• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    鎳離子與酵母乙醇脫氫酶的相互作用

    2010-12-12 02:41:28尹國(guó)維李芝芬王保懷杜為紅
    物理化學(xué)學(xué)報(bào) 2010年4期
    關(guān)鍵詞:北京化學(xué)

    尹國(guó)維 尉 薇 徐 佳 李芝芬 王保懷 杜為紅,*

    (1中國(guó)人民大學(xué)化學(xué)系,北京 100872;2北京大學(xué)化學(xué)與分子工程學(xué)院,物理化學(xué)研究所,北京 100871)

    Metal ions are indispensable in kinds of biomacromolecules, especially in metalloproteins.They acts as cofactor or inhibitor in various proteins and in even engineered proteins[1-3].Yeast alcohol dehydrogenase(YADH)is a metalloenzyme which catalyze the fermentation reaction of alcohol to acetaldehyde[4].This fermentation has been widely studied for its implications in wine and beer production[5-6],and an increasing interest in its application for biotechnological processes of bioconversion of different organic wastes into ethanol to be used as solvent or fuel[7-8]. YADH is a tetramer(150 kDa)with four subunits held together[9]. Each subunit contains two zinc ions with one zinc ion located at the active site(catalytic zinc)and bound to two cysteines,one histidine and a water molecule.The other zinc ion bound to four cysteines and maintains the tertiary structure of the enzymes (structuralzinc).TheZn(II)sitesareconservedamongADHsfrom different species[10-14].

    The structure-activity relationships of ADHs are widely concerned in recent years.Evaluation of Hofmeister effects on ADH and other proteins indicated that the protein kinetics stability could be influenced by salt species and their concentration,and the thermodynamic parameters were also affected by some small molecules[15-16].To improve the activity of ADH,some works focused on the transition metal substitution for zinc ions,and possible substrates and inhibitors were studied[12,17-18].Moreover,the quantum mechanics method was used to show the kinetic isotope effects and enzyme motion[19].The interaction of mithramycin and chromomycin with ADH were performed to check the binding affinity of the two anticancer antibiotics to bivalent cations,i.e.,zinc ions in structural site or catalytic site[20-21].This means that the inhibitors of ADH are widely distributed.They include not only the classical reagent 4-methyl-pyrazole[12]and the anticancer compounds,but also different metal ions,such as copper[22]and bismuth[23].

    Among the bivalent cations,Ni(II)is reported to inhibit ADH in a mode of mixed type mechanism in previous study[22],but little is known about the detailed information on Ni(II)-YADH interaction.In this paper,we have characterized the interaction and inhibition of Ni(II)to YADH.UV-Vis spectroscopy and fluorenscence spectroscopy were used to investigate the binding process of Ni(II)and YADH.Ellman method[24]was carried out to determine the thiolate group binding to Ni(II).And the inhibition mechanism was studied by enzymatic reaction.Furthermore,the differential scanning calorimetry(DSC)and fast protein liquid chromatography(FPLC)were performed to evaluate the thermodynamic stability of protein.

    1 Materials and methods

    1.1 Samples

    YADH and nicotinamide adenine dinucleotid(NAD)were purchased from Sigma-Aldrich Co.(USA).The enzyme was used without further purification.Nickelous acetate tetrahydrate,trihydroxymethyl aminomethane(Tris),and 5,5′-dithiobis(2-nitrobenzoic acid)(DTNB)were purchased from BBI company (USA).All other reagents were of analytical grade.

    1.2 UV-Vis spectroscopy

    UV-Vis spectroscopy was used to study the binding process of Ni(II)and YADH.The lyophilized powder of YADH was dissolved in 2.0×10-2mol·L-1Tris-HCl buffer at pH 8.0.Enzyme concentration was determined from the UV absorbance at 280 nm with an absorption coefficient(ε280)of 1.89×105mol-1· L·cm-1[25].The spectrum width was from 300 to 500 nm.40 folds of Ni(II)(2.4×10-4mol·L-1)was added to 6.0×10-6mol·L-1YADH in 2.0×10-2mol·L-1Tris-HCl buffer at pH 8.0,298.2 K. The course of the reaction was monitored up to 300 min.All UVVis spectra were recorded on a Cary 50 spectrometer(Varian, USA)with thermostat holders at 298.2 K.

    1.3 Fluorescence spectroscopy

    The experiment was carried out on a Perkin-Elmer LS55 fluorescence spectrometer.A solution of 6.0×10-7mol·L-1YADH reacted with 40 folds of Ni(II)in 2.0×10-2mol·L-1Tris-HCl buffer at pH 8.0,298.2 K.The excitation wavelength was at 295 nm and the exit slit was set to 4 nm.The changes in emission intensities were obtained at regular time intervals.Each spectrum was corrected by blank subtraction using 2.0×10-2mol·L-1Tris-HCl buffer at pH 8.0.

    1.4 Enzyme catalysis reaction

    The concentrations of NAD+and NADH were determined using the extinction coefficients of 6.22×103mol-1·L·cm-1at 340 nm[26].Enzyme activity was determined by the changes of initial rate of absorbance at 340 nm corresponding to the reduction of NAD+to NADH as previously reported[27].The solution of YADH was incubated in the presence of excess of Ni(II)for 5 min.An aliquot was withdrawn and added to a solution containing 1.5×10-3mol·L-1NAD+and 0.2 mol·L-1EtOH.The final enzyme concentration was 2.5×10-9mol·L-1in solution.The initial rates(r0)of reaction were recorded at different concentrations of ethanol ranging from 5.0×10-3to 50.0×10-3mol·L-1.The Michaelis constant(Km)and the maximal reaction velocity(rmax)for inhibited reactions and control were obtained from Lineweaver-Burk plots[28].

