• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    新型光學活性含氰基三聯(lián)苯液晶聚噻吩合成與分子構(gòu)象

    2010-12-11 09:13:14陳義旺周魏華聶華榮
    物理化學學報 2010年4期
    關鍵詞:主鏈光致發(fā)光構(gòu)象

    諶 烈 陳義旺 姚 凱 周魏華 李 璠 聶華榮

    (南昌大學化學系,高分子研究所,南昌 330031)

    新型光學活性含氰基三聯(lián)苯液晶聚噻吩合成與分子構(gòu)象

    諶 烈 陳義旺*姚 凱 周魏華 李 璠 聶華榮

    (南昌大學化學系,高分子研究所,南昌 330031)

    合成了一種含有長柔性間隔基和氰基三聯(lián)苯液晶基元的發(fā)光性聚噻吩衍生物{—[thiopheneyl—CH2—COO—(CH2)6—O—terphenyl—CN]n—,PT(6)TPhCN}.利用傅里葉變換紅外(FT-IR)光譜、核磁共振(1H NMR)、差示掃描量熱(DSC)儀、偏光顯微鏡(POM)、紫外-可見(UV-Vis)吸收光譜和熒光(PL)光譜對單體和聚合物的結(jié)構(gòu)及性質(zhì)進行了表征.單體都呈現(xiàn)出良好的液晶性能,由于長間隔基的存在,聚合物PT(6)TPhCN也呈現(xiàn)出良好SmAd相.氰基三聯(lián)苯的存在還賦予了聚合物良好的光致發(fā)光性能,同時,長間隔基也有效地降低了分子間的相互作用,進一步增強了聚合物的發(fā)光性能.另外,研究發(fā)現(xiàn),在未引入任何手性元素的情況下,聚合物主鏈在圓二色(CD)光譜中還呈現(xiàn)出明顯的Cotton效應,這可能是由于大體積液晶基元的位阻效應和取向作用,液晶基元環(huán)繞主鏈進行取向的同時誘導聚噻吩主鏈在長程范圍內(nèi)呈螺旋取向.

    光致發(fā)光;液晶共軛聚合物;三聯(lián)苯;聚噻吩;螺旋構(gòu)象

    Combining liquid crystallinity(LC)and luminescence into the polymer,liquid crystalline conjugated polymers(LCCP)are currently drawing interest from the viewpoint of multifunctional electrical and optical materials[1-4].Attracted by the application perspective,recently,a variety of LCCP based on different conjugated main chains have been prepared,which can be endowed with such functional properties as mesomorphism,luminescence,photoconductivity,gas permeability,chain helicity[5-20]. Especially,a polymer with the two electrooptical features(both liquid crystalline and light emitting)is of practical value,which may offer very high carrier mobility and emit polarized light and may find unique applications and stimulate technological innovations in the development of novel electronic and photonic devices[21].Tang et al.[22-23]synthesized a series of polyacetylenes bearing light emitting chromophore with different functional bridges and spacer length,and they found that the light emitting chromo-phore endowed the polymer with high luminescence and the spacer length played an important role in the packing arrangement of the mesogens.

    Polythiophene and its processable derivatives occupy an important position in the study of conjugated polymers.The polythiophenes have many attractive characteristics such as good electrical properties and stability,for application in polymer electroluminescence devices[24].Polythiophene derivatives with LC side chains are one of the most intriguing types of polymer because their useful electrical and optical properties are expected to be controllable via the molecular orientation of LC side chain. Also,it is expected that the orientation of the LC side chain may enhance the main-chain coplanarity due to the spontaneous orientation of the LC group of the side chains.The main-chain orientation can be further improved and therefore results in improved electrical properties.A variety of polythiophenes containing liquid crystalline mesogens and light-emitting chromophores have been prepared[25-34].

    The terphenyl core has a calamitic structure that is compatible with mesomorphic ordering and is well known to give liquid crystals that have high birefringence[35-36].In our pervious studies, we have synthesized a type of polyacetylene and poly(p-phenylene)containing cyanoterphenyl mesogen and found that the cyanoterphenyl mesogen pendants endowed the polymer with good mesomorphism and high luminescence,besides,the energy could be transferred from mesogen to main chain to favor the fluorescence efficiency[37-40].Since polythiophenes have so many attractive characteristics for application,we also synthesized polythiophene PT(0)TPhCN containing cyanoterphenyl mesogen as pendant—[thiophene—CH2—COO—terphenyl—CN]n—(shown in Scheme 1)[41].However,the short spacer between the mesogenic pendant and the polythiophene backbone results in the loss of liquid crystallinity.Thus,in this work,we designed a novel polythiophene bearing cyanoterphenyl mesogen with long flexible spacer length—[thiophene—CH2—COO—(CH2)6—O—terphenyl—CN]n—,and hope that the long relatively flexible spacer could allow the mesogens to undergo thermal transitions in an independent fashion and to maintain its mesomorphism. This article presents the influence of the structure of polythiophene on its properties.A comparison has also been made between the polymers with short spacer and the one with long spacer.Besides,due to the stereoeffect,the bulkly mesogens the backbone probably aligns around the polythiophene back-bone and induces the backbone with helical conformation in the long region.Therefore,the secondary structures of polymers have also been investigated.

    1 Experimental

    1.1 Materials

    Trimethyl borate(99%),n-butyllithium(2.87 mol·L-1in hexane),thiophene-3-acetic acid(98%),6-bromo-1-hexanol(98%), trimethyl borate,4-(4-bromophenyl)phenol(97%),4-bromobenzonitrile(95%),1,3-dicyclohexylcarbodiimine(DCC)(95%),and 4-(dimethylamino)pyridine(DMAP)(99%)and tetrakis(triphenylphosphine)palladiumwerepurchasedfromAlfaAesarandused as received without any further purification.Tetrahy-drofuran (THF)was dried over sodium.Other chemicals were obtained from Shanghai Reagent Co.,Ltd.,and used as received.

    1.2 Techniques

    The nuclear magnetic resonance(NMR)spectra were collected on a Bruker ARX 400 NMR spectrometer with deuterated chloroform or THF or dimethyl sulfoxide(DMSO)as the solvent and with tetramethylsilane(δ=0)as the internal standard.The infrared (IR)spectra were recorded on a Shimadzu IRPrestige-21 Fourier transform infrared(FT-IR)spectrophotometer by drop-casting sample solution on KBr substrates.The ultraviolet-visible(UVVis)spectra of the samples were recorded on a Hitachi UV-2300 spectrophotometer.Fluorescence measurement for photoluminescence(PL)of the polymers was carried out on a Shimadzu RF-5301 PC spectrofluorophotometer with a xenon lamp as the light source.Thegelpermeationchromatography(GPC),so-calledsizeexclusion chromatography(SEC)analysis,was conducted with a Breeze Waters system equipped with a Rheodyne injector,a 1515 Isocratic pump and a Waters 2414 differential re-fractometer using polystyrenes as the standard and THF as the eluent at a flow rate of 1.0 mL·min-1and 40℃through a Styragel column set,StyragelHT3andHT4(19mm×300mm,102-103nm)toseparate molecular weight(Mw)ranging from 102to 106.Thermogravimetricanalysis(TGA)wasperformedonaPerkinElmer TGA 7 for thermogravimetry at a heating rate of 20℃·min-1under nitrogen with a sample mass of 8-10 mg.Differential scanning calorimetry(DSC)was used to determine phase-transition temperatures on a Perkin-Elmer DSC 7 differential scanning calorimeter with a constant heating/cooling rate of 10℃·min-1.Tex-ture observations by polarizing optical microscopy(POM)were made with a Nikon E600POL polarizing optical microscope equipped with an Instec HS 400 heating and cooling stage.The X-ray diffraction(XRD)study of the samples was carried out on a Bruker D8 Focus X-ray diffractometer operating at 30 kV and 20 mA with a copper target(λ=0.154 nm)and at a scanning rate of 1(°)·min-1.Circular dichroism(CD)spectrum was recorded on a JASCO J-810 spectropolarimeter.

