SLG. The basic mechanism is similar to that recently reported in Ref. [30].Before graphene growth,Cu films were immersed in acetic acid at 40℃for 15 min in order to remove most of the copper oxide.We found that this is an important pretreatment because removal of the copper oxide prior to growth improves the quality of the copper film and thus the quality of SLG.A typical growth process is listed below.A quartz substrate with the Cu film was loaded into the furnace.Then the system was evacuated and heated to 1000℃under a 10 cm3·min-1flow of H2at a pressure of about 50 Pa.After stabilizing the Cu film at the desired temperature,we introduced 1.1 cm3·min-1of CH4for 5-10 min at a pressure of about 60 Pa.After the growth the substrates were then cooled down to room temperature for the next transfer step.Fig.3(a)shows a contrast-enhanced optical image of a typical sample substrate after graphene growth.We found that graphene was continuous across the visible Cu grains as demonstrated below.Fig.3(b)presents a Raman spectrum that is representative of the grown graphene.A single symmetric 2D peak (full width at half-maximum ca 34 cm-1),a small G/2D ratio,and a negligible D peak are observed,which strongly suggest that the graphene is a single layer and the quality of the sheet is not significantly affected by the visible features of the Cu film[30].

    Fig.2 Schematic representation of the fabrication procedure to form crossed nanotube-graphene heterojunctions

    Fig.3 (a)A contrast-enhanced optical image of a typical sample substrate after graphene growth, (b)a representative Raman spectrum of the grown graphene

    Fig.4 (a)An optical image of large-area graphenes after PMMA-mediated nanotransfer process,(b)an optical image of graphene sheet array after oxygen plasma etching and the zoomed-in image of the part labeled by a red square, (c)Raman spectra obtained from the marked spots with the corresponding colored circles

    After graphene growth,polymer PMMA with 300 nm thickness was spin coated on the Cu films.The whole samples were then immersed into a continually refreshed saturated solution of iron nitrate for an enough long time to remove the Cu substrates. The resultant transparent sheet floating in the aqueous solution was transferred to a sacrifice silicon substrate.To demonstrate the efficiency of the PMMA-mediated transfer technique,we simply tested the quality of graphene after removing PMMA in a boiling acetone solution.As shown in Fig.4(a),this method allows us to transfer large-area continuous high-quality graphenes with only small residues to any kinds of substrates as confirmed by Raman measurements(see below).To form graphene sheets, we directly applied an oxygen plasma etching process(oxygen: 19 cm3·min-1,pressure:35 Pa,power:50 W)for 2.5 min without removing PMMA thin films after the transfer step to etch away the unprotected graphene beneath the exposed PMMA through a shadow mask.Then after removing the remaining PMMA in a boiling acetone solution,graphene sheets with desired patterns were obtained.Fig.4(b)shows an optical image of the resulting sheet array with ca 100 μm width separated by ca 500 μm.In principle,graphene microarrays with any kinds of patterns could be easily obtained through this flexible process,depending on the design of the shadow mask.A zoomed-in optical image of one part is also shown in Fig.4(b).This contrast-enhanced image confirms that the surface of SLG sheets is very clean without obvious damages and any visible residues on top of them.To further evaluate the quality and uniformity of the transferred graphenes,we used Raman spectroscopy to characterize them. Fig.4(c)showsthe correspondingRaman spectra fromthe marked circles with different colors in Fig.4(b).Surprisingly,the resulting graphene sheets show the uniform Raman signature over large areas and remain the same original quality as shown in Fig. 3(b).Based on the Raman analysis,we estimated the SLG coverage to be a minimum of 93%[30].The Raman measurements as well as the optical characterization demonstrate that this nanotransfer and oxygen plasma etching process is useful for making large-area high-quality graphene microdevices in a nondestructive manner.We found that the sequential transfer and oxygen plasma etching process is important.If the oxygen plasma etching is straightly applied on the Cu films without the transfer step as shown in Fig.2(Route 2),extensive damages of the graphene sheets can occur probably due to the fragility of Cu films.

