• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THREE-DIMENSIONAL NUMERICAL SIMULATION OF THERMALHYDRAULIC PERFORMANCE OF A CIRCULAR TUBE WITH EDGEFOLD-TWISTED-TAPE INSERTS*

    2010-05-06 08:22:15CUIYongzhang

    CUI Yong-zhang

    School of Energy and Power Engineering, Shandong University, Jinan 250061, China

    School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, China, E-mail: cyz@sdjzu.edu.cn

    TIAN Mao-cheng

    School of Energy and Power Engineering, Shandong University, Jinan 250061, China

    THREE-DIMENSIONAL NUMERICAL SIMULATION OF THERMALHYDRAULIC PERFORMANCE OF A CIRCULAR TUBE WITH EDGEFOLD-TWISTED-TAPE INSERTS*

    CUI Yong-zhang

    School of Energy and Power Engineering, Shandong University, Jinan 250061, China

    School of Thermal Engineering, Shandong Jianzhu University, Jinan 250101, China, E-mail: cyz@sdjzu.edu.cn

    TIAN Mao-cheng

    School of Energy and Power Engineering, Shandong University, Jinan 250061, China

    (Received November 30, 2009, Revised July 7, 2010)

    Three-dimensional numerical simulations and experiments were carried out to study the heat transfer characteristics and the pressure drop of air flow in a circular tube with Edgefold-Twisted Tape (ETT) inserts and with classic Spiral-Twisted-Tape (STT) inserts of the same twist ratio. The RNG turbulence model for mildly swirling flows, the enhanced wall treatment for low Reynolds numbers, and the SIMPLE pressure-velocity method were adopted to simulate the flow and heat transfer characteristics. Within the range of Reynolds number from 2 500 to 9 500 and the twist ratio y from 5.4 to 11.4, the Nusselt number of the tube with ETT inserts is found to be 3.9% - 9.2% higher than that with STT inserts, and the friction factor of the tube with ETT inserts is 8.7% -74% higher than that of STT inserts. The heat enhancement is due to higher tangential velocity and asymmetrical velocity profile with the increase and decrease of the periodic velocity within an edgefold length. It is found that main factors affecting the heat transfer of ETT inserts are the twist angle and the gap width between the tube and inserts. A larger twist angle leads to a higher tangential velocity, and larger Nusselt number and friction factor. The thermal-hydraulic performance slowly decreases as the twist angle increases. The gap width between tube and inserts has a significant influence on the heat transfer, while little influence on pressure drops. The thermal-hydraulic performance increases in average by 124% and 140% when the gap width reduces from 1.5 mm to 1.0 mm and 0.5 mm. The larger the gap width, the higher velocity through the gap will be, which would reduce the main flow velocity and tangential velocity. So a small gap is desirable. Comparing experimental and numerical results at variable air flow and tube wall temperature, the numerical results are found to be in a reasonable agreement with the experiment results, with difference of the Nusselt number in a range of 1.6% - 3.6%, and that of the friction factor in a range of 8.2% - 13.6%.

    heat transfer enhancement, Edgefold-Twisted-Tape (ETT), Spiral-Twisted-Tape (STT), thermal-hydraulic performance

    1. Introduction

    The heat transfer enhancement technology has been developed rapidly and employed in a wide variety of engineering problems, such as condensing gas boiler and water heater. Tape inserts are frequently used to reduce exhaust flue temperature and to make heat exchangers compact. There are mainly five effects of twisted tape inserts in the heat transfer enhancement: (1) increase in flow velocity, (2) decrease in hydraulic diameter, (3) increase in flow path, (4) secondary motion, (5) fin contribution, if tape inserts are in good thermal contact with the tube wall.