    1.5 Thiolate group analysis of YADH

    Ellman′s method[24]was utilized to determine the free thiolate content(SH)of YADH before and after reacting with Ni(II). YADH was incubated with 100 folds of Ni(II)at 298.2 K,in 2.0× 10-2mol·L-1Tris-HCl buffer,pH 8.0.A solution of DTNB(1.0× 10-2mol·L-1)was added to the mixture.The final solution contained 2.0×10-6mol·L-1YADH,2.0×10-4mol·L-1Ni(II)and 5.0× 10-4mol·L-1DTNB.The reaction solution was incubated for 4 h until the absorbance at 412 nm did not change.The amount of generated p-nitrothiolate was determined using the extinction coefficient(ε412)of 1.42×104mol-1·L·cm-1[29].

    1.6 Differential scanning calorimetry

    Differential scanning calo rimetry experiments were performed with a Setaram(Lyons,France)Micro DSC III calorimeter.The mixture of 40 folds of 2.4×10-4mol·L-1Ni(II)and 6.0× 10-6mol·L-1YADH was incubated for 12 h in 2.0×10-2mol·L-1Tris-HCl buffer at pH 8.0,298.2 K.Then it was measured using the scanning rate of 1.0 K·min-1.The experimental temperature range was from 298.2 to 383.2 K.Temperature correction and baseline correction had been done before proceeding with the experiment.The sample volume was 0.8 mL.Tris-HCl buffer was used as the reference in all the three repeat experiments.

    1.7 Fast protein liquid chromatography

    A solution of 10 μmol·L-1YADH was incubated with 40 foldsofNi(II)in 100 mmol·L-1Tris-HCl at pH 8.0,298.2 K.After 120 min,the mixture was injected to fast protein liquid chromatography(FPLC)system.The Tris-HCl buffer(100 mmol·L-1, pH 8.0)was used as an elution solvent.Chromatograms were recorded by monitoring the absorbance at 280 nm with a UV detector.Control experiments were performed in the absence of Ni(II).The molecular mass calibration curve for the column was obtained using bovine serum albumin(65 kDa)and cytochrome C(12 kDa)as standards.

    2 Results

    2.1 Binding of Ni(II)and YADH

    The interaction of Ni(II)with YADH leads to a new UV-Vis absorption band(Fig.1A).With the mixture of 40 folds of Ni(II) to YADH solution,the absorbance centered at 320 nm increased gradually.This band was assigned as S--Ni(II)ligand-to-metal charge transfer(LMCT)transitions due to Ni(II)binding to the thiolate ligand.It could be used to monitor the progress of the reaction between Ni(II)and YADH.Kinetics of the reaction was described by the dependence of absorption spectrum on time (Fig.1B).It was characterized by an initial rapid increase in absorbance,then a progressive increase for the duration.The twokinetic steps could be resolved,which obey first-order kinetics and fit to a bi-exponential growth using the non-linear least square method:

    where k1and k2are the rate constants of the two kinetic phases, A1and A2are the corresponding amplitudes that show the contribution of the individual kinetic phases to the observed change in absorbance.The rate constant k1,was measured to be 0.091 min-1, and contributed 28%to the whole reaction[23].And the rate constant k2,had a value of 6.9×10-3min-1representing the rest of the reaction.

    2.2 Conformational change in YADH due to the binding of Ni(II)

    Fluorescence spectroscopy is widely used in protein conformational investigation since the tryptophan and tyrosine residues can produce intrinsic fluorescence[30].YADH has five tryptophan residues in each subunit.These residues produce an intrinsic fluorescence for YADH at 340 nm.With the mixture of 40 folds of Ni(II)to YADH solution,the fluorescence emission intensity decreased obviously(Fig.2A).It revealed that conformational changesoccurredinYADHuponNi(II)binding.The decrease ofYADH intensity versus time was also in a biphasic process and could be fitted by a two-exponential function as used in UV data processing(Fig.2B).The rate constant k1for the fast step was measuredto be 0.31 min-1,which contributed to 25%of the reaction,while the rate constant k2for the slow step had a value of 2.4×10-2min-1that represented the rest of the reaction.The rates are slightly higher than the corresponding values obtained from UV-Vis spectroscopy.

    Fig.1 (A)Time scale of absorption spectrum,(B)kinetics of the reaction of Ni(II)to YADH at 320 nmsolution containing YADH(6.0×10-6mol·L-1)and 40 folds of Ni(II)in 2.0×10-2 mol·L-1Tris-HCl at pH 8.0,298.2 K;the broad band centered at 320 nm in Fig.1A indicating formation of Ni(II)-S(thiolate)bonds,reaction time from bottom to top:0,2,4,6,8,10,15,20,50,80,145,300 min

    Fig.2 (A)Time scale of fluorescence emission spectra with an excitation wavelength of 295 nm,(B)kinetics of the reaction of Ni(II)to YADH at 340 nm emission intensitysolution containing YADH(6.0×10-7mol·L-1)and 40 folds of Ni(II)in 2.0×10-2 mol·L-1Tris-HCl at pH 8.0,298.2 K;reaction time from top to bottom: 0,1,2,3,4,5,6,7,8,9,10,20,30,40,50,60,80,100,120 min