    Fig.5 (a)Schematic representation of the SLG device array and the enlarged optical image of a representative device, (b)a representative electronic property of the same device

    To transfer graphene sheets to the desired substrates,we performed another PMMA-mediated transfer step.Similarly,300 nm PMMA was spin coated on the sacrifice silicon substrates. After immersing the whole sample in the aqueous solution of potassium hydroxide(1.0 mol·L-1)at the temperature of 80℃for 0.5 h[15],PMMA thin films together with the graphene sheet array can be peeled off from the sacrifice substrates.Then the floating transparent PMMA thin films were transferred onto the target silicon substrates with 300 nm thermally grown silicon oxide.After dissolving PMMA in a boiling acetone,the graphene sheets were released to the target substrate.To test the electronic properties of these graphene sheets,we made the transistor arrays through a simple thermal evaporation.One key advantage of our device fabrication process is its high yield and uniform electronic properties.In order to show this,we fabricated 200 devices on a single substrate over a large area(about 8 mm×6 mm).A representative device schematic is shown in Fig. 5(a).Only 3 out of 200 devices are obviously damaged and all other devices are conductive,showing the yield as high as 98%. Fig.5(b)shows the corresponding electronic property of one representative device shown in Fig.5(a).Based on the data,we estimate the average sheet resistance to be about 0.7-1.2 kΩ.The high yield of the highly conductive devices demonstrated here and the uniform Raman features shown in Fig.4(c)confirm the continuous growth of SLG over a large area and the efficiency of our nondestructive transfer technique.

    After proving the high conductivity of the resulting graphene sheets,we finally transferred them to the silicon wafer substrates with pre-grown well-aligned ultralong SWNT arrays.Wellaligned ultralong SWNTs were grown through a standard CVD process on silicon wafers with a 300 nm SiO2layer[31-32]and with different marks,which help find SWNTs under SEM.With care, graphene sheets with desired patterns can be precisely positioned perpendicular to SWNT arrays,thus forming high-density crossed SWNT-SLG junctions.Fig.6(a)shows such a SEM image of crossed SWNT-SLG junctions with distinctive marks,showing the average density of ca 3 junctions per 100 μm.With the aid of these marks,the corresponding nanodevices based on these SWNT-SLG junctions were then fabricated through only one-step electron beam lithographic process.Fig.6(b)shows the SEM images of a representative nanodevice,clearly showing that SLG lies across SWNT.It is well-known that SWNTs may be metallic or semiconducting,depending on their chirality[33-34]. At room temperature,metallic SWNTs have a finite conductance that is nearly independent of VG.Semiconducting SWNTs are found to be p-type,conducting at negative VGand insulating at positive VG.However,graphene at the micrometer scale shows only semimetallic properties due to its zero bandgap[18-22].Therefore,our crossed SWNT-SLG junctions can be composed of one metallic SWNT and one SLG(MM),or one semiconducting SWNT and one SLG(MS).We expect that a rectifying Schottky barrier could be formed when the semiconducting SWNT is con-nected with the semimetallic graphene.This potential initiates our great attention to exploring the foreseen and unforeseen properties on these SWNT-SLG junctions.The electrical characterization is still in progress.

    Fig.6 (a)A SEM image of crossed SWNT-SLG junctions,(b)SEM images of a representative nanodevice

    2 Conclusions

    In this study,we detailed a nondestructive method to mass produce crossed SWNT-SLG junctions through twice PMMA-mediated transfer techniques and selective oxygen plasma etching.SLGs used here were grown over large areas on Cu films by a CVD method.Then graphene sheet array with desired patterns were made by applying oxygen plasma etching through a shadow mask after the first transfer step.Raman and conductance measurements show that the quality and electrical properties of our SLG sheets are uniform over a large area.Finally,crossed SWNT-SLG junctions can be easily achieved by transferring the graphene sheet array onto the target substrates with well-aligned SWNT arrays.Characterization of the electrical properties of nanodevices based these heterojunctions is underway and will be reported in due time.In addition to forming crossed SWNTSLG junctions,SLG synthesis and device fabrication discussed in this article also provides a reliable method to pattern graphene sheet arrays for making graphene-based microdevices over large areas and with high yield.This technique is compatible with standard thin film technologies and allows SLG to be integrated into large scale electronics circuitry within several simple steps that can be easily streamlined and automated.These results might offer the platform for the creation of a wide variety of molecular rectifiers and other functional nano/molecular devices.

    1 Aviram,A.;Ratner,M.A.Chem.Phys.Lett.,1974,29:277

    2 Martin,A.S.;Sambles,J.R.;Ashwell,G.J.Phys.Rev.Lett.,1993, 70:218

    3 Zhou,S.Q.;Liu,Y.Q.;Qiu,W.F.;Xu,Y.;Huang,X.B.;Li,Y.S.; Jiang,L.;Zhu,D.B.Adv.Funct.Mater.,2002,12:65

    4 Chabinyc,M.L.;Chen,X.X.;Holmlin,R.E.;Jacobs,H.; Skulason,H.;Frisbie,C.D.;Mujica,V.;Ratner,M.A.;Rampi,M. A.;Whitesides,G.M.J.Am.Chem.Soc.,2002,124:11730