    1.3 Synthesis of the monomer

    The synthesis and structures of the monomers are outlined in Scheme 1.All the reactions and manipulations were carried out under nitrogen atmosphere. 1.3.1 2,5-Dibromothiophene-3-acetic acid(1)

    Scheme 1 Illustration of procedures for synthesis of the monomers and their polymerization

    Thiophene-3-acetic acid(10 g,70.3 mmol)was very slowly added to a solution of N-bromosuccinimide,NBS(30.2 g,172 mmol),in 50 mL of DMF by a dropping funnel.After the addition,10 mL of DMF was further added to the reaction mixture and refluxed at 50℃for 20 h under argon atmosphere.The reaction vessel was wrapped by aluminum foil to shield the reaction from light.When the reaction finished,the reaction mixture was allowed to warm to room temperature.The solution was poured into a large amount of saturated sodium sulfate cooled by ice water.The yellow precipitate was filtered off and recrystallized from an ethanol/water mixture to yield product as white needlelike crystal.Yield:63.0%.IR(cm-1):3101,2918, 1707,1415,1327,1232,1016,829,735,632,469.1H NMR (CDCl3,from TMS):δ 3.63(s,2H,CH2),6.95(s,1ArH,BrCCHC).

    1.3.2 4-Cyanobenzeneboronic Acid(2)

    A solution of n-butyllithium(30 mL,2.87 mol·L-1in hexane, 0.086 mol)was added dropwise to a stirred,cooled(-110℃) solution of 4-bromobenzonitrile(15 g,0.082 mol)in dry THF (180 mL)under dry nitrogen.The solution was stirred at-100℃for 1 h and a solution of trimethyl borate 20.8 mL in dry THF (60 mL)was added at-100℃.The solution was allowed to warm to room temperature overnight.About 10%hydrochloric acid was added and the solution was stirred for 1 h at room temperature.The product was extracted into ether and the organic layer was washed with water and dried with MgSO4.The solvent was removed in vacuo and the crude product dissolved in THF and precipitated with n-hexane to give a yellow solid with yield of 70%.

    1.3.3 4-Hydroxy-4′-cyanoterphenyl(3)

    Under dry nitrogen atmosphere a solution of 2.00 g of 4-cyanobenzeneboronic acid(13.6 mmol)in 10 mL of ethanol was added to a solution of 2.75 g of 4-(4-bromophenyl)phenol(97%, 11.02 mmol)and 0.42 g of tetrakis(triphenylphosphine)palladium(0)(99%,0.36 mmol)in 20 mL of benzene and 20 mL of aqueous Na2CO3(2 mol·L-1).The reaction was conducted under reflux overnight.The reaction mixture was then shaken with ethyl acetate and the insoluble parts were filtered off.The organic layer was dried with anhydrous MgSO4,and the solvent was removed by evaporation in vacuo.The crude product was recrystallized from acetone to provide a yellow powder,65%yield.IR (KBr,cm-1):2215(C≡N),3351(—OH).1H NMR(CDCl3):δ 7.73-7.65(m,8H,aromatic),7.53(d,2H,aromatic),6.93(d, aromatic,2H ortho to hydroxyl),4.91(s,1H,—OH).

    1.3.4 4-(6-Hydroxyhexyloxy)-4′-cyanoterphenyl(4)

    Mixing 20 mmol of(3),24 mmol of 6-bromo-1-hexanol,40 mmol of K2CO3and 4.01 mmol of KI in 200 mL of DMF,the reaction mixture was refluxed at 80℃for 24 h.And then cooled and the solvent was removed by evaporation in vacuo.The residue was recrystallized from absolute ethanol to give a light yellowsolidin73%yield.IR(KBr,cm-1):3416,3033,2935,2852, 2228,1600,1491,1258,1047,812.1H NMR(THF-d):δ 7.64-7.77(m,8H,aromatic),7.58-7.62(d,2H,aromatic),6.87-6.89(d, aromatic,2H),4.55(t,1H,—OH),3.89-3.92(t,2H,—CH2OAr—), 3.36-3.39(t,2H,—CH2OOC),1.33-1.72(m,8H,—(CH2)4).

    1.3.5 2,5-Dibromo-3-{[(6-(4-(4′-cyano)terphenyloxy)hexyloxy)carbonyl] methyl}-thiophene(T(6)TPhCN)

    2,5-Dibromothiophene-3-acetic acid(3.43 g,12 mmol)was added to a mixture of(4)(3.71 g,10 mmol),4-(dimethylamino)pyridine,DMAP 1.47 g(12 mmol),and 1,3-dicyclohexylcarbodiimide,DCC (2.46 g,12 mmol),in 200 mL of absolute THF and further stirred for 24 h at room temperature under argon atmosphere.Then the solution was filtered to remove the urea crystals,and the solvent was removed by evaporation.The crude productwaspurifiedbycolumnchromatography(n-hexane/CHCl3volume ratio of 1/4)to afford T(6)TPhCN as white powder.Yield is75%.IR(KBr,cm-1):2948,2862,2228,1731,1592,1483,1007, 810,641.1H NMR(CDCl3):δ 7.74-7.63(m,aromatic,8H),7.58, 7.56(d,aromatic,2H),7.05,7.00(d,aromatic,2H ortho to—O—), 6.98(s,aromatic,1H,BrCCHC),4.15-4.12(t,2H,—CH2—O—Ar),4.03-4.00(t,2H,—CH2—OOC—),3.57(s,2H,—CH2—COO—),1.84-1.42(m,8H,—CH2(CH2)4CH2—).

    1.4 Polymerization

    The polymerization reaction and manipulations were carried out under nitrogen using Schlenk techniques in a vacuum line system or in an inert-atmosphere glovebox(vacuum atmospheres),except for the purification of the polymer,which was done in an open atmosphere.

    A 50 mL three-neck round bottom flask equipped with condenser,rubber septum,nitrogen inlet-outlet and magnetic stirrer was charged under nitrogen with 0.655 g(1.0 mmol)T(6)TPhCN, 0.08 g(0.0304 mmol)PPh3,2.024 g(30.96 mmol)Zn,0.0076 g (0.05 mmol)bpy,0.0064 g(0.05 mmol)NiCl2and 5 mL of dry dimethyl acetamide(DMAC).The reaction was performed at 85℃under nitrogen.The mixture was stirred for 24 h.Then,the polymer was precipitated in excess methanol/HCl mixture,filtered and dried.The polymer was then redissolved in THF and precipitated in methanol.A red-brown solid was obtained.

    PT(6)TPhCN,red-brown solid:IR(KBr,cm-1):2932,2856, 2215,1731,1599,1487,1245,1103,803.1H NMR(DMSO-d6):δ 7.74-7.48(m,10H,aromatic),7.02-6.96(m,aromatic,2H ortho to—O—and 1 H,BrCCHC),4.05(m,2H,—CH2—O—Ar),3.96 (m,2H,—CH2—OOC—),3.50(s,2H,—CH2—COO—),1.69-1.37(m,8H,—CH2(CH2)4CH2—).Weight-average molecular weight(Mw)is 20100;Number-average molecular weight(Mn)is 11500;and Mw/Mn=1.75.