    Fig.3 Lineweaver-Burk plots of the enzyme catalysis reactionThe solution is composed of 2.5×10-9mol·L-1YADH and 1.5×10-3mol·L-1NAD+ at 298.2 K,2×10-2mol·L-1Tris-HCl,pH 8.0.Kmfor control reaction(◆)was found to be 8.37×10-3mol·L-1.The value is in agreement with that of control in the presence of 60(■)and 240(▲)folds of Ni(II)

    2.3 Inhibition of Ni(II)to YADH activity

    Based on the interaction study of YADH and Ni(II),we measured the rate of ethanol oxidation catalyzed by YADH at different substrate concentrations in the presence of Ni(II).The kinetics of enzyme catalysis reaction can be described by a Michaelis-Menten model.In the present work,the Kmand rmaxwere calculated to be 8.3×10-3mol·L-1and 41.48 OD·s-1(OD:optical density)respectively for the uninhibited control reaction,which were acceptable for further enzymatic inhibition analysis[31](Fig. 3).And the Kmvalues obtained in the presence of 60 folds and 240 folds of Ni(II)were almost the same as that in the absence of Ni(II).However,the rmaxdecreased significantly due to the increase of Ni(II).The Lineweaver-Burk plots showed a typical mode of noncompetitive inhibition[28].

    2.4 Thiolate group analysis of YADH

    Fig.4 DSC curves for pure YADH in the presence and absence of Ni(II)In the absence of Ni(II),the onset temperature is measured at(330.0±0.2)K (curve a),the corresponding value in the presence of 40 folds of Ni(II)is measured at(335.8±0.3)K(curve b)

    The free thiolate contents were determined using DTNB by Ellman′s method so as to investigate whether Ni(II)binds to free Cys residues of YADH.The amount of generated p-nitrothiolate was determined using the absorbance at 412 nm as described in the experimental section[29].Totally,36 free Cys residues are found in each YADH subunit after treatment with dithiolthreitol (DTT)[32].19 free SH groups in the native enzyme were determined in the present work.After incubation with 100 folds of Ni(II)for 4 h at pH 8.0 Tris-HCl buffer,298.2 K,the number of free thiolate groups was determined to be 15.Therefore,there is one free thiol group loss in each subunit of YADH compared to its intact form.

    2.5 Thermal denaturation of YADH upon binding of Ni(II)

    The DSC method provided significant information about the thermodynamic properties of protein molecules,and the influence of molecular interactions on the stability of proteins and nucleicacids[33-34].The denaturation experimentofYADH byDSC started from 298.2 to 383.2 K and returned from 383.2 to 298.2 K.YADH showed an irreversible denaturation process(Fig.4). There was an exothermic peak at(330.0±0.2)K(onset point), which was very similar as reported[16].The molar enthalpy change of denaturation of(-7.6±0.5)×104kJ·mol-1was too large for conformational change and possibly due to protein sedimenta-tion.Addition of Ni(II)resulted in the increase of molar enthalpy change and denaturation temperature to(-8.9±0.3)×104kJ·mol-1and(335.8±0.3)K(onset point),respectively.

    Fig.5 FPLC profiles of YADH after incubation with Ni(II)(A)native YADH,(B)YADH with 40 folds of Ni(II)incubation after120 min;a solution of ca 10 μmol·L-1YADH was incubated with 40 folds of Ni(II)in 100 mmol·L-1Tris-HCl,pH 8.0

    2.6 Fast protein liquid chromatography study

    Metal ions are known to affect signal transduction and protein-protein interaction.We carried out this experiment in order to demonstrate whether Ni(II)interferes with the quaternary structure of the native YADH.After loading YADH solution into the column,the relative retention volume value was observed at 62.9 and 74.0,respectively.Peak a in Fig.5A corresponds to a 150 kDa species based on the mass calibration curve,while peak b corresponds to a component with a molecular mass about 75 kDa.Therefore,they can be assigned to the tetramer and dimer of YADH,respectively.The existence of dimer might be from conformational equilibrium of ADH in solution.After incubation with Ni(II),the peak at 62.9 decreased in its relative intensity obviously(Fig.5B).While the peak at 74.0 increased in its relative intensity gradually.This suggests that part of tetrameric YADH dissociates into a dimer,presumably due to the binding of Ni(II)to the enzyme.

    3 Discussion

    YADH is a classical enzyme which contains two zinc(II)ions in each subunit,one in its active site and another in auxiliary site.The enzymatic activity has been reported to be inhibited by some metal ions at various conditions[18,22-23].Ni(II)is an important transition metal that takes part in many biological processes[34]. In the present work,we reported the interaction of Ni(II)with YADH.The results show that Ni(II)can bind to YADH and change the conformation of YADH.

    UV-Vis spectroscopy reveals that the binding of Ni(II)leads to the appearance of 320 nm absorbance band.The time scale shows two kinetics steps for Ni(II)binding.The rate constants are less than those obtained from fluorescence spectrum,which indicate that the conformational change is prior to the binding of Ni(II)to thiolate group of ADH.

    Although the inhibition of Ni(II)on recombinant ADH exhibits a mixed type mechanism[22],our data show a noncompetitive inhibition in the enzyme catalysis reaction at the beginning of Ni(II)binding.Since the binding process is time dependent and the enzymatic conformation changes gradually,the conclusive mechanism of inhibition is inenarrable.The complexity might be induced by the anion effect compared with previous result[22],since anion plays a key role in enzymatic activity and protein stability[12,15,35].The used sample in this case was nickelous acetate tetrahydrate,and further work is needed to compare the binding mechanism by different Ni(II)compounds in order to make it clear.