    5 Elbing,M.;Ochs,R.;Koentopp,M.;Fischer,M.;von Hanisch,C.; Weigend,F.;Evers,F.;Weber,H.B.;Mayor,M.Proc.Natl.Acad. Sci.U.S.A.,2005,102:8815

    6 Metzger,R.M.Chem.Rev.,2003,103:3803

    7 Hochbaum,A.I.;Yang,P.D.Chem.Rev.,2010,110:527

    8 Hu,J.T.;Ouyang,M.;Yang,P.D.;Lieber,C.M.Nature,1999, 399:48

    9 Zhang,Y.;Ichihashi,T.;Landree,E.;Nihey,F.;Iijima,S.Science, 1999,285:1719

    10 Meng,G.W.;Han,F.M.;Zhao,X.L.;Chen,B.S.;Yang,D.C.; Liu,J.X.;Xu,Q.L.;Kong,M.G.;Zhu,X.G.;Jung,Y.J.;Yang, Y.J.;Chu,Z.Q.;Ye,M.;Kar,S.;Vajtai,R.;Ajayan,P.M.Angew. Chem.Int.Edit.,2009,48:7166

    11 Asaka,K.;Nakahara,H.;Saito,Y.Appl.Phys.Lett.,2008,92: 023114

    12 Luo,J.;Zhang,L.;Zhang,Y.J.;Zhu,J.Adv.Mater.,2002,14: 1413

    13 Rodriguez-Manzo,J.A.;Banhart,F.;Terrones,M.;Terrones,H.; Grobert,N.;Ajayan,P.M.;Sumpter,B.G.;Meunier,V.;Wang, M.;Bando,Y.;Golberg,D.Proc.Natl.Acad.Sci.U.S.A.,2009, 106:4591

    14 Xiao,S.X.;Tang,J.Y.;Beetz,T.;Guo,X.F.;Tremblay,N.; Siegrist,T.;Zhu,Y.M.;Steigerwald,M.;Nuckolls,C.J.Am. Chem.Soc.,2006,128:10700

    15 Jiao,L.Y.;Fan,B.;Xian,X.J.;Wu,Z.Y.;Zhang,J.;Liu,Z.F. J.Am.Chem.Soc.,2008,130:12612

    16 Iijima,S.Nature,1991,354:56

    17 Novoselov,K.S.;Geim,A.K.;Morozov,S.V.;Jiang,D.;Zhang, Y.;Dubonos,S.V.;Grigorieva,I.V.;Firsov,A.A.Science,2004, 306:666

    18 Feldman,A.K.;Steigerwald,M.L.;Guo,X.;Nuckolls,C.Acc. Chem.Res.,2008,41:1731

    19 Dai,H.Acc.Chem.Res.,2002,35:1035

    20 Guo,X.;Nuckolls,C.J.Mater.Chem.,2009,19:5470

    21 Geim,A.K.;Novoselov,K.S.Nature Mater.,2007,6:183

    22 Zhang,Y.;Tan,Y.W.;Stormer,H.L.;Kim,P.Nature,2005,438: 201

    23 Fuhrer,M.S.;Nygard,J.;Shih,L.;Forero,M.;Yoon,Y.G.; Mazzoni,M.S.C.;Choi,H.J.;Ihm,J.;Louie,S.G.;Zettl,A.; McEuen,P.L.Science,2000,288:494

    24 Berger,C.;Song,Z.M.;Li,X.B.;Wu,X.S.;Brown,N.;Naud,C.; Mayou,D.;Li,T.B.;Hass,J.;Marchenkov,A.N.;Conrad,E.H.; First,P.N.;de Heer,W.A.Science,2006,312:1191

    25 Dawlaty,J.M.;Shivaraman,S.;Chandrashekhar,M.;Rana,F.; Spencer,M.G.Appl.Phys.Lett.,2008,92:042116

    26 Eda,G.;Fanchini,G.;Chhowalla,M.Nat.Nanotech.,2008,3:270

    27 Dikin,D.A.;Stankovich,S.;Zimney,E.J.;Piner,R.D.;Dommett, G.H.B.;Evmenenko,G.;Nguyen,S.T.;Ruoff,R.S.Nature, 2007,448:457

    28 Reina,A.;Jia,X.T.;Ho,J.;Nezich,D.;Son,H.B.;Bulovic,V.; Dresselhaus,M.S.;Kong,J.Nano Lett.,2009,9:30

    29 Kim,K.S.;Zhao,Y.;Jang,H.;Lee,S.Y.;Kim,J.M.;Kim,K.S.; Ahn,J.H.;Kim,P.;Choi,J.Y.;Hong,B.H.Nature,2009,457: 706

    30 Li,X.S.;Cai,W.W.;An,J.H.;Kim,S.;Nah,J.;Yang,D.X.; Piner,R.;Velamakanni,A.;Jung,I.;Tutuc,E.;Banerjee,S.K.; Colombo,L.;Ruoff,R.S.Science,2009,324:1312