    The swirl flow in a tube was suggested by Kreit and Margolis (1959), and most of the swirl flows were created by long and short classic Spiral Twisted-Tape (STT) inserts[1-22]with and without holes[1-5], regularly spaced tape inserts[6-7], louvered strip[8]and wire coil inserts[9]. Studies were carried out[1,4,10-12]the heat transfer characteristics and pressure drops in circular tubes with twisted-tape inserts under fully turbulent flow conditions. Fahed[10]studied the effect of the tube-tape clearance on the heat transfer in fully developed turbulent flow in a horizontal isothermal tube, and it is shown that the heat transfer enhancement increases as the tube-tape clearance decreases. Recently, three-dimensional numerical analyses were carried out to study the thermal-hydraulic characteristics of the flow inside a circular tube with different twisted-tape inserts[12-21,23]. The RNG k?ε turbulent model[24,25]was used to simulate self-rotating STT inserts by Zhang[21], and to model STT inserts and perforated and jagged twisted tapes by Rahimi et al.[2]. Results show that the higher turbulence intensity of the fluid close to the wall and the tangential velocities were mainly attributed for the heat transfer enhancement. Eiamsa-Ard[12]adopted the SIMPLE technique, together with four turbulence models to simulate the flow in a circular tube induced by means of loose-fit twisted tapes, and the numerical results show that the shear stress transport k?ω turbulence models give the most consistent results with those of Manglik and Bergles.

    Table 1 Geometrical parameters and the twist ratio of inserts

    The transition flow regimes in a tube with twisted-tape inserts, specially Edgefold-Twisted-Tape (ETT) inserts, were not well studied. The arrangement enhances the structural stability and makes it possible to adopt thinner stainless inserts. This article presents three-dimensional numerical analyses and experiments on heat transfer characteristics and pressure drops of the air flow in a circular tube fitted with ETT inserts and STT inserts under constant wall temperature.

    2. Physical model and mathematical analysis

    2.1 Circular tube with inserts

    A circular tube with ETT inserts is shown in Fig.1. The tube’s inner diameter is D. The main geometrical parameters of ETT inserts include edgefold length ( L ), twist angle (A), tape width ( B), and tape thickness (δ). The twist angle is a rotation within an edgefold length, with H beingothe twist pitch and n the edgefold number within 360, the gap between tubes and inserts (b ) and the twist ratio ( y) can be expressed as:

    Fig.1 Circular tube with edgefold-twisted-tape inserts

    The STT inserts have the same twist ratio and the twist width as the ETT inserts in order to compare the thermal and hydraulic performance. Geometrical parameters and the twist ratio of the investigated inserts are listed in Table 1.

    2.2 Mathematical analysis

    The studied area includes the air between twist tape inserts and inside the tube. The following assumptions are adopted to simplify the physical model: (1) the radiation and natural convection heat transfer can be ignored, (2) the viscosity heating can be ignored, (3) the change of the air composition can be ignored, (4) the twisted-tape surface can be considered as adiabatic, and the conduction along tape inserts can be ignored, (5) no slip motion on tube walland inserts surface, (6) constant wall temperature. For transition turbulent flows, the three-dimensional equations of continuity, momentum, energy, turbulent kinetic energy (k), and the dissipation rate (ε) in the fluid region are as follows:

    Continuity equation:

    The numerical simulation is carried out using Fluent, with RNG k?ε, SIMPLE pressure-velocity coupling algorithm, and the second upwind discretization scheme for momentum, energy, turbulent kinetic energy and dissipation energy. The convergence criterion is satisfied when the residuals of variables are less than 1×10-4except for the energy where a value of 1×10-7is used. Under-relaxation factors of turbulent kinetic energy, turbulent dissipation rate and turbulent viscosity are changed within the range between 0.2 and 0.4, others take the default values. For accounting for the low Reynolds number and the near wall flow, an enhanced wall treatment is also adopted.

    The air inlet is specified with the mass flow rate inlet boundary condition, the air outlet with the pressure outlet boundary condition, the tube wall is a wall with constant temperature and the surface of the inserts is an adiabatic wall.

    2.3 Grid-independence

    The region near the inner tube wall is meshed with refined hexahedron cells, the other regions are meshed with tetrahedron cells, and the grid number is varied with the tube’s inner diameter. The accuracy and the validity of the numerical results are ensured by a careful check of the grid-independence. Table 2 shows the grid numbers and numerical results for inner diameters of 21 mm and 1 m of No.2 ETT inserts, so the internal count of 80 is used to grid all inserts. By using the boundary adaptation on the tube wall and the insert wall and the gradient adaptation on the whole region, the convergence rate is high. The computations are performed on the workstation with Intel Xeon E4505 CPU and the time is in the range of 2 h to 4 h for each case.