    Ni(II)binding could lead to the dissociation of YADH from tetramer to dimmer,which is verified by FPLC experiments.The relative stability of dimer indicates that YADH could be described as a“Etetramer of dimers”with two identical interfaces. Hence in the DSC process,the binding of Ni(II)induces YADH in a higher denaturation temperature and molar enthalpy change. And we might conclude that conformational change arised from Ni(II)binding influences the path of YADH thermal denaturation.

    Metal ions inhibition of YADH reveals various but exciting results.The investigation on interaction of Ni(II)and YADH makes a whole profile of the metal binding than ever.And it provides more information to understand metal-protein interaction.

    1 Lu,Y.;Berry,S.M.;Pfister,T.D.Chem.Rev.,2001,101:3047

    2 Xu,K.;Yang,X.D.;Wang,K.Chem.J.Chin.Univ.,2008,29: 2525 [徐 崑,楊曉達(dá),王 夔.高等學(xué)?;瘜W(xué)學(xué)報(bào),2008,29: 2525]

    3 Huang,Z.X.Prog.Chem.,2002,14:318 [黃仲賢.化學(xué)進(jìn)展, 2002,14:318]

    4 Ramaswamy,S.;Kratzer,D.A.;Hershey,A.D.;Rogers,P.H.; Arnone,A.;Eklund,H.;Plapp,B.V.J.Mol.Biol.,1994,235:777

    5 Blandino,A.;Caro,I.;Cantero,D.Biotechnol.Lett.,1997,19:651

    6 Onnela,M.L.;Suihko,M.L.;Penttil,M.;Keraen,S. J.Biotechnol.,1996,49:101

    7 Fernandez,M.R.;Biosca,J.A.;Martinez,M.C.;Achkor,H.; Farres,J.;Pares,X.Adv.Exp.Med.Biol.,1997,414:373

    8 Lortie,R.;Fassouane,A.;Laval,J.M.;Bourdillon,C.Biotechnol. Bioeng.,1992,39:157

    9 Vanni,A.;Pessione,E.;Anfossi,L.;Baggiani,C.;Cavaletto,M.; Gulmini,M.;Giunta,C.J.Mol.Catal.B-Enzym.,2000,9:283

    10 Magonet,E.;Hayen,P.;Delforge,D.;Delaive,E.;Remacle,J. Biochem.J.,1992,287:361

    11 Meijers,R.;Adolph,H.W.;Dauter,Z.;Wilson,K.S.;Lamzin,V. S.;Cedergren-Zeppezauer,E.S.Biochemistry,2007,46:5446

    12 Reimers,M.J.;Hahn,M.E.;Tanguay,R.L.J.Biol.Chem.,2004, 279:38303

    13 Rubach,J.K.;Plapp,B.V.Biochemistry,2002,41:15770

    14 Winberg,J.O.;Brendskag,M.K.;Sylte,I.;Lindstad,R.I.; McKinley-McKee,J.S.J.Mol.Biol.,1999,294:601

    15 Broering,J.M.;Bommarius,A.S.J.Phys.Chem.B,2005,109: 20612

    16 Nath,S.;Satpathy,G.R.;Mantri,R.;Deep,S.;Ahluwalia,J.C. J.Chem.Soc.Faraday Trans.,1997,93:3351

    17 Kleifeld,O.;Rulisek,L.;Bogin,O.;Frenkel,A.;Havlas,Z.; Burstein,Y.;Sagi,I.Biochemistry,2004,43:7151

    18 Vanni,A.;Anfossi,L.;Pessione,E.;Giovannoli,C.Int.J.Biol. Macromol.,2002,30:41

    19 Billeter,S.R.;Webb,S.P.;Agarwal,P.K.;Iordanov,T.;Hammes-Schiffer,S.J.Am.Chem.Soc.,2001,123:11262

    20 Das,S.;Devi,P.G.;Pal,S.;Dasgupta,D.J.Bio.Inorg.Chem., 2005,10:25

    21 Devi,P.G.;Chakraborty,P.K.;Dasgupta,D.J.Biol.Inorg.Chem., 2009,14:347

    22 Cavaletto,M.;Pessione,E.;Vanni,A.;Giunta,C.J.Biotechnol., 2001,84:87

    23 Jin,L.;Szeto,K.Y.;Zhang,L.;Du,W.H.;Sun,H.Z.J.Inorg. Biochem.,2004,98:1331

    24 Ellman,G.L.Arch.Biochem.Biophys.,1959,82:70

    25 Buhner,M.;Sund,H.Eur.J.Biochem.,1969,11:73

    26 Tkachenko,A.G.;Winston,G.W.Arch.Biochem.Biophys.,2000, 380:165

    27 Vallee,B.L.;Hoch,F.L.Proc.Natl.Acad.Sci.U.S.A.,1955,41: 327

    28 Wang,J.Y.;Zhu,S.G.;Xu,C.F.Biochemistry.Beijing:Higher Education Press,2002:351-383 [王鏡巖,朱圣庚,徐長(zhǎng)法.生物化學(xué).北京:高等教育出版社,2002:351-383]