    2 Results and discussion

    2.1 Synthesis of monomer and polymer

    3-Position substituted thiophene is prepared by Suzuki reaction,etherification and esterification,in sequence.The synthetic route of the monomer is shown in Scheme 1.The terphenyl mesogen is obtained via Suzuki reaction.The monomer is synthesized through esterification reaction route in the presence of 1,3-dicyclohexylcarbodimine(DCC)and 4-(dimethylamino)pyridine(DMAP).The reaction goes smoothly,and the product is isolated in high yield near 70%after purifications by silica gel chromatography followed by recrystallization.All the intermediates and final products are thoroughly purified and fully characterized,and satisfactory analysis data are obtained(detailed spectroscopic data for the key intermediates and for all the compounds being given in the Experimental Section).

    The polymerization of 2,5-dibrominated thiophene monomer was carried out via dehalogenative polycondensation,giving poly-(3-position substituted thiophene)derivative,PT(6)TPhCN. The polymer synthesized was fusible and soluble in common organic solvents including tetrahydrofuran(THF),DMAC,DMSO and DMF,etc.Number-average(Mn)and weight-average(Mw) molecular weights of the polymer are summarized in the Experimental Section.The chemical structure of the polymer is confirmed by FT-IR and1H NMR.

    2.2 Structural characterization

    Substituted thiophene and its corresponding polymer are characterized by spectroscopic methods and all the products give satisfactory data corresponding to their expected molecular structures.A typical example of the IR spectra of PT(6)TPhCN is shown in Fig.1.The spectrum of its monomer T(6)TPhCN is also shown in the same figure for comparison.The C=O and C≡N absorption bands of the monomer and polymer are observed at about 1731 and 2228 cm-1,respectively.The strong C—H stretch absorption is located at 3000 cm-1.When the monomer is polymerized by dehalogenative polycondensation, the C—Br bending vibration absorption band(about 500 cm-1) disappears in the spectra of its polymer,which means that the monomer has been polymerized successfully.Fig.2 shows the1H NMR spectrum of the isolated polymer in comparison with that of monomer,which sufficiently supports the structures of the products by the assignments of the signals as described in the experimentalsection.Monomer T(6)TPhCN and its polymer have the similar resonance peaks in their1H NMR spectra.The aromatic H resonance peaks appear in the low magnetic region(δ 7.0-8.0),whereas the aliphatic H resonance peaks in the high magnetic region(δ 1.8-1.3),except the peaks of the near-neighboring aliphatic H to the—O—or—CO—shifted to the middle region(δ 4.0-3.5).All the resonance peaks of the polymer show much broader than that of its monomer,which further confirms the perfect conversion from monomer to polymer.Except the peaks of solvent and water remained in the spectra,no unexpected signals are observed in the spectra of the monomer and polymer,and all the resonance peaks can be assigned to appropriate protons as marked in Fig.2.

    Fig.1 FT-IR spectra of the monomer T(6)TPhCN and polymer PT(6)TPhCN

    2.3 Thermal stability

    Since the formation of mesophases of thermotropic liquid crystals are realized by the application of heat,the thermal stability of the polymer is thus of primary concern.The polymer PT(6)TPhCN exhibited excellent thermal stability.As shown in Fig.3,the polymer PT(6)TPhCN decomposed at a temperature as high as ca 350℃in the thermogravimetric analysis.The thermal stability originates from the“jacket”effect of the terphenyl mesogenic appendages well wrapping the conjugated backbones and protecting the conjugated backbone from the perturbations by heat attack[22].

    2.4 Mesomorphic properties

    Fig.2 1H NMR spectra of the monomer and polymer

    The thermal transition behaviors of the monomer and polymer are examined by differential scanning calorimetry(DSC)and polarized optical microscopy(POM).The polarized optical microscopy textures of the monomer and polymer are displayed in Fig.4.ThemonomerT(6)TPhCN exhibitsopticalanisotropywhen observed by POM,suggesting that the terphenyl mesogens en-dow the compound with thermotropic liquid-crystalline behavior.When the monomer is cooled from its isotropic state,many batonnets emerge from the dark background and grow to bigger domains,leading to the formation of the focal conic texture characteristic of the smectic phase.The birefringent texture also can be observed by reheating the solid states.In our previous study,the polymer PT(0)TPhCN with short aster spacer could not exhibit any optical anisotropy when heated or cooled,indicating that the polymer is completely nonmesomorphic.Because the mesogenic pendant is closely“coupled”with the rigid back-bone, it destroys the packing arrangements of the mesogens and demolishes the stability of the mesophases[37,42].Cheerfully,different from PT(0)TPhCN,with the favoring of flexible long spacer,the PT(6)TPhCN shows bright colorful texture when heating and cooling,and with the aid of XRD analysis the texture is identified with SmAd,indicating that the PT(6)TPhCN is indeed enantiotropic liquid crystalline.This suggests that the polythiophene backbones and the terphenyl mesogens are well“decoupled”and the flexibility of the long spacer allows the mesogen to move together to pack in a regular fashion.

    Fig.3 TGA thermogram of polymer under nitrogen at a heating rate of 20℃·min-1

    To learn more about the thermal transitions of the monomer and polymer,we measured their thermograms under nitrogen on a differential scanning calorimeter(shown in Fig.5).The DSC thermogram of T(6)TPhCN shows two transition peaks at 96.5 and 104.8℃ in the second heating cycle,associated with k-SmAdand SmAd-i transitions,respectively.Their corresponding SmAd-k and i-SmAdtransitions do not exhibited in the first cooling scan,probably due to the fast cooling rate,but,the focal conic texture is obvious under POM,indicating an enantiotropic smecticity.Different from the DSC curve of PT(0)TPhCN which does not show any peaks associated with the liquid phase transition,polymer PT(6)TPhCN with longer flexible spacer length ap-pears two transitions at 209.0 and 289.6℃in the second heating curve,indicating that the longer spacer offers more freedom for the polymer segments and the mesogenic pendants to act separately.But compared to T(6)TPhCN,the temperatures of the two transitions of PT(6)TPhCN are much higher than that of its corresponding monomer.Apparently,the mesogenic pendants are not completely“decoupled”from the polymer main chains,and the“polym er effect”is functioning.The macromolecular chains string the mesogenic pendants together in a comblike fashion, making the mesogens easy to order but difficult to randomize,as argued by other scientists[13].

    Fig.4 Smectic phase textures observed by POM at 102℃for T(6)TPhCN(A)and at 232℃for PT(6)TPhCN(B)under cooling from melt statecooling rate:1℃·min-1

    Fig.5 DSC thermograms of the monomer and polymer recorded under nitrogen during(a)the second heating scans and (b)the first cooling scansscan rate:10℃·min-1

    XRD analysis can provide useful information concerning molecular arrangement,mode of packing,and type of order in a mesophase of a polymeric liquid crystal.WAXD patterns of the polymer and monomer were obtained at room temperature after the samples had been quenched from liquid-crystalline states with liquid nitrogen.The diffractogram of a powder sample can be generally divided into the low-angle Bragg reflections corresponding to the layer spacing of molecular orientational order and the high-angle peaks associated with the liquidlike intermesogenic organization within the layers.The appearance of a broad or sharp peak serves as a qualitative indication of the degree of order[43].T(6)TPhCN shows an typical smectic phase XRD patter consisting of one low-angle peak(2θ=2.28°)and one highangle peak(2θ=21.01°)(Fig.6).The d-spacing derived from the low-angle peak is 3.850 nm,which is excess of the calculated molecular length(l)of T(6)TPhCN in its most extended conformation(l=2.801 nm),but less than the double of molecular length, thus,the T(6)TPhCN shows the nature of SmAdphase with bilayer arrangement,where the mesogens are interdigitated in an antiparallel fashion.The diffractogram of PT(6)TPhCN quenched from 269℃exhibits a broad peak at 2θ=19.99°,from which a dspacing of 0.448 nm is derived from Bragg′s law,occurring in the lateral packing arrangement of the mesogenic pendants.The layer spacing(d)derived from the Bragg reflection at 2θ=2.04° (d=4.271 nm)is longer than the molecular length(l=2.756 nm) of one repeat unit of PT(6)TPhCN at its most extended conformation.Because the d/l ratio is ca 1.5,the bilayer structure is thus an SmAdtype as schematically shown in Fig.7,in which the mesogens arrange in an antiparallel overlapping interdigitated manner.In the mid-angle region,the diffractogram of the polymer PT(6)TPhCN shows a weak reflection at 2θ=5.52°,from which a d-spacing of 1.597 nm.The calculated length for the interdigitated(cyanoterphenylyl)oxy groups in the proposed bilayer structure of PT(6)TPhCN is 1.516 nm.The reflection peak at 2θ=5.52°thus may be related to the regions,in which the rigids (cyanoterphenylyl)oxy are interdigitated and well packed.The results are as well as identified with the POM and DSC.