    31 Guo,X.;Xiao,S.;Myers,M.;Miao,Q.;Steigerwald,M.L.; Nuckolls,C.Proc.Natl.Acad.Sci.U.S.A.,2009,106:691

    32 Liu,S.;Li,J.M.;Shen,Q.;Cao,Y.;Guo,X.F.;Zhang,G.M.; Teng,C.Q.;Zhang,J.;Liu,Z.F.;Steigerwald,M.L.;Xu,D.S.; Nuckolls,C.Angew.Chem.Int.Edit.,2009,48:4759

    33 Dai,H.Acc.Chem.Res.,2002,35:1035

    34 Liu,S.;Shen,Q.;Cao,Y.;Gan,L.;Wang,Z.;Steigerwald,M.L.; Guo,X.Coord.Chem.Rev.,2010,254:1101

    猜你喜歡
    雪峰工程學(xué)院異質(zhì)
    福建工程學(xué)院
    福建工程學(xué)院
    要退休了
    雜文月刊(2019年19期)2019-12-04 07:48:34
    福建工程學(xué)院
    福建工程學(xué)院
    看山是山?看山非山?
    雪峰下的草場(chǎng)
    隨機(jī)與異質(zhì)網(wǎng)絡(luò)共存的SIS傳染病模型的定性分析
    Ag2CO3/Ag2O異質(zhì)p-n結(jié)光催化劑的制備及其可見(jiàn)光光催化性能
    韓雪峰的“臺(tái)賬”
    国产精品偷伦视频观看了| 考比视频在线观看| 丝袜人妻中文字幕| 男女高潮啪啪啪动态图| 欧美黄色片欧美黄色片| 一级黄片播放器| 免费久久久久久久精品成人欧美视频| 国产高清不卡午夜福利| 日本爱情动作片www.在线观看| 亚洲欧美一区二区三区黑人 | 欧美 亚洲 国产 日韩一| 最近中文字幕2019免费版| 性色av一级| 亚洲国产av新网站| 老汉色av国产亚洲站长工具| 黄网站色视频无遮挡免费观看| 亚洲熟女精品中文字幕| 少妇被粗大的猛进出69影院| 卡戴珊不雅视频在线播放| 亚洲色图 男人天堂 中文字幕| 亚洲欧美成人精品一区二区| 欧美 亚洲 国产 日韩一| xxx大片免费视频| 国产毛片在线视频| 久久久国产一区二区| 久久毛片免费看一区二区三区| 精品国产国语对白av| 日韩制服骚丝袜av| 免费在线观看完整版高清| 夜夜骑夜夜射夜夜干| 精品一区二区免费观看| 另类亚洲欧美激情| 亚洲成人手机| 免费高清在线观看视频在线观看| 日韩电影二区| 亚洲综合精品二区| 最近最新中文字幕免费大全7| 国产不卡av网站在线观看| 亚洲 欧美一区二区三区| 婷婷色综合大香蕉| 亚洲精品一二三| 亚洲精品第二区| 国产亚洲欧美精品永久| 哪个播放器可以免费观看大片| 国产av一区二区精品久久| 婷婷色综合www| 精品国产乱码久久久久久小说| 老汉色av国产亚洲站长工具| 乱人伦中国视频| 欧美人与性动交α欧美软件| 亚洲情色 制服丝袜| 免费不卡的大黄色大毛片视频在线观看| 日本免费在线观看一区| 欧美黄色片欧美黄色片| 亚洲精品一二三| 在现免费观看毛片| 欧美日韩亚洲国产一区二区在线观看 | 久久久久久人人人人人| 亚洲精品久久午夜乱码| 亚洲精品aⅴ在线观看| 国产午夜精品一二区理论片| 国产片特级美女逼逼视频| 制服人妻中文乱码| 日本-黄色视频高清免费观看| 三级国产精品片| 丰满乱子伦码专区| 叶爱在线成人免费视频播放| 精品一品国产午夜福利视频| 国产免费一区二区三区四区乱码| 国产精品人妻久久久影院| 大香蕉久久成人网| 赤兔流量卡办理| 中文字幕制服av| 最近手机中文字幕大全| 天堂8中文在线网| 国产黄频视频在线观看| 亚洲精品美女久久av网站| 精品99又大又爽又粗少妇毛片| 久久 成人 亚洲| 熟女少妇亚洲综合色aaa.