    29 Riddles,P.W.;Blakeley,R.L.;Zerner,B.Meth.Enzymol.,1983, 91:49

    30 Jornvall,H.;Eklund,H.;Branden,C.I.J.Biol.Chem.,1978,253: 8414

    31 Dickinson,F.M.;Monger,G.P.Biochem.J.,1973,131:261

    32 Harris,I.Nature,1964,203:30

    33 Du,W.H.;Han,W.;Li,Z.F.;Wang,B.H.Thermochim.Acta, 2000,359:55

    34 Du,W.H.;Wang,L.;Li,J.;Wang,B.H.;Li,Z.F.;Fang,W.H. Thermochim.Acta,2007,452:31

    35 Buhler,R.;Von Wartburg,J.P.FEBS Lett.,1984,178:249

    猜你喜歡
    北京化學(xué)
    Excerpt from Pygmalion
    北京X7
    汽車觀察(2021年11期)2021-04-24 21:34:38
    北京,離幸福通勤還有多遠(yuǎn)?
    民生周刊(2020年15期)2020-07-29 08:56:17
    北京春暖花開(kāi)
    北廣人物(2020年12期)2020-04-01 15:06:41
    北京的河
    北京,北京
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    奇妙的化學(xué)
    婷婷丁香在线五月| 亚洲国产色片| 在线观看午夜福利视频| 国模一区二区三区四区视频| 毛片女人毛片| 在现免费观看毛片| 91久久精品国产一区二区成人| 毛片一级片免费看久久久久 | 又黄又爽又免费观看的视频| 欧美日韩国产亚洲二区| 色5月婷婷丁香| 欧美日韩国产亚洲二区| 国语自产精品视频在线第100页| 日本黄色视频三级网站网址| 两个人的视频大全免费| 最好的美女福利视频网| 3wmmmm亚洲av在线观看| 色播亚洲综合网| 国产成人欧美在线观看| 一个人看视频在线观看www免费| 精品人妻1区二区| 国产一区二区亚洲精品在线观看| 久久6这里有精品| 69av精品久久久久久| 一进一出抽搐动态| 亚洲成av人片在线播放无| 人妻夜夜爽99麻豆av| 黄片小视频在线播放| 老鸭窝网址在线观看| 特大巨黑吊av在线直播| 国产白丝娇喘喷水9色精品| www日本黄色视频网| 国产精品女同一区二区软件 | 看免费av毛片| 亚洲 国产 在线| 十八禁网站免费在线| 男人的好看免费观看在线视频| 又爽又黄a免费视频| 亚洲av二区三区四区| 久久精品国产自在天天线| 狠狠狠狠99中文字幕| 性欧美人与动物交配| 久久久久免费精品人妻一区二区| 丁香欧美五月| 天天躁日日操中文字幕| 国产大屁股一区二区在线视频| av福利片在线观看| 国产高清视频在线观看网站| 久9热在线精品视频| 久久久精品大字幕| 成人国产一区最新在线观看| a级毛片免费高清观看在线播放| 精品人妻熟女av久视频| 亚洲无线观看免费| 一a级毛片在线观看| 国产高清有码在线观看视频| 日本在线视频免费播放| 精品国产亚洲在线| 亚洲,欧美精品.| 亚洲欧美清纯卡通| 九色国产91popny在线| 欧美最新免费一区二区三区 | 国产69精品久久久久777片| 在线观看舔阴道视频| 国产男靠女视频免费网站| 嫩草影院精品99| 日韩有码中文字幕| 18+在线观看网站| 波野结衣二区三区在线| 亚州av有码| 亚洲乱码一区二区免费版| 精华霜和精华液先用哪个| 99在线人妻在线中文字幕| 国产精品女同一区二区软件 | 热99在线观看视频| 听说在线观看完整版免费高清| 色精品久久人妻99蜜桃| 国内精品久久久久久久电影| 国产综合懂色| 老熟妇乱子伦视频在线观看| 亚洲专区中文字幕在线| 精品一区二区免费观看| 国产亚洲欧美在线一区二区| 国产精华一区二区三区| 日韩欧美在线二视频| 国产色婷婷99| 欧美日韩国产亚洲二区| 永久网站在线| 久久婷婷人人爽人人干人人爱| 国产国拍精品亚洲av在线观看| 一区二区三区免费毛片| 国产亚洲欧美98| 久久久久性生活片| 99热6这里只有精品| 中出人妻视频一区二区| 国产成人欧美在线观看| 小蜜桃在线观看免费完整版高清| 少妇人妻一区二区三区视频| 日韩av在线大香蕉| 真实男女啪啪啪动态图| 好男人电影高清在线观看| 亚洲最大成人av| 成年女人毛片免费观看观看9| 成人高潮视频无遮挡免费网站| 亚洲国产精品sss在线观看| 女人十人毛片免费观看3o分钟| 欧洲精品卡2卡3卡4卡5卡区| 动漫黄色视频在线观看| 久久人人爽人人爽人人片va | 日韩精品中文字幕看吧| 