    Table2 grid number and numerical results

    3. Numerical results and discussions

    The steps involved in calculating the tubesideheat transfer coefficient and the friction factor from the simulation temperature, flow rate, and pressure drop are outlined below. All intube flow parameters are based on the inner diameter of the empty tube, all fluid properties are evaluated at the length average bulk temperature, unless otherwise indicated.

    The log-mean temperature difference, ΔTm, is defined as

    where Tinis the inlet temperature of air, Toutis the outlet temperature of air, Twis the inner wall temperature.

    The Nusselt number, Nu, is defined as

    where α is the convective heat transfer coefficient, λ is the thermal conductivity, Q is the heat transfer rate and F is the heat transfer area.

    The friction factor, f, is calculated from the following equation

    where ΔP is the pressure drop in the entire length ( Ltotal), u is the bulk averaged velocity.

    The thermal-hydraulic performance with different inserts, φ, is defined as

    3.1 STT and ETT insert performance

    Figures 2 and 3 show the Nusselt number and the friction factor of a tube with No.5 and No.7 STT inserts and No.2 and No.4 ETT inserts at the same inlet and tube wall temperature, with gap width b of 0.5 mm. It can be seen that the Nusselt number and the friction factor of the tube with ETT inserts are larger than those with STT inserts with the same twist ratio. The Nusselt number of No.2 ETT inserts is 3.9% greater than that of No.5 STT inserts, the Nusselt number of No.4 ETT inserts is 9.2% greater than that of No.7 STT inserts in average. The friction factor of No.2 ETT inserts is 8.7% larger than that of No.5 STT inserts, the friction factor of No.4 ETT inserts is 74% larger than that of No.7 STT inserts in average. The thermal-hydraulic performance φ of No.2 ETT inserts is 1.01 on the base of No.5 STT inserts, that of No.4 ETT inserts is 0.91 on the base of No.7 STT inserts.

    Fig.2 Nusselt number of tube with S TT and ETT inserts

    Fig.3 Friction factor of tube with STT and ETT inserts

    The enhancement is mainly due to a higher tangential velocity and the main flow velocity profile. The tube with STT inserts has a symmetrical profile with the same main velocity and tangential velocity, but the tube with ETT inserts has asymmetrical velocity magnitude and tangential velocity profiles, as shown in Figs.4 and 5. It can be seen that the velocity of ETT assumes a periodic variation within an edgefold length, the velocity first increases and later decreases on one side, but it first decreases and later increases on the other side The tangential velocity has the same variation trend. Such velocity variations help gas mixing.than that for twist angle 20o, and the Nusselt number for twist angle 20ois 1.9% larger than that for twist angle 15oin average. The friction factor for twist angle 30ois 45% greater than that for twist angle 20o, and the friction factor for twist angle 20ois 0.4% greater than that for twist angle 15o. Therefore, under the transition flow, the flow disturbance increases with the increase of the twisted ratio, and the low twisted ratio tape has a strong effect. On the base of 15otape, the thermal-hydraulic performance φ of 20oand 30otapes is 0.996 and 0.988, respectively, and it decreases with the increase of the twist angle.

    Fig.4 Velocity magnitude profile of No.3 inserts

    Fig.5 Tangential velocity profile of No.3 inserts

    Fig.6 Effect of twist angle (A) on Nusselt number

    Fig.7 Effect of twist angle (A) on friction factor

    Fig.8 Tangential velocity profile at z =0.180 m for twist angles of 20oand 30o

    The enhancement by the twist angle is due to different tangential velocities. Figure 8 is the

    Fig.9 Effect of gap width (b) on Nusselt number

    Fig.10 Effect of gap width (b) on friction factor

    3.2.2 Gap between tube and inserts b

    Figures 9 and 10 show the Nusselt number and the friction factor for different gap widths at the same inlet temperature and wall temperature. In general, the gap width has a significant influence on the Nusselt number, but little influence on the pressure drop. The Nusselt number and the friction factor decrease as the gap width increases. The Nusselt number for b=1mm and b=0.5 mm is 7.1% and 23.7% larger than that for b=1.5 mm. The friction factor for b=1mm and b=0.5 mm is 3.2% and 12.1% greater than that for b=1.5 mm. On the base of the case b=1.5 mm, the thermal-hydraulic performances for the cases b=1mm and b=0.5 mm are shown in Fig.11, which increase in average by 124% and 140%, respectively. So a small gap width is desirable. The gap width effect comes from the different velocity through the gap. Figures 12 and 13 show the velocity magnitude and the tangential velocity for the cases b=1mm and b=1.5 mm at section z =0.100 m. The traveling velocity through the gap increases with the gap width, which leads to significantly lower main velocity and tangential velocity.