| 麻豆av在线久日| 香蕉丝袜av| 久久国内精品自在自线图片| 成年女人毛片免费观看观看9 | 精品国产超薄肉色丝袜足j| 建设人人有责人人尽责人人享有的| 五月天丁香电影| 美国免费a级毛片| 国产一区二区 视频在线| 亚洲av福利一区| 日本午夜av视频| 亚洲美女黄色视频免费看| 哪个播放器可以免费观看大片| 亚洲熟女精品中文字幕| 国产欧美日韩综合在线一区二区| 最黄视频免费看| av免费观看日本| 亚洲欧洲国产日韩| 国产精品亚洲av一区麻豆 | 黄色一级大片看看| 99re6热这里在线精品视频| 天天影视国产精品| 国产深夜福利视频在线观看| 激情视频va一区二区三区| 午夜福利影视在线免费观看| 男男h啪啪无遮挡| 午夜日韩欧美国产| 最近中文字幕高清免费大全6| 久久精品久久精品一区二区三区| 男女高潮啪啪啪动态图| 大片电影免费在线观看免费| 日韩不卡一区二区三区视频在线| 香蕉国产在线看| 2022亚洲国产成人精品| 成年美女黄网站色视频大全免费| 亚洲激情五月婷婷啪啪| 边亲边吃奶的免费视频| 高清黄色对白视频在线免费看| 午夜福利网站1000一区二区三区| 中文字幕人妻丝袜一区二区 | 亚洲精品久久成人aⅴ小说| 亚洲欧美中文字幕日韩二区| 美女国产高潮福利片在线看| 最近2019中文字幕mv第一页| 水蜜桃什么品种好| 在线免费观看不下载黄p国产| 成人二区视频| 国产福利在线免费观看视频| 欧美最新免费一区二区三区| 欧美精品av麻豆av| 97人妻天天添夜夜摸| 精品久久久精品久久久| 十分钟在线观看高清视频www| 日本-黄色视频高清免费观看| 免费大片黄手机在线观看| 亚洲av日韩在线播放| 91国产中文字幕| 午夜激情久久久久久久| 美女福利国产在线| 亚洲国产最新在线播放| 亚洲综合精品二区| www日本在线高清视频| 日本欧美国产在线视频| 在线观看免费高清a一片| xxxhd国产人妻xxx| 国产日韩一区二区三区精品不卡| 9191精品国产免费久久| 男人爽女人下面视频在线观看| 香蕉精品网在线| 久久婷婷青草| 欧美日韩一区二区视频在线观看视频在线| 男人操女人黄网站| 七月丁香在线播放| 国产高清不卡午夜福利| 男女啪啪激烈高潮av片| 中国三级夫妇交换| 91精品伊人久久大香线蕉| 国产亚洲一区二区精品| 在线观看一区二区三区激情| 女人久久www免费人成看片| 成人手机av| 国产亚洲午夜精品一区二区久久| 欧美 亚洲 国产 日韩一| 精品亚洲乱码少妇综合久久| 捣出白浆h1v1| av在线观看视频网站免费| 多毛熟女@视频| 热99国产精品久久久久久7| 黑人巨大精品欧美一区二区蜜桃| 亚洲久久久国产精品| 欧美亚洲 丝袜 人妻 在线| 日韩av免费高清视频| 日韩免费高清中文字幕av| 天天躁夜夜躁狠狠躁躁| 欧美日本中文国产一区发布| 国产精品一国产av| 国产精品亚洲av一区麻豆 | 国产无遮挡羞羞视频在线观看| 妹子高潮喷水视频| 丝袜在线中文字幕| 韩国精品一区二区三区| 精品99又大又爽又粗少妇毛片| 日韩制服丝袜自拍偷拍| 欧美成人精品欧美一级黄| 丝瓜视频免费看黄片| 久久这里有精品视频免费| 亚洲国产看品久久| 午夜影院在线不卡| 在线观看一区二区三区激情| 亚洲欧美色中文字幕在线| 丁香六月天网| 91成人精品电影| 亚洲国产看品久久| 老汉色av国产亚洲站长工具| 亚洲视频免费观看视频| 免费在线观看完整版高清| 99国产精品免费福利视频| 亚洲精品美女久久av网站| 免费观看在线日韩| 男女下面插进去视频免费观看| 电影成人av| 中文字幕人妻熟女乱码| 少妇的丰满在线观看| 欧美中文综合在线视频| 免费观看无遮挡的男女| 91精品国产国语对白视频| 亚洲四区av| 另类精品久久| 纯流量卡能插随身wifi吗| 久久精品国产鲁丝片午夜精品| 老女人水多毛片| 一级爰片在线观看| 18+在线观看网站| 欧美日韩综合久久久久久| 成人毛片60女人毛片免费| 