    Fig.6 XRD patterns of the monomer and polymer quenched from their liquid crystalline states

    Fig.7 Proposed bilayer packing arrangement of PT(6)TPhCN within the SmAdlayer with the smectogens interdigitating in antiparallel fashion

    2.5 Electronic absorption and photoluminescence

    The electronic absorption spectra and photoluminescence of CH2Cl2solutions of the polymer PT(6)TPhCN and monomer T(6)TPhCN are given in Fig.8 and Fig.9,respectively.In order to make a comparison between the two polymers,the spectra of the polymer PT(0)TPhCN and its monomer T(0)TPhCN have also been given.Due to the cyanoterphenyl chromophore,the monomers and polymers have the similar absorption wavelengths at about 300 nm,which are assignable to the π-π*bands of the cyanoterphenyl mesogenic pendants.The absorptions of the polymers are stronger than that of its corresponding monomers and the absorption in the long-wavelength visible spectral region is thus obviously from the polythiophene backbone.The low absorptivity of the polymer PT(0)TPhCN main chain may have been due to the reduction of the effective conjugation lengths along the polymer backbone caused by steric effect.The intensity of PT(6)TPhCN in the long-wavelength region is much stronger than that of PT(0)TPhCN,which is in agreement with our previousobservations[37,39]that the longer spacer reduces steric crowding and allows backbone to be more coplanar than the short spacer,thus resulting in the observed hyperchromic effect.

    Since polythiophenes derivatives bear chromophoric pendant groups,it is of interest to check the effects of the structural variables on luminescence behaviors of polymers.Upon photoexcitation at 300 nm,the two strong light emitting bands at 380 and 425 nm observed for the solution of PT(0)TPhCN are assigned to the emitting center of the cyanoterphenyl mesogenic core and thatoftheconjugated polythiophene main chain(shown in Fig.9), which suggests that the emitting center is both the cyanoterphenyl mesogenic pendant and the backbone.The light emitting bands of the mesogens and backbones also emerge in the PL spectrum of the PT(6)TPhCN.As can be seen from the spectra shown in Fig.8 and Fig.9,the thiophene backbone absorbs in a spectral region where its cyanoterphenyl pendant emits.Therefore,the excitation pumps its cyanoterphenyl pendant to the excited state,the UV light emitted from the pendant is reabsorbed by the backbone,suggesting that energy transfer from the cyanoterphenyl pendants to the backbone favors the stronger lightemitting of backbone.The absorption of the PT(6)TPhCN with the longer spacer inserted between the backbone and mesogenic pendant is about 30 nm red-shifted than that of PT(0)TPhCN, even extending to near 600 nm.The result is in agreement with the Tang′s observation[17]that the longer flexible spacers have better keep the conjugated backbone apart and further enhance stronger photolumincescence.

    Fig.8 UV-Vis spectra of the monomers and polymers in CH2Cl2solutions

    Fig.9 Photoluminescence spectra of polymers in CH2Cl2 solutionsc=0.125 mmol·L-1;excitation wavelength:300 nm

    2.6 Secondary structure of the polymers

    Synthetic helical polymers with π-conjugation along the main chains is under hot pursuits in recent years due to the challenge they offer in polymer chemistry as well as their wide practical and potential applications,such as optical polarizing films,chiral stationary phases,asymmetric electrodes,nisotropic molecular wires,fluorescent chemosensors[44].Generally,helical conjugated polymers are obtained by the introduction of chiral substituents,polymerization using a chiral catalystic system,or preparation in a chiral liquid crystalline solvent,a new method reported by Goto[45].

    Fig.10 CD spectra of the polymers measured in THF c=0.25 mmol·L-1

    As we mentioned above,the heavy bulkly mesogenic pendants of PT(0)TPhCN are closely“coupled”with the rigid backbone and even those of PT(6)TPhCN with longer spacers are not completely“decoupled”,that is,to avoid steric crowding,the heavy bulkly mesogens probably rotate around the main chain to induce the main chain with helical tendency.It is interest of check how the heavy bulk mesogen exert its influence on the backbone,thus,the CD spectrum is measured to prove our assumption.TheCDspectraofPT(0)TPhCNandPT(6)TPhCN measured in THF is shown in Fig.10.Although there have no any chiral groups/center in the structures of the polymers,PT(0)TPhCN shows several negative CD bands at 284,293,and 313 nm,while PT(6)TPhCN exhibits several positive Cotton effect at 278,289, 300,and 317 nm,which unambiguously confirms that these polymers adopt a helical conformation with a preferred screw sense.Due to no chiral groups existing in the polymers,thus the helical conformation must originate from the backbone.Therefore,introducing the heavy bulky as the pendant linked to the backbone will be a novel charming method to obtain helical polymers.

    3 Conclusions

    In this work,we designed and synthesized a novel polythiophene,and introduced the chromophoric cyanoterphenyl mesogenic pendant onto the polythiophene main chain with long flexible spacer length.The effects of the structural variations on the chemical and physical properties of the monomer and polymer were investigated.Owning to the protective jacket effect contributed by cyanoterphenyl mesogenic pendant,the polymer is thermally very stable.The long flexible spacer length is in favor of the mesomorphic properties,the UV absorption,and photoluminescence of the polymers.

    A significant and interesting finding also can be observed in this type of polymers:in order to reduce the repellent from steric crowding,the cyanoterphenyl mesogen pendant orientating around the skeleton can force the main chain to be helical conformation in the long region.Thus,without using any chiral element,we can obtain helical polymers easily only by introducing the heavy bulky as the pendant linked to the backbone.Understanding the relationship between the structure and properties may widen and deepen our knowledge on how to design the molecular structure and may provide us with a newly way to obtain polymers with the helical conformation.