    Fig.11 Effect of gap width ( b) on thermal-hydraulic performance

    Fig.12 Velocity profile of different gap widths at the same inlet velocity of 3 m/s

    3.2.3 Edgefold length L

    Figures 14 and 15 show that the edgefold length has little effect on the Nusselt number and the friction factor, which in the case, L=20 mmtakes value 2.4% and 1.4% smaller those in the case L=15 mm. A large edgefold length can be used for easy fabrication.

    Fig.13 Tangential velocity profile of different gap widths at the same inlet velocity of 3 m/s

    Fig.14 Effect of edgefold length on Nusselt number

    Fig.15 Effect of edgefold length on friction factor

    Fig.16 Schematic diagram of the test facility

    4. Validity test

    4.1 Test facility

    The experiment setup is shown in Fig.16, where a copper tube with inner diameter d=21mm and wall thickness 2 mm is used as the test section. Length of the test section is 1 000 mm. The tube with ETT inserts is placed in a box and cooled by water, and the working medium inside the tube is air. Cooling water is provided by a thermostatic gas water heater. Air temperature is adjusted by adjustable electric heater, and is measured by eight RTDs. The volume flow rate of air is measured with Swema Flow 125, with a measuring range from 2 l/s to 125 l/s and the accuracy of ±3%. The pressure drop of air is measured with Swema 3 000 , with pressure range from –150 Pa to 1 500 Pa. The average temperature of the tube wall is determined by means of 10 thermocouples located along the tube. All the data signals are collected by a data acquisition system and stored in computer for further analysis.

    4.2 Test results and discussions

    For a high cooling water rate and a low heat transfer rate, the water temperature rise is within 0.4 k - 0.8 k, so the tube wall temperature is represented by the average temperature at ten locations on the test tube wall

    where N is the thermocouple number, TNis the temperature measured at a location on the tube wall.

    The total heat transfer capacity

    where G is the air flow rate, Tinand Toutare the air inlet and outlet temperature.

    The test and numerical results are shown in Figs.17 and 18. The test air inlet temperature is 393 K, the tube wall temperature is 313 K, the air flow rate is adjusted by the fan speed. The Nusselt number in the test is 1.6% - 3.6% smaller than that obtained by the simulation, and the friction factor is 8.2% - 13.6% greater than that of the simulation. So experiment results are in a reasonable agreement with simulation results.

    Fig.17 Nusslet number vs. air inlet velocity

    Fig.18 Friction factor vs. air inlet velocity

    5. Conclusions

    Three-dimensional numerical simulations and experiments were carried out to study the heat transfer, friction factor and thermal-hydraulic performance of tubes with STT inserts and ETT inserts. Experiment results are in a reasonable agreement with numerical results. The following conclusions are reached.

    (1) The heat transfer of a tube with ETT inserts is enhanced as compared with a tube with STT inserts.Within the range of Reynolds number from 2 500 to 9 500 and the twist ratio y from 5.4 to 11.4, the Nusselt number and the friction factor of the tube with ETT inserts are 3.9% - 9.2% and 8.7% - 74% larger than those with STT inserts, and the thermal-hydraulic performance is within 0.91 to 1.01. The major enhancement of the heat transfer is found due to higher tangential velocity and asymmetrical velocity profile with the increase and decrease of the periodic velocity within an edgefold length

    (2) The twist angle is the most important structural factor. A larger twist angle leads to larger Nusselt number and friction factor. The larger the twist angle, the higher tangential velocity will be. As the twist angle increases, the thermal-hydraulic performance decreases slowly.