一区在线观看完整版| 午夜激情久久久久久久| 久久久久人妻精品一区果冻| 好男人视频免费观看在线| 曰老女人黄片| 涩涩av久久男人的天堂| 午夜免费男女啪啪视频观看| 狠狠婷婷综合久久久久久88av| 亚洲激情五月婷婷啪啪| 一区二区三区精品91| 69精品国产乱码久久久| 国产一区亚洲一区在线观看| 黄片播放在线免费| 曰老女人黄片| 国产精品一二三区在线看| 天天躁夜夜躁狠狠躁躁| 久热这里只有精品99| videosex国产| 国产成人精品久久久久久| 2022亚洲国产成人精品| 一本—道久久a久久精品蜜桃钙片| 青青草视频在线视频观看| 午夜福利视频精品| 欧美日韩精品网址| 精品少妇一区二区三区视频日本电影 | 国产一级毛片在线| 尾随美女入室| 亚洲中文av在线| 永久免费av网站大全| 国产一区二区在线观看av| 久久热在线av| 国产精品99久久99久久久不卡 | 少妇 在线观看| 久久国产精品男人的天堂亚洲| 亚洲中文av在线| 精品福利永久在线观看| 国产精品亚洲av一区麻豆 | 国产麻豆69| 777米奇影视久久| 一级毛片电影观看| 精品国产国语对白av| 欧美成人午夜精品| 亚洲国产看品久久| 欧美激情高清一区二区三区 | 男女下面插进去视频免费观看| av福利片在线| 精品少妇久久久久久888优播| 精品少妇一区二区三区视频日本电影 | kizo精华| 看免费成人av毛片| 久久99一区二区三区| 亚洲色图 男人天堂 中文字幕| 中国三级夫妇交换| 黄片播放在线免费| 老司机影院成人| 女的被弄到高潮叫床怎么办| 日韩电影二区| 日韩,欧美,国产一区二区三区| 老鸭窝网址在线观看| 国产欧美日韩综合在线一区二区| 国产激情久久老熟女| 看免费av毛片| 水蜜桃什么品种好| 97在线人人人人妻| 亚洲国产精品999| 天天躁夜夜躁狠狠久久av| xxx大片免费视频| 男男h啪啪无遮挡| 国产乱人偷精品视频| 免费看不卡的av| 久久精品国产亚洲av高清一级| 亚洲av男天堂| 亚洲情色 制服丝袜| 人妻少妇偷人精品九色| 亚洲av在线观看美女高潮| 久久毛片免费看一区二区三区| 国产高清不卡午夜福利| 中文字幕人妻熟女乱码| 色视频在线一区二区三区| 亚洲一区中文字幕在线| 波多野结衣av一区二区av| 欧美日本中文国产一区发布| 亚洲一区二区三区欧美精品| 亚洲欧洲日产国产| 咕卡用的链子| 国产精品久久久久久久久免| 久久毛片免费看一区二区三区| 寂寞人妻少妇视频99o| 亚洲熟女精品中文字幕| 久久久精品94久久精品| 免费av中文字幕在线| 亚洲av福利一区| 久久久精品94久久精品| 9191精品国产免费久久| 久热久热在线精品观看| 精品亚洲成a人片在线观看| 亚洲视频免费观看视频| 一级片免费观看大全| 中文精品一卡2卡3卡4更新| 午夜91福利影院| 老熟女久久久| 性高湖久久久久久久久免费观看| 国产熟女午夜一区二区三区| 日韩成人av中文字幕在线观看| 久久久久久免费高清国产稀缺| 午夜福利一区二区在线看| 制服丝袜香蕉在线| 精品久久久久久电影网| 在线观看美女被高潮喷水网站| 中文乱码字字幕精品一区二区三区| 99热网站在线观看| 国产精品女同一区二区软件| 婷婷色av中文字幕| 人人妻人人澡人人爽人人夜夜| 制服诱惑二区| 国产一区二区 视频在线| 国产无遮挡羞羞视频在线观看| 成人午夜精彩视频在线观看| 丝袜人妻中文字幕| 久久人人爽av亚洲精品天堂| 最近的中文字幕免费完整| 久久久a久久爽久久v久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 青春草国产在线视频| 黄片小视频在线播放| 亚洲精品视频女| 黑人猛操日本美女一级片| 亚洲四区av| 波多野结衣av一区二区av| 亚洲人成77777在线视频| 国产福利在线免费观看视频| 亚洲色图 男人天堂 中文字幕| 久久久久人妻精品一区果冻| 天堂俺去俺来也www色官网| 日本欧美视频一区| 欧美xxⅹ黑人| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲成人手机| 日韩电影二区| 欧美日韩视频精品一区| 亚洲 欧美一区二区三区| 香蕉精品网在线| 日本黄色日本黄色录像| 久久99蜜桃精品久久| 制服人妻中文乱码| 欧美成人午夜精品| 亚洲精华国产精华液的使用体验| 老鸭窝网址在线观看| 熟女少妇亚洲综合色aaa.