    1 Kuroda,H.;Goto,H.;Akagi,K.;Kawaguchi,A.Macromolecules, 2002,35:1307

    2 Burroughes,J.H.;Bradley,D.D.C.;Brown,A.R.;Marks,R.N.; Mackay,K.;Friend,R.H.;Burns,P.L.;Holmes,A.B.Nature, 1990,347:539

    3 Bowman,D.;Mattes,B.R.Synth.Met.,2005,154:29

    4 Lee,K.;Cho,S.;Park,S.H.;Heeger,A.J.;Lee,C.W.;Lee,S.H. Nature,2006,441:65

    5 Yuan,W.Z.;Sun,J.Z.;Dong,Y.;Haeussler,M.;Yang,F.;Xu,H. P.;Qin,A.;Lam,J.W.Y.;Zheng,Q.;Tang,B.Z.Macromolecules, 2006,39:8011

    6 Akagi,K.;Guo,S.;Mori,T.;Goh,M.;Piao,G.;Kyotani,M.J.Am. Chem.Soc.,2005,127:14647

    7 Xing,C.;Lam,J.W.Y.;Zhao,K.;Tang,B.Z.J.Polym.Sci.APolym.Chem.,2008,46:2960

    8 Zhou,J.L.;Chen,X.F.;Fan,X.H.;Chai,C.P.;Lu,C.X.;Zhao, X.D.;Pan,Q.W.;Tang,H.Y.;Gao,L.C.;Zhou,Q.F.J.Polym. Sci.A-Polym.Chem.,2006,44:4532

    9 Sanda,F.;Araki,H.;Masuda,T.Macromolecules,2004,37:8510

    10 Lai,L.M.;Lam,J.W.Y.;Qin,A.;Dong,Y.;Tang,B.Z.J.Phys. Chem.B,2006,110:11128

    11 Li,B.S.;Kang,S.Z.;Cheuk,K.K.L.;Wan,L.;Ling,L.;Bai,C.; Tang,B.Z.Langmuir,2004,20:7598

    12 Yuan,W.Z.;Mao,Y.;Zhao,H.;Sun,J.Z.;Xu,H.P.;Jin,J.K.; Zheng,Q.;Tang,B.Z.Macromolecules,2008,41:701

    13 Yuan,W.Z.;Qin,A.;Lam,J.W.Y.;Sun,J.Z.;Dong,Y.; Haeussler,M.;Liu,J.;Xu,H.P.;Zheng,Q.;Tang,B.Z. Macromolecules,2007,40:3159

    14 Percec V.;Asandei,A.D.;Hill,D.H.;Crawford,D. Macromolecules,1999,32:2597

    15 Soto,J.P.;Diaz,F.R.;Valle,M.A.;Nunez,C.M.;Bernede,J.C. Euro.Polym.J.,2006,42:935

    16 Zhao,X.;Hu,X.;Zheng,P.J.;Gan,L.H.;Lee,C.K.P.Thin Solid Films,2005,477:88

    17 Lam,J.W.Y.;Dong,Y.;Kwok,H.S.;Tang,B.Z. Macromolecules,2006,39:6997

    18 Suda,K.;Akagi,K.J.Polym.Sci.A-Polym.Chem.,2008,46:

    3591

    19 Goto,H.;Dai,X.;Narihiro,H.;Akagi,K.Macromolecules,2004, 37:2353

    20 Goto,H.;Dai,X.;Ueoka,T.;Akagi,K.Macromolecules,2004, 37:4783

    21 O′Neill,M.;Kelly,S.M.Adv.Mater.,2003,15:1135

    22 Lam,J.W.Y.;Dong,Y.;Cheuk,K.K.L.;Luo,J.;Xie,Z.;Kwok, H.S.;Mo,Z.;Tang,B.Z.Macromolecules,2002,35:1229

    23 Dong,Y.;Lam,J.W.Y.;Han.P.;Cheuk,K.K.L.;Kwok,H.S.; Tang,B.Z.Macromolecules,2004,37:6408

    24 Ravichandar,R.;Thelakkat,M.;Somanathan,N.J.Fluoresc., 2008,18:891

    25 Kijima,M.Akagi,K.;Shirakawa,H.Synth.Met.,1997,84:313

    26 Sohn,H.S.;Yoon,Y.S.;Lee,J.C.Synthsis and characterization of novel polythiophene derivatives:the effect of side chain hydrophilicity on the mesomorphic behaviors of the polythiophene. Abstracts of Papers 236th ACS National Meeting,Philadelphia, PA,United States,August 17-21,2008:468

    27 Dai,X.M.;Narihiro,H.;Goto,H.;Akagi,K.;Yokoyama,H.Synth. Met.,2001,119:397

    28 Jin,S.H.;Lee,H.J.;Sun,Y.K.;Kim,H.D.;Koh,K.N.;Gal,Y. S.;Park,D.K.Euro.Polym.J.,1999,35:89

    29 Goto,H.;Akagi,K.;Dai,X.;Narihiro,H.Ferroelectrics,2007, 348:149

    30 Osaka,I.;Shibata,S.;Toyoshima,R.;Akagi,K.;Shirakawa,H. Synth.Met.,1999,102:1437

    31 Dai,X.M.;Goto,H.;Akagi,K.;Shirakawa,H.Synth.Met.,1999, 102:1291

    32 Toyoshima,R.;Narita,M.;Akagi,K.;Shirakawa,H.Synth.Met., 1995,69:289

    33 Hiroyuki,K.;Fumio,S.;Takashi,M.;Naoyuki,K.Polym.J., 2003,35:945

    34 Radhakrishnan,S.;Somanathan,N.;Narashimhaswamy,T.; Thelakkat,M.;Schmidt,H.W.J.Therm.Anal.Calor.,2006,85: 2433

    35 Hird,M.;Toyne,K.J.;Gray,G.W.;Day,S.E.;McDonnell,D.G. Liq.Cryst.,1993,15:122

    36 Goulding,M.;Green,S.;Parri,O.;Coates,D.Mol.Cryst.Liq. Cryst.,1995,265:27

    37 Zhou,D.;Chen,Y.W.;Chen,L.;Zhou,W.H.;He,X.H. Macromolecules,2009,42:1454

    38 Chen,L.;Chen,Y.W.;Zhou,W.H.;He,X.H.Synth.Met.,2009, 159:576

    39 Chen,L.;Chen,Y.W.;Yao,K.;Zhou,W.H.;Li,F.;Chen,L.;Hu, R.;Tang,B.Z.Macromolecules,2009,42:5053

    40 Chen,L.;Chen,Y.W.;Yao,K.;Zhou,W.H.;Li,F.;Chen,L.;Hu, R.;Tang,B.Z.J.Polym.Sci.A-Polym.Chem.,2009,47:4723

    41 Chen,L.;Chen,Y.W.;Zhou,W.H.;He,X.H.Mol.Cryst.Liq. Cryst.,2010,518:68

    42 Chen,L.;Chen,Y.W.;Zha,D.J.;Yang,Y.J.Polym.Sci.APolym.Chem.,2006,44:2499

    43 Okano,Y.;Masuda,T.;Higashimura,T.J.Polym.Sci.Polym. Chem.Ed.,1985,23:2527

    44 Lam,J.W.Y.;Tang,B.Z.Acc.Chem.Res.,2005,38:745

    45 Goto,H.Macromolecules,2007,40:1377

    October 26,2009;Revised:December 16,2009;Published on Web:February 8,2010.

    Synthesis and Helical Conformation of New Optically Active Liquid Crystalline Polythiophene Containing Cyanoterphenyl Mesogen Pendant

    CHEN Lie CHEN Yi-Wang*YAO Kai ZHOU Wei-Hua LI Fan NIE Hua-Rong
    (Institute of Polymers,Department of Chemistry,Nanchang University,Nanchang 330031,P.R.China)

    A novel liquid crystalline(LC)polythiophene bearing cyanoterphenyl mesogenic pendants with a long flexiblespacer{—[thiophene—CH2—COO—(CH2)6—O—terphenyl—CN]n—,PT(6)TPhCN}wasdesignedandsynthesized. Structures of the monomer and the polymer were characterized by nuclear magnetic resonance(NMR)and Fourier transform infrared(FT-IR)spectroscopy while the liquid crystalline and other properties were evaluated with thermogravimetry,differential scanning calorimetry(DSC),polarized optical microscopy(POM),ultraviolet visible(UV-Vis) spectroscopy,and photoluminescence(PL).The monomer shows enantiotropic smectic phases during the heating and cooling processes.Because of the long flexible spacer,the polymer PT(6)TPhCN exhibits a colorful SmAdmesogenic phase texture.The cyanoterphenyl group results in the polymer having good photoluminescence.The spacer length also greatly influences the UV absorption and photoluminescence behavior of the polymers.A longer spacer may better segregate the backbone,which effectively enhances the stronger photoluminescence emission.More interestingly,without introducing any chiral groups,the polymer exhibits an obvious Cotton effect on the circular dichroism(CD)spectra,which results from the predominant screw sense of the backbone.This is probably due to the heavy bulky mesogenic pendant rotating around the polythiophene backbone and producing a backbone with a helical conformation in the long wavelength region.