88av欧美| 免费在线观看成人毛片| av天堂中文字幕网| a级毛片免费高清观看在线播放| 国产亚洲欧美98| 少妇熟女aⅴ在线视频| 久久精品久久久久久噜噜老黄 | 精品人妻一区二区三区麻豆 | 国产探花在线观看一区二区| 免费看a级黄色片| av视频在线观看入口| 日韩欧美在线二视频| 国产午夜福利久久久久久| 亚洲熟妇熟女久久| 成年女人毛片免费观看观看9| 成年版毛片免费区| 哪里可以看免费的av片| xxxwww97欧美| 精品不卡国产一区二区三区| 亚洲av日韩精品久久久久久密| 女人被狂操c到高潮| 成年版毛片免费区| 欧美一区二区国产精品久久精品| 校园春色视频在线观看| 免费在线观看影片大全网站| 国产高清有码在线观看视频| 精品一区二区三区av网在线观看| 日韩成人在线观看一区二区三区| 久久6这里有精品| 乱码一卡2卡4卡精品| 国产精品综合久久久久久久免费| 亚洲欧美日韩卡通动漫| 国产精品电影一区二区三区| 深夜a级毛片| 一区二区三区免费毛片| 国产亚洲精品av在线| 欧美在线黄色| 精品一区二区三区视频在线| 国产精品亚洲美女久久久| 国产精品av视频在线免费观看| 90打野战视频偷拍视频| xxxwww97欧美| 久久香蕉精品热| 成人三级黄色视频| 国模一区二区三区四区视频| 小蜜桃在线观看免费完整版高清| 丰满的人妻完整版| 亚洲欧美激情综合另类| 久久精品91蜜桃| 欧美一区二区国产精品久久精品| 亚洲不卡免费看| 亚洲第一区二区三区不卡| 一个人免费在线观看的高清视频| 中文字幕人妻熟人妻熟丝袜美| 一区二区三区高清视频在线| 亚洲国产精品成人综合色| 久久人妻av系列| 嫩草影视91久久| 亚洲黑人精品在线| 成人精品一区二区免费| 色综合亚洲欧美另类图片| 精品一区二区三区视频在线| 国产精品98久久久久久宅男小说| 长腿黑丝高跟| 欧美日韩亚洲国产一区二区在线观看| 日韩欧美 国产精品| 欧美日韩乱码在线| 亚洲欧美日韩高清在线视频| av国产免费在线观看| 一本久久中文字幕| 国产精品乱码一区二三区的特点| 亚洲内射少妇av| 又爽又黄无遮挡网站| 欧美日韩综合久久久久久 | 成人午夜高清在线视频| 国产伦精品一区二区三区四那| 97人妻精品一区二区三区麻豆| 一边摸一边抽搐一进一小说| 9191精品国产免费久久| 美女高潮喷水抽搐中文字幕| 欧美成人免费av一区二区三区| 亚洲国产高清在线一区二区三| 噜噜噜噜噜久久久久久91| 日本三级黄在线观看| 91久久精品电影网| 久久6这里有精品| 亚洲三级黄色毛片| 亚洲片人在线观看| 在线看三级毛片| 小说图片视频综合网站| 搡老妇女老女人老熟妇| 亚洲中文日韩欧美视频| 国产高清视频在线观看网站| 精品人妻视频免费看| 丝袜美腿在线中文| 搡老熟女国产l中国老女人| 婷婷六月久久综合丁香| 两人在一起打扑克的视频| 在线观看66精品国产| 丰满乱子伦码专区| 日本一本二区三区精品| 婷婷六月久久综合丁香| 色视频www国产| 亚洲电影在线观看av| 国内毛片毛片毛片毛片毛片| 啦啦啦韩国在线观看视频| 欧美在线黄色| 两人在一起打扑克的视频| 九九在线视频观看精品| av视频在线观看入口| 可以在线观看毛片的网站| 在线观看一区二区三区| 国产精品亚洲av一区麻豆| 成年女人看的毛片在线观看| 久久久精品欧美日韩精品| 国产aⅴ精品一区二区三区波| 人人妻,人人澡人人爽秒播| 97热精品久久久久久| 亚洲午夜理论影院| 国产精品一及| 内地一区二区视频在线| 无遮挡黄片免费观看| 亚洲成av人片免费观看| 国产精品98久久久久久宅男小说| 90打野战视频偷拍视频| 又爽又黄无遮挡网站| 可以在线观看毛片的网站| 国产乱人伦免费视频| avwww免费| 中国美女看黄片| 亚洲人成网站在线播| 成年版毛片免费区| 欧美黄色片欧美黄色片| 国产成人aa在线观看| 久久久久久久久中文| 久久久久亚洲av毛片大全| 国产精品自产拍在线观看55亚洲| 狂野欧美白嫩少妇大欣赏| 一本综合久久免费| 美女免费视频网站| 99久久无色码亚洲精品果冻| 在线播放国产精品三级| 一区二区三区激情视频| 国产精品一及| 国产淫片久久久久久久久 | 精品人妻偷拍中文字幕| a级毛片a级免费在线| 欧美丝袜亚洲另类 | 嫩草影视91久久| 俺也久久电影网| 亚洲最大成人中文| 免费大片18禁| 中文字幕av在线有码专区| 亚洲av.av天堂| 亚洲第一欧美日韩一区二区三区| 国产男靠女视频免费网站| 好男人在线观看高清免费视频| 又黄又爽又免费观看的视频| 男女之事视频高清在线观看| netflix在线观看网站| 欧美黄色片欧美黄色片| 亚洲天堂国产精品一区在线| 热99在线观看视频| 亚洲av电影不卡..