| 欧美日韩av久久| 久久精品aⅴ一区二区三区四区 | 午夜av观看不卡| 亚洲国产精品一区三区| 国产乱来视频区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲美女黄色视频免费看| 久久影院123| 最近的中文字幕免费完整| 18+在线观看网站| 1024视频免费在线观看| 成人漫画全彩无遮挡| av线在线观看网站| 欧美激情高清一区二区三区 | 婷婷色麻豆天堂久久| 亚洲一级一片aⅴ在线观看| 久久久久网色| 亚洲三级黄色毛片| 精品国产一区二区三区久久久樱花| 国产成人91sexporn| 亚洲一区中文字幕在线| 久久久久久久亚洲中文字幕| 日韩人妻精品一区2区三区| 搡老乐熟女国产| 香蕉精品网在线| 久久国产精品大桥未久av| 国产成人精品婷婷| 97人妻天天添夜夜摸| 亚洲在久久综合| 美女大奶头黄色视频| 国产综合精华液| 男人舔女人的私密视频| 成人免费观看视频高清| 精品久久久久久电影网| 欧美日韩av久久| a级片在线免费高清观看视频| 欧美日韩成人在线一区二区| 91在线精品国自产拍蜜月| 丁香六月天网| 男女边摸边吃奶| av天堂久久9| 国产精品蜜桃在线观看| 性高湖久久久久久久久免费观看| 亚洲综合色惰| 99久久综合免费| 精品99又大又爽又粗少妇毛片| 免费观看av网站的网址| 午夜激情久久久久久久| 超碰97精品在线观看| 最近中文字幕2019免费版| 大片电影免费在线观看免费| 亚洲五月色婷婷综合| 尾随美女入室| 女人精品久久久久毛片| 国产精品国产三级国产专区5o| 欧美人与善性xxx| 亚洲美女黄色视频免费看| 91精品国产国语对白视频| 亚洲第一av免费看| 国产av精品麻豆| 欧美日韩一级在线毛片| 热re99久久国产66热| 激情视频va一区二区三区| 久久精品熟女亚洲av麻豆精品| 男女免费视频国产| 国产欧美日韩综合在线一区二区| 亚洲综合精品二区| 80岁老熟妇乱子伦牲交| 26uuu在线亚洲综合色| 99久久综合免费| 精品视频人人做人人爽| 91aial.com中文字幕在线观看| 国产免费一区二区三区四区乱码| 欧美变态另类bdsm刘玥| 亚洲欧美成人综合另类久久久| 九色亚洲精品在线播放| 精品国产乱码久久久久久男人| 啦啦啦中文免费视频观看日本| 欧美变态另类bdsm刘玥| 成人国语在线视频| 999久久久国产精品视频| 亚洲国产精品一区二区三区在线| 在线 av 中文字幕| 国产日韩欧美视频二区| 国产精品二区激情视频| 亚洲美女视频黄频| 欧美 亚洲 国产 日韩一| 久久亚洲国产成人精品v| 26uuu在线亚洲综合色| 中文字幕精品免费在线观看视频| 亚洲精华国产精华液的使用体验| 视频区图区小说| 五月天丁香电影| 亚洲精品美女久久久久99蜜臀 | 午夜福利影视在线免费观看| 欧美97在线视频| 久久99精品国语久久久| 99九九在线精品视频| 国产午夜精品一二区理论片| 美女主播在线视频| 亚洲四区av| 伦精品一区二区三区| 色婷婷av一区二区三区视频| 国产乱来视频区| 一级片免费观看大全| 亚洲精品久久午夜乱码| 午夜影院在线不卡| 国产精品一国产av| 久久久久精品性色| 捣出白浆h1v1| 日韩av免费高清视频| 国产深夜福利视频在线观看| 亚洲av中文av极速乱| 亚洲精品久久午夜乱码| 精品亚洲成国产av| 一区二区三区精品91| 老司机亚洲免费影院| 女人久久www免费人成看片| 