    Photoluminescence;Liquid crystalline conjugated polymer;Cyanoterphenyl;Polythiophene; Helical conformation

    *Corresponding author.Email:ywchen@ncu.edu.cn;Tel/Fax:+86-791-3969561.

    The project was supported by the National Natural Science Foundation of China(50773029,50902067)and Natural Science Foundation of Jiangxi Province,China(2007GZC1727,2008GQH0046).

    國家自然科學基金(50773029,50902067)和江西省自然科學基金(2007GZC1727,2008GQH0046)資助項目

    陳義旺,1996-1999年在北京大學化學與分子工程學院學習,獲得理學博士學位.

    O644;O631.1+1

    猜你喜歡
    主鏈光致發(fā)光構(gòu)象
    “鹵代烴”知識概要
    中學化學(2024年1期)2024-05-26 13:20:27
    光致發(fā)光與變色纖維發(fā)展趨勢
    WDC主鏈正式啟動創(chuàng)世區(qū)塊已誕生
    有機化合物命名易錯題直擊
    “烷烴”的五字命名方針
    中學化學(2016年12期)2017-02-05 17:24:23
    一種一枝黃花內(nèi)酯分子結(jié)構(gòu)與構(gòu)象的計算研究
    雙摻雜核殼結(jié)構(gòu)ZnS:Mn@ZnS:Cu量子點的水熱法合成及其光致發(fā)光性能
    One-pot facile synthesis of highly photoluminescent graphene quantum dots with oxygen-rich groups
    玉米麩質(zhì)阿拉伯木聚糖在水溶液中的聚集和構(gòu)象
    應用化工(2014年7期)2014-08-09 09:20:23
    Cu2+/Mn2+存在下白花丹素對人血清白蛋白構(gòu)象的影響
    夜夜爽夜夜爽视频| 国产视频首页在线观看| 亚洲综合精品二区| 国产精品久久久久久久久免| 人人妻人人爽人人添夜夜欢视频| 欧美亚洲 丝袜 人妻 在线| 欧美精品国产亚洲| 2021少妇久久久久久久久久久| 欧美 日韩 精品 国产| av视频免费观看在线观看| 亚洲成人av在线免费| 美女主播在线视频| 少妇猛男粗大的猛烈进出视频| 麻豆精品久久久久久蜜桃| 午夜福利视频在线观看免费| 夫妻性生交免费视频一级片| 3wmmmm亚洲av在线观看| 视频中文字幕在线观看| 蜜桃国产av成人99| 黄色配什么色好看| 日韩不卡一区二区三区视频在线| 18禁在线无遮挡免费观看视频| 香蕉精品网在线| 亚洲无线观看免费| 国产精品无大码| 中文字幕最新亚洲高清| 韩国高清视频一区二区三区| 不卡视频在线观看欧美| 欧美bdsm另类| 久久午夜福利片| 免费黄网站久久成人精品| 国产精品一区二区三区四区免费观看| 搡女人真爽免费视频火全软件| 国产黄片视频在线免费观看| 高清毛片免费看| av有码第一页| 久久久久久伊人网av| 国产免费视频播放在线视频| 久久精品国产a三级三级三级| 黄色配什么色好看| 美女国产视频在线观看| 2021少妇久久久久久久久久久| 在线观看人妻少妇| 精品国产露脸久久av麻豆| 亚洲天堂av无毛| 青青草视频在线视频观看| 国产乱来视频区| 精品人妻在线不人妻| 我的老师免费观看完整版| 女人精品久久久久毛片| 欧美日韩国产mv在线观看视频| av线在线观看网站| 最近中文字幕2019免费版| 国产精品秋霞免费鲁丝片| 国精品久久久久久国模美| 999精品在线视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 婷婷色综合www| 高清毛片免费看| 国产免费现黄频在线看| 亚洲伊人久久精品综合| 亚洲av免费高清在线观看| tube8黄色片| 国产av码专区亚洲av| 美女国产视频在线观看| 国产亚洲精品久久久com| 精品人妻一区二区三区麻豆| 99视频精品全部免费 在线| 亚洲伊人久久精品综合| 国产精品久久久久久精品电影小说| 久久国产精品男人的天堂亚洲 | 777米奇影视久久| 久久久久网色| 久久国产精品男人的天堂亚洲 | 看非洲黑人一级黄片| 高清不卡的av网站| 中文字幕免费在线视频6| 少妇高潮的动态图| 黑人高潮一二区| 高清欧美精品videossex| 丝袜喷水一区| 亚洲欧美一区二区三区黑人 | 少妇人妻久久综合中文| 亚洲欧美中文字幕日韩二区| 高清视频免费观看一区二区| 亚洲激情五月婷婷啪啪| 日日爽夜夜爽网站| 国产亚洲av片在线观看秒播厂| 亚洲成人av在线免费| 97超视频在线观看视频| 久久人人爽人人片av| 日韩在线高清观看一区二区三区| 五月伊人婷婷丁香| 99久久精品国产国产毛片| 国产精品麻豆人妻色哟哟久久| 亚洲第一区二区三区不卡| 亚洲av福利一区| av女优亚洲男人天堂| 中文字幕久久专区| 亚洲美女黄色视频免费看| 人人妻人人添人人爽欧美一区卜| 高清在线视频一区二区三区| 成人毛片a级毛片在线播放| 亚洲欧洲日产国产| 晚上一个人看的免费电影| 精品酒店卫生间| 亚洲国产av影院在线观看| 丰满少妇做爰视频| 免费看不卡的av| 大香蕉久久成人网| 王馨瑶露胸无遮挡在线观看| 日韩一区二区视频免费看| 日韩av在线免费看完整版不卡| 男女国产视频网站| 99久久人妻综合| 狠狠婷婷综合久久久久久88av| 中文精品一卡2卡3卡4更新| 在线 av 中文字幕| 99re6热这里在线精品视频| 精品久久久久久久久亚洲| 丝袜美足系列| av在线老鸭窝| 日韩av不卡免费在线播放| av天堂久久9| 999精品在线视频| 免费av不卡在线播放| 一本色道久久久久久精品综合| 精品一区二区三区视频在线| 国产成人freesex在线| 国产国语露脸激情在线看| 99九九在线精品视频| 天天影视国产精品| 亚洲色图 男人天堂 中文字幕 | 国产老妇伦熟女老妇高清| 久热这里只有精品99| 超色免费av| 亚洲色图综合在线观看| 精品久久久噜噜| 男女啪啪激烈高潮av片| 亚洲精品av麻豆狂野| 99久久人妻综合| 满18在线观看网站| 9色porny在线观看| 91成人精品电影| 人成视频在线观看免费观看| 啦啦啦中文免费视频观看日本| 欧美成人午夜免费资源| 