在线观看| 日韩成人在线观看一区二区三区| 免费在线观看亚洲国产| 日韩免费av在线播放| 欧美成人一区二区免费高清观看| 国产毛片a区久久久久| or卡值多少钱| 精品久久久久久久人妻蜜臀av| 国产精品一及| 尤物成人国产欧美一区二区三区| 一区福利在线观看| 极品教师在线视频| 日韩成人在线观看一区二区三区| 美女高潮的动态| 精品人妻偷拍中文字幕| 欧美日韩福利视频一区二区| 每晚都被弄得嗷嗷叫到高潮| 最后的刺客免费高清国语| 黄色配什么色好看| 午夜亚洲福利在线播放| 亚洲,欧美,日韩| 欧美日韩中文字幕国产精品一区二区三区| 国产 一区 欧美 日韩| 中文字幕人成人乱码亚洲影| 国产成人欧美在线观看| 在线天堂最新版资源| 欧美一区二区国产精品久久精品| 精品国产三级普通话版| 欧美激情在线99| 国产在线男女| 国产精品1区2区在线观看.| 亚洲,欧美精品.| 亚洲精品影视一区二区三区av| 看免费av毛片| 五月伊人婷婷丁香| 美女cb高潮喷水在线观看| a级一级毛片免费在线观看| 在线观看av片永久免费下载| 2021天堂中文幕一二区在线观| 国产高清有码在线观看视频| 天堂av国产一区二区熟女人妻| 一区福利在线观看| 日韩 亚洲 欧美在线| 国产老妇女一区| 俄罗斯特黄特色一大片| 久久伊人香网站| 亚洲精品在线观看二区| 国产精品久久视频播放| 免费看日本二区| 欧美精品啪啪一区二区三区| 亚洲18禁久久av| 国产69精品久久久久777片| 小说图片视频综合网站| 国产精品三级大全| 成年女人毛片免费观看观看9| 久久香蕉精品热| 中文字幕熟女人妻在线| 丰满人妻熟妇乱又伦精品不卡| 久久久久久九九精品二区国产| 日本免费a在线| 精品人妻一区二区三区麻豆 | 搡老妇女老女人老熟妇| 一本精品99久久精品77| 亚洲精品在线观看二区| 亚洲五月天丁香| 丁香六月欧美| 一区福利在线观看| 久久久久久大精品| 性色av乱码一区二区三区2| 最近最新中文字幕大全电影3| 国产免费一级a男人的天堂| avwww免费| 啦啦啦韩国在线观看视频| 国语自产精品视频在线第100页| 国产91精品成人一区二区三区| x7x7x7水蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 丰满的人妻完整版| 国产视频内射| 欧美区成人在线视频| 欧美性猛交黑人性爽| 国产色爽女视频免费观看| 国产三级在线视频| 最近视频中文字幕2019在线8| 免费在线观看成人毛片| 免费观看精品视频网站| 欧美激情久久久久久爽电影| 少妇的逼好多水| 成人av在线播放网站| 中文字幕高清在线视频| 91午夜精品亚洲一区二区三区 | 亚洲第一区二区三区不卡| 欧美性感艳星| 久久久久久久亚洲中文字幕 | 亚洲成a人片在线一区二区| 成人高潮视频无遮挡免费网站| 久久婷婷人人爽人人干人人爱| 一本久久中文字幕| 在线播放无遮挡| avwww免费| 97超级碰碰碰精品色视频在线观看| 亚洲人成网站在线播放欧美日韩| 免费看美女性在线毛片视频| 午夜久久久久精精品| 看黄色毛片网站| 精品国产亚洲在线| 91麻豆精品激情在线观看国产| 69av精品久久久久久| 首页视频小说图片口味搜索| 窝窝影院91人妻| 最新中文字幕久久久久| a在线观看视频网站| 亚洲午夜理论影院| 色吧在线观看| 中文字幕免费在线视频6| 国产三级中文精品| 十八禁人妻一区二区| 欧美不卡视频在线免费观看| 淫秽高清视频在线观看| 级片在线观看| 亚洲自拍偷在线| 最近在线观看免费完整版| 熟女电影av网| 欧美成人性av电影在线观看| 日日摸夜夜添夜夜添小说| 九九久久精品国产亚洲av麻豆| 一区二区三区四区激情视频 | 色尼玛亚洲综合影院| 网址你懂的国产日韩在线| 精品乱码久久久久久99久播| 久久久久性生活片| 在线十欧美十亚洲十日本专区| 欧美黑人欧美精品刺激| 成人鲁丝片一二三区免费| 免费av不卡在线播放| 国产一区二区三区在线臀色熟女| 丰满人妻熟妇乱又伦精品不卡| 每晚都被弄得嗷嗷叫到高潮| 宅男免费午夜| 久久午夜福利片| 级片在线观看| 又紧又爽又黄一区二区| 在线免费观看的www视频| 男插女下体视频免费在线播放| 男女那种视频在线观看| 久久国产精品影院| 最新中文字幕久久久久| 99热6这里只有精品| 亚洲一区二区三区色噜噜| 亚洲七黄色美女视频| 国产精品久久电影中文字幕| av天堂中文字幕网| 中文字幕熟女人妻在线| 日韩欧美在线二视频| 亚洲乱码一区二区免费版| 麻豆成人午夜福利视频| 国产精品1区2区在线观看.