精品一区在线观看国产| 九九爱精品视频在线观看| 电影成人av| 国产精品嫩草影院av在线观看| 亚洲视频免费观看视频| 桃花免费在线播放| 妹子高潮喷水视频| 大话2 男鬼变身卡| 高清不卡的av网站| 久久久精品免费免费高清| 十分钟在线观看高清视频www| 天堂俺去俺来也www色官网| 人体艺术视频欧美日本| 久久热在线av| 欧美97在线视频| 精品一区二区三区四区五区乱码 | 欧美av亚洲av综合av国产av | 美女大奶头黄色视频| 久久精品国产综合久久久| 欧美人与善性xxx| 国产高清国产精品国产三级| 欧美 日韩 精品 国产| 亚洲色图 男人天堂 中文字幕| 亚洲五月色婷婷综合| 中文字幕人妻丝袜制服| 啦啦啦视频在线资源免费观看| 美女午夜性视频免费| 五月伊人婷婷丁香| 国产成人aa在线观看| 精品国产露脸久久av麻豆| 久久国产亚洲av麻豆专区| 亚洲精华国产精华液的使用体验| 亚洲av.av天堂| 国产成人欧美| 久久久亚洲精品成人影院| 欧美日韩国产mv在线观看视频| 久久久久国产网址| 男女高潮啪啪啪动态图| 国产野战对白在线观看| 婷婷色综合大香蕉| 久久久久国产精品人妻一区二区| 免费观看av网站的网址| 国产精品久久久久久av不卡| 国产伦理片在线播放av一区| 亚洲av电影在线观看一区二区三区| 国产亚洲精品第一综合不卡| 少妇被粗大猛烈的视频| 亚洲欧美日韩另类电影网站| 成年美女黄网站色视频大全免费| 91精品国产国语对白视频| 久久av网站| 免费av中文字幕在线| 美女午夜性视频免费| av片东京热男人的天堂| 精品少妇一区二区三区视频日本电影 | 日韩中文字幕视频在线看片| 999久久久国产精品视频| 大香蕉久久成人网| 亚洲国产色片| 国产熟女欧美一区二区| 热re99久久国产66热| 精品人妻熟女毛片av久久网站| 制服人妻中文乱码| 国产精品香港三级国产av潘金莲 | 99久久人妻综合| 哪个播放器可以免费观看大片| 一级a爱视频在线免费观看| 久久99一区二区三区| 亚洲国产最新在线播放| 免费大片黄手机在线观看| 亚洲av电影在线观看一区二区三区| 男人添女人高潮全过程视频| 大码成人一级视频| 九九爱精品视频在线观看| 国产一区二区三区av在线| 最近的中文字幕免费完整| 久久人妻熟女aⅴ| 99九九在线精品视频| 岛国毛片在线播放| 国产精品一区二区在线不卡| 天天躁狠狠躁夜夜躁狠狠躁| 精品一区二区三区四区五区乱码 | 久久亚洲国产成人精品v| 黑人猛操日本美女一级片| 80岁老熟妇乱子伦牲交| 国产精品秋霞免费鲁丝片| 欧美日韩亚洲高清精品| 亚洲精品,欧美精品| 水蜜桃什么品种好| 亚洲一区二区三区欧美精品| 国产精品久久久久久精品电影小说| 免费观看av网站的网址| 国产精品熟女久久久久浪| 成人亚洲欧美一区二区av| 亚洲成人手机| 欧美激情高清一区二区三区 | 亚洲情色 制服丝袜| 不卡视频在线观看欧美| 亚洲,一卡二卡三卡| 成人亚洲精品一区在线观看| 午夜老司机福利剧场| 你懂的网址亚洲精品在线观看| 不卡av一区二区三区| 国产精品.久久久| 男男h啪啪无遮挡| 叶爱在线成人免费视频播放| 亚洲国产最新在线播放| 永久网站在线| 人妻系列 视频| 国产免费福利视频在线观看| 中文字幕精品免费在线观看视频| 永久免费av网站大全| 欧美成人午夜精品| 欧美精品一区二区免费开放| 国产无遮挡羞羞视频在线观看| 国产黄频视频在线观看| 国产成人欧美| 最新中文字幕久久久久| 久久精品国产鲁丝片午夜精品| 色婷婷av一区二区三区视频| av在线app专区| 免费不卡的大黄色大毛片视频在线观看| 丁香六月天网| 十分钟在线观看高清视频www| 女人高潮潮喷娇喘18禁视频| 亚洲一级一片aⅴ在线观看| av在线app专区| 午夜激情久久久久久久| 考比视频在线观看| 色视频在线一区二区三区| 国产精品.久久久| 婷婷色综合www| 精品人妻偷拍中文字幕|