男女免费视频国产| 最近中文字幕高清免费大全6| 精品人妻一区二区三区麻豆| 天天躁夜夜躁狠狠久久av| 成人漫画全彩无遮挡| 久久久久久久大尺度免费视频| 国产高清不卡午夜福利| 久久ye,这里只有精品| 嘟嘟电影网在线观看| 久久精品人人爽人人爽视色| 黑人猛操日本美女一级片| 国产精品久久久久久久久免| 狠狠婷婷综合久久久久久88av| 男女国产视频网站| 在线观看人妻少妇| 日本色播在线视频| 欧美日韩av久久| 91精品三级在线观看| 美女国产视频在线观看| 性色av一级| 色94色欧美一区二区| 97超视频在线观看视频| 国产精品蜜桃在线观看| 欧美精品一区二区大全| av国产久精品久网站免费入址| 亚洲三级黄色毛片| 亚洲欧洲国产日韩| 亚洲精品第二区| 国产白丝娇喘喷水9色精品| 在线观看三级黄色| 九九爱精品视频在线观看| 人妻夜夜爽99麻豆av| 国产成人av激情在线播放 | 美女主播在线视频| 久久久久国产精品人妻一区二区| videosex国产| 狂野欧美激情性xxxx在线观看| 久久久久久久大尺度免费视频| 天堂中文最新版在线下载| 在线观看国产h片| 亚洲美女搞黄在线观看| 欧美亚洲 丝袜 人妻 在线| 18禁在线无遮挡免费观看视频| 久久婷婷青草| 搡女人真爽免费视频火全软件| 人妻少妇偷人精品九色| 成人亚洲欧美一区二区av| 日本猛色少妇xxxxx猛交久久| 91精品国产九色| 日本免费在线观看一区| 亚洲色图综合在线观看| 赤兔流量卡办理| 国产欧美日韩综合在线一区二区| 国内精品宾馆在线| 亚洲精品美女久久av网站| 成人国语在线视频| 亚洲国产成人一精品久久久| 日韩人妻高清精品专区| 我要看黄色一级片免费的| 亚洲国产精品999| 桃花免费在线播放| 丝袜在线中文字幕| 日韩av在线免费看完整版不卡| 少妇猛男粗大的猛烈进出视频| 亚洲丝袜综合中文字幕| 欧美日韩精品成人综合77777| 国产片特级美女逼逼视频| 不卡视频在线观看欧美| 免费av中文字幕在线| 黑人巨大精品欧美一区二区蜜桃 | 男女国产视频网站| 免费少妇av软件| 男人操女人黄网站| 亚洲欧美一区二区三区国产| 亚洲精品乱码久久久久久按摩| 中文字幕av电影在线播放| 成人综合一区亚洲| www.色视频.com| 99热6这里只有精品| 色网站视频免费| 国产亚洲午夜精品一区二区久久| 久久久a久久爽久久v久久| 欧美日韩在线观看h| 一本大道久久a久久精品| 国产精品99久久久久久久久| 有码 亚洲区| 高清毛片免费看| freevideosex欧美| 2021少妇久久久久久久久久久| 国产在线视频一区二区| 青春草亚洲视频在线观看| 97在线人人人人妻| 哪个播放器可以免费观看大片| 老司机影院成人| 亚洲国产日韩一区二区| 久久久久人妻精品一区果冻| 日韩视频在线欧美| 色吧在线观看| 黑人巨大精品欧美一区二区蜜桃 | 人人澡人人妻人| 丝袜喷水一区| www.色视频.com| 热re99久久精品国产66热6| 精品熟女少妇av免费看| 精品国产国语对白av| 日韩成人伦理影院| 黑人猛操日本美女一级片| 极品少妇高潮喷水抽搐| 国产精品偷伦视频观看了| 亚洲精品国产av成人精品| 十八禁网站网址无遮挡| 99九九线精品视频在线观看视频| 秋霞伦理黄片| 啦啦啦在线观看免费高清www| 中文字幕免费在线视频6| 汤姆久久久久久久影院中文字幕| 欧美日韩av久久| 国产av精品麻豆| 美女xxoo啪啪120秒动态图| 少妇精品久久久久久久| 日韩不卡一区二区三区视频在线| 嘟嘟电影网在线观看| 久久久亚洲精品成人影院| 一区二区三区免费毛片| 看十八女毛片水多多多| av在线播放精品| 精品人妻在线不人妻| 最近最新中文字幕免费大全7| 亚洲国产欧美日韩在线播放| 超色免费av| 亚洲国产色片| 日本-黄色视频高清免费观看| 国产成人免费无遮挡视频| 久久亚洲国产成人精品v| 欧美精品国产亚洲| 天天影视国产精品| 久久久久视频综合| av黄色大香蕉| 草草在线视频免费看| 青春草国产在线视频| 国产免费福利视频在线观看| 一本大道久久a久久精品| 欧美激情极品国产一区二区三区 | 国产69精品久久久久777片| 边亲边吃奶的免费视频| 久久久久网色| 高清黄色对白视频在线免费看| 久久韩国三级中文字幕| 久久亚洲国产成人精品v| 亚洲内射少妇av| 丝袜喷水一区| 色吧在线观看| videos熟女内射| 国产极品粉嫩免费观看在线 | 边亲边吃奶的免费视频| 国产老妇伦熟女老妇高清| 人体艺术视频欧美日本| 男男h啪啪无遮挡| 午夜福利,免费看| 一边亲一边摸免费视频| 欧美一级a爱片免费观看看| 色婷婷av一区二区三区视频| 免费黄网站久久成人精品| 亚洲色图 男人天堂 中文字幕 | 乱人伦中国视频| 一区在线观看完整版| 建设人人有责人人尽责人人享有的| 久久热精品热| 欧美日韩av久久| 亚洲欧美一区二区三区黑人 | 黄色毛片三级朝国网站| 久久鲁丝午夜福利片| 久久综合国产亚洲精品| 中国美白少妇内射xxxbb| 国产亚洲午夜精品一区二区久久| 99久久精品一区二区三区| 在线观看三级黄色| 大又大粗又爽又黄少妇毛片口| 七月丁香在线播放| 免费黄频网站在线观看国产| 久久久久视频综合| av黄色大香蕉| 成人国产av品久久久| 少妇熟女欧美另类| 高清黄色对白视频在线免费看| 亚洲精品国产av成人精品| 老司机影院毛片| 少妇猛男粗大的猛烈进出视频| 久久鲁丝午夜福利片| 最新中文字幕久久久久| 久久精品国产亚洲网站| 18在线观看网站| 九色亚洲精品在线播放| 亚洲av中文av极速乱| 国产精品99久久99久久久不卡 | 特大巨黑吊av在线直播| 少妇被粗大猛烈的视频| 99热这里只有精品一区| 亚洲欧洲国产日韩| 日日啪夜夜爽| 一本色道久久久久久精品综合| 极品少妇高潮喷水抽搐| 免费不卡的大黄色大毛片视频在线观看| 乱人伦中国视频| 亚洲av成人精品一二三区| 晚上一个人看的免费电影| 亚洲色图 男人天堂 中文字幕 | 国产亚洲av片在线观看秒播厂| 亚洲综合色惰| 久久久久久久亚洲中文字幕| 一级片'在线观看视频| 久久久国产欧美日韩av| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲第一av免费看| 少妇的逼好多水| 免费人成在线观看视频色| 免费播放大片免费观看视频在线观看| 亚洲av在线观看美女高潮| 亚洲色图 男人天堂 中文字幕 | 国产一区有黄有色的免费视频| 成人国产av品久久久| 美女国产视频在线观看| 亚洲国产毛片av蜜桃av| 少妇的逼好多水| 精品视频人人做人人爽| 91久久精品国产一区二区三区| 免费黄网站久久成人精品| 亚洲av成人精品一二三区| 亚洲精品乱码久久久v下载方式| 亚洲欧美成人综合另类久久久| 