| 我要搜黄色片| 成人精品一区二区免费| 日本精品一区二区三区蜜桃| 亚洲人成网站在线播| 亚洲乱码一区二区免费版| 日韩有码中文字幕| 亚洲电影在线观看av| 免费人成视频x8x8入口观看| 99久久99久久久精品蜜桃| 亚洲熟妇熟女久久| 日韩欧美国产在线观看| 婷婷色综合大香蕉| 中文字幕精品亚洲无线码一区| 国内精品美女久久久久久| 久久天躁狠狠躁夜夜2o2o| 精品久久久久久久久久免费视频| 一进一出抽搐gif免费好疼| 色播亚洲综合网| 黄色配什么色好看| 午夜免费激情av| 亚洲国产高清在线一区二区三| 69av精品久久久久久| 久久精品国产亚洲av涩爱 | 国产精品永久免费网站| 亚洲av成人av| 亚洲国产日韩欧美精品在线观看| 免费人成视频x8x8入口观看| 亚洲中文字幕一区二区三区有码在线看| 国产老妇女一区| 美女cb高潮喷水在线观看| 日本免费一区二区三区高清不卡| 久久精品国产99精品国产亚洲性色| 搡女人真爽免费视频火全软件 | 男人的好看免费观看在线视频| 成人毛片a级毛片在线播放| 国产人妻一区二区三区在| 精品人妻1区二区| 91麻豆av在线| 色吧在线观看| 午夜日韩欧美国产| 女人十人毛片免费观看3o分钟| 国产老妇女一区| 久99久视频精品免费| 精品久久久久久,| 欧洲精品卡2卡3卡4卡5卡区| 国内精品一区二区在线观看| 日韩高清综合在线| 嫩草影视91久久| 三级毛片av免费| 好男人电影高清在线观看| 日韩亚洲欧美综合| 日韩国内少妇激情av| 噜噜噜噜噜久久久久久91| 国产伦精品一区二区三区四那| 亚洲熟妇中文字幕五十中出| 蜜桃久久精品国产亚洲av| 成人三级黄色视频| 久久久久性生活片| 97碰自拍视频| 国产精品美女特级片免费视频播放器| 动漫黄色视频在线观看| 国模一区二区三区四区视频| 激情在线观看视频在线高清| 天美传媒精品一区二区| 欧美日韩国产亚洲二区| 国产精品自产拍在线观看55亚洲| 麻豆一二三区av精品| 长腿黑丝高跟| 看免费av毛片| 久久人人爽人人爽人人片va | 精品一区二区三区人妻视频| 国产亚洲av嫩草精品影院| 精品不卡国产一区二区三区| 午夜精品在线福利| 国产男靠女视频免费网站| 久久伊人香网站| 国产成人福利小说| 亚洲va日本ⅴa欧美va伊人久久| 男插女下体视频免费在线播放| 国产精品久久久久久亚洲av鲁大| 中文字幕免费在线视频6| 国产欧美日韩精品亚洲av| 久久久久免费精品人妻一区二区| www.www免费av| 国产精品久久久久久亚洲av鲁大| 欧美国产日韩亚洲一区| 国产三级黄色录像| 国产精品一区二区三区四区免费观看 | 国产精品一区二区性色av| 色视频www国产| 久久精品国产清高在天天线| 99久久99久久久精品蜜桃| 久久天躁狠狠躁夜夜2o2o| 亚洲 国产 在线| 日韩欧美在线二视频| 国产三级黄色录像| 国产黄片美女视频| 无人区码免费观看不卡| 九九久久精品国产亚洲av麻豆| 天堂av国产一区二区熟女人妻| 亚洲国产精品成人综合色| 老熟妇仑乱视频hdxx| 99久国产av精品| 免费高清视频大片| 亚洲国产精品合色在线| 成人性生交大片免费视频hd| 男女下面进入的视频免费午夜| 欧美最黄视频在线播放免费| 91在线精品国自产拍蜜月| 国产一级毛片七仙女欲春2| 男人狂女人下面高潮的视频| 亚洲18禁久久av| 日韩国内少妇激情av| 好男人在线观看高清免费视频| 搡老岳熟女国产| 看免费av毛片| 亚洲黑人精品在线| 嫩草影视91久久| www.熟女人妻精品国产| 听说在线观看完整版免费高清| 亚洲人成网站在线播放欧美日韩| 两人在一起打扑克的视频| 美女黄网站色视频| 好看av亚洲va欧美ⅴa在| 美女cb高潮喷水在线观看| 日韩欧美精品v在线| 夜夜躁狠狠躁天天躁| 岛国在线免费视频观看| 亚洲一区二区三区色噜噜| 亚洲av不卡在线观看| 国产一区二区激情短视频| 国产精品98久久久久久宅男小说| 非洲黑人性xxxx精品又粗又长| 99久久精品热视频| 中文资源天堂在线| 嫁个100分男人电影在线观看| 欧美日本亚洲视频在线播放| 十八禁国产超污无遮挡网站| 最近中文字幕高清免费大全6 | 亚洲自拍偷在线| 天堂网av新在线| 99国产精品一区二区蜜桃av| 嫩草影视91久久| 国产综合懂色| 男女之事视频高清在线观看| 国产高清视频在线播放一区| 久久伊人香网站| av在线天堂中文字幕| 亚洲 欧美 日韩 在线 免费| 亚洲欧美精品综合久久99| 精品久久国产蜜桃| 亚洲精品一卡2卡三卡4卡5卡| 欧美色欧美亚洲另类二区| 亚洲自偷自拍三级| 亚洲国产精品合色在线| 欧美xxxx性猛交bbbb| 国产91精品成人一区二区三区| 熟妇人妻久久中文字幕3abv| 成人性生交大片免费视频hd| 午夜福利在线在线| 亚洲人成网站高清观看| 欧美激情在线99| 此物有八面人人有两片| 国产高清三级在线| 日本a在线网址| 91字幕亚洲| av黄色大香蕉| 精品免费久久久久久久清纯| 日韩欧美 国产精品| www.熟女人妻精品国产| 制服丝袜大香蕉在线| 免费在线观看影片大全网站| 久久伊人香网站| 超碰av人人做人人爽久久| 三级国产精品欧美在线观看| 久久伊人香网站| 免费观看人在逋| 91久久精品电影网| 日韩欧美国产在线观看| 日日干狠狠操夜夜爽| 日韩欧美国产一区二区入口| 精品久久久久久久久久免费视频| 色播亚洲综合网| 国产野战对白在线观看| 欧美潮喷喷水|