纯流量卡能插随身wifi吗| 69精品国产乱码久久久| 色网站视频免费| 能在线免费看毛片的网站| 黑丝袜美女国产一区| 丰满少妇做爰视频| 精品熟女少妇av免费看| 午夜激情av网站| 日韩人妻高清精品专区| 国产亚洲一区二区精品| 成人黄色视频免费在线看| a级毛色黄片| 亚洲美女黄色视频免费看| 丝袜在线中文字幕| 亚洲国产av新网站| 老女人水多毛片| 国产成人免费观看mmmm| 久久国产精品男人的天堂亚洲 | av女优亚洲男人天堂| 久久热精品热| 国产69精品久久久久777片| 亚洲熟女精品中文字幕| 丝瓜视频免费看黄片| 少妇人妻久久综合中文| 日韩视频在线欧美| 中文字幕最新亚洲高清| 亚洲国产日韩一区二区| 亚洲国产最新在线播放| 男女免费视频国产| 一级黄片播放器| 91国产中文字幕| 国产精品久久久久久精品古装| 精品久久久久久久久亚洲| 欧美日韩亚洲高清精品| 成人国产麻豆网| 黑人巨大精品欧美一区二区蜜桃 | 欧美 亚洲 国产 日韩一| 日本-黄色视频高清免费观看| 精品一区二区三区视频在线| 蜜臀久久99精品久久宅男| 国产无遮挡羞羞视频在线观看| 观看av在线不卡| 内地一区二区视频在线| 一本—道久久a久久精品蜜桃钙片| 国产深夜福利视频在线观看| 亚州av有码| 亚洲精品久久成人aⅴ小说 | 成年女人在线观看亚洲视频| 男女高潮啪啪啪动态图| 国产在线视频一区二区| 最后的刺客免费高清国语| 日本黄大片高清| 最近的中文字幕免费完整| av播播在线观看一区| 在线观看www视频免费| 日本午夜av视频| 中文字幕免费在线视频6| 亚洲av.av天堂| 夜夜爽夜夜爽视频| 丰满迷人的少妇在线观看| 人妻制服诱惑在线中文字幕| videossex国产| 大话2 男鬼变身卡| 天堂俺去俺来也www色官网| 观看av在线不卡| 十八禁高潮呻吟视频| 在线观看人妻少妇| 一级片'在线观看视频| 18+在线观看网站| 欧美日韩视频高清一区二区三区二| www.av在线官网国产| 一级毛片我不卡| 午夜福利网站1000一区二区三区| 在线观看www视频免费| 视频区图区小说| 欧美精品高潮呻吟av久久| 免费久久久久久久精品成人欧美视频 | 亚洲成人一二三区av| 亚洲欧洲国产日韩| 亚洲三级黄色毛片| 天堂8中文在线网| 欧美激情极品国产一区二区三区 | 午夜影院在线不卡| 亚洲国产精品一区三区| 国产成人精品在线电影| 国产精品熟女久久久久浪| 22中文网久久字幕| 国产精品久久久久久精品古装| 亚洲怡红院男人天堂| 又黄又爽又刺激的免费视频.| 国产精品免费大片| 免费看光身美女| 大片免费播放器 马上看| 人妻夜夜爽99麻豆av| 久久99热6这里只有精品| 亚洲欧洲国产日韩| 成年女人在线观看亚洲视频| 日韩成人av中文字幕在线观看| 波野结衣二区三区在线| 精品人妻熟女av久视频| 日韩中字成人| 国产色婷婷99| 午夜免费鲁丝| 在线天堂最新版资源| 黄色视频在线播放观看不卡| 国产精品偷伦视频观看了| 老熟女久久久| 国产精品三级大全| 国产成人精品福利久久| 婷婷色综合www| 久久久午夜欧美精品| 久久久久久人妻| 亚洲国产欧美在线一区| 亚洲国产精品999| 好男人视频免费观看在线| 午夜福利网站1000一区二区三区| 999精品在线视频| 成人国产av品久久久| 精品少妇久久久久久888优播| 成人亚洲欧美一区二区av| 日韩 亚洲 欧美在线| 日本av免费视频播放| 九九爱精品视频在线观看| 2018国产大陆天天弄谢| 亚洲久久久国产精品| 国模一区二区三区四区视频| 亚洲激情五月婷婷啪啪| 国产深夜福利视频在线观看| 国国产精品蜜臀av免费| 大香蕉久久网| a 毛片基地| 看非洲黑人一级黄片| 欧美97在线视频| 久久久久久久精品精品| 日本黄大片高清| 成人二区视频| xxx大片免费视频| 日韩成人伦理影院| 午夜福利影视在线免费观看| av在线观看视频网站免费| 伊人久久国产一区二区| 一边亲一边摸免费视频| 精品酒店卫生间| 下体分泌物呈黄色| 久久久久精品久久久久真实原创| 国产淫语在线视频| 免费观看性生交大片5| 日本-黄色视频高清免费观看| 国产69精品久久久久777片| 99久久中文字幕三级久久日本| 日韩在线高清观看一区二区三区| 国模一区二区三区四区视频| 2022亚洲国产成人精品| 亚洲少妇的诱惑av| 久久久精品94久久精品| 久久女婷五月综合色啪小说| 99热6这里只有精品| 精品久久久久久电影网| 国产av一区二区精品久久| 高清不卡的av网站| 美女大奶头黄色视频| 欧美日韩亚洲高清精品| 有码 亚洲区| videosex国产| 一级黄片播放器| 久久久久久久久大av| 免费看不卡的av| 性色avwww在线观看| 国产精品偷伦视频观看了| 午夜福利视频在线观看免费| 久久综合国产亚洲精品| 制服丝袜香蕉在线| 18禁动态无遮挡网站| 中文精品一卡2卡3卡4更新| 成年人免费黄色播放视频| 免费日韩欧美在线观看| 日本色播在线视频| h视频一区二区三区| 男男h啪啪无遮挡| 亚洲av中文av极速乱| 中文字幕人妻熟人妻熟丝袜美| 成人漫画全彩无遮挡| 精品熟女少妇av免费看| 欧美日韩亚洲高清精品| 多毛熟女@视频| 国产高清不卡午夜福利| 国产69精品久久久久777片| 大码成人一级视频| 国产欧美亚洲国产| 日韩 亚洲 欧美在线| 亚洲国产精品专区欧美| 蜜桃在线观看..| 婷婷色综合www| 国产熟女午夜一区二区三区 | 亚洲,一卡二卡三卡| 22中文网久久字幕| 97在线人人人人妻| 欧美日韩视频高清一区二区三区二| 大话2 男鬼变身卡| 熟妇人妻不卡中文字幕| 久久午夜综合久久蜜桃| 永久网站在线| 亚洲精品国产av蜜桃| 男女边吃奶边做爰视频| 国产av精品麻豆| 成人二区视频| 一级a做视频免费观看| 亚洲经典国产精华液单| 久久99热6这里只有精品| 在线观看三级黄色| 国产白丝娇喘喷水9色精品| 一边摸一边做爽爽视频免费| 七月丁香在线播放| 亚洲精品美女久久av网站| 日韩 亚洲 欧美在线| 我的女老师完整版在线观看| 国产一区二区三区综合在线观看 | 国产精品国产av在线观看| 日韩欧美精品免费久久| 欧美精品一区二区免费开放| 久久精品熟女亚洲av麻豆精品| 王馨瑶露胸无遮挡在线观看| 中文欧美无线码| 在线观看免费视频网站a站| 日韩精品免费视频一区二区三区 | 欧美xxxx性猛交bbbb| 日韩大片免费观看网站| 欧美激情极品国产一区二区三区 | 人人妻人人爽人人添夜夜欢视频| 国产片特级美女逼逼视频| 极品人妻少妇av视频| 一个人看视频在线观看www免费| 熟女人妻精品中文字幕| 十分钟在线观看高清视频www| 免费大片黄手机在线观看| 一边摸一边做爽爽视频免费| 欧美精品国产亚洲| .国产精品久久|