    (3) The gap width has a significant influence on the heat transfer, but little influence on the pressure drop. When the gap width is reduced from 1.5 mm to 1.0 mm and 0.5 mm, the Nusselt number increases by 7.1% and 23.7%, the friction factor increases by 3.2% and 12.1%. The thermal-hydraulic performance increases in average by 124% and 140%. The traveling velocity increases as the gap width increases, which leads to significantly lower main velocity and tangential velocity, therefore, a small gap width is desirable.

    [1] CHIU Yu-wei, JANG Jiin-yuh. 3D numerical and experimental analysis for thermal-hydraulic characteristics of air flow inside a circular tube with different tube inserts[J]. Applied Thermal Engineering, 2009, 29(2-3): 250-258.

    [2] RAHIMI M., SHABANIAN S. R. and ALASAIRAFI A. A. Experimental and CFD studies on heat transfer and friction factor characteristics of a tube equipped with modified twisted tape inserts[J]. Chemical Engineering and Processing, 2009, 48(3): 762-770.

    [3] ZHANG Hua, ZHOU Qiang-tai. Experimental investigation on heat transfer and flow resistance characteristics of smooth round tubes with twisted-tape inserts[J]. Physical Examination and Testing, 2005, 23(5): 15-18(in Chinese).

    [4] KLACZAK A. Heat transfer and pressure drop in tubes with short tabulators[J]. Heat and Mass Transfer, 1996, 31(6): 399-401.

    [5] EIAMASA-ARD S., THIANPONG C. and PETPICES E. et al. Convective heat transfer in a circular tube with short-length twisted tape insert[J]. International Communication in Heat and Mass Transfer, 2009, 36(4): 365-371.

    [6] EIAMSA-ARD S., THIANPONG C. and PROMVONGE P. Experimental investigation of heat transfer and flow friction in a circular tube fitted with regularly spaced twisted tape elements[J]. International Communications in Heat and Mass Transfer, 2006, 33(10): 1225-1233.

    [7] SAHA S. K., DUTTA A. and DHAL S. K. Friction and heat transfer characteristics of laminar swirl flow through a circular tube fitted with regularly spaced twisted tape insert[J]. International Journal of Heat and Mass Transfer, 2001, 44(22): 4211-4223.

    [8] EIAMSA-ARD S., PETHKOOL S. and THIANPONG S. Turbulent flow heat transfer and pressure loss in a double pipe heat exchanger with louvered strip inserts[J]. International Communications in Heat and Mass Transfer, 2008, 35(2): 120-129.

    [9] AHMED M., DEJU L. and SARKAR M. A. R. et al.Heat transfer in turbulent flow through a circular tube with twisted tape inserts[C]. Proceedings of the International Conference on Mechanical Engineering. Dhaka, Bangladesh, 2005, ICME05-TH-08.

    [10] FAHED S. A., CHAKROUN W. Effect of tube-tape clearance on heat transfer for fully developed turbulent flow in a horizontal isothermal tube[J]. International Journal of Heat and Fluid Flow, 1996,17(2): 173-178.

    [11] DATE A. W. Prediction of fully developed flow in a tube containing a twisted tape[J]. International Journal of Heat and Mass Transfer, 1974, 17(8): 845-859.

    [12] EIAMSA-ARD S., WONGCHAREE K. and SRIPATTANAPIPAT S. 3-D Numerical simulation of swirling flow and convective heat transfer in a circular tube induced by means of loose-fit twisted tapes[J]. International Communication in Heat and Mass Transfer, 2009, 36(9): 947-955.

    [13] SAMA P. K., SUBRAMANYAM T. and KISHORE P. S. et al. A new method to predict convective heat transfer in a tube with twisted tape inserts for turbulent flow[J]. International Journal of Thermal Science, 2002, 41(10): 955-960.

    [14] SIVASHANMUGAN P., SURESH S. Experimental studies on heat transfer and friction factor characteristics of turbulent flow through a circular tube fitted with helical screw-tape inserts[J]. Applied Thermal Engineering, 2007, 46(16): 1292-1298.

    [15] MAZEN M., KHADER A. Further understanding of twisted tape inserts effects as tube insert for heat transfer enhancement[J]. Heat and Mass Transfer, 2006, 43(2): 123-134.

    [16] SIVASHANMUGAM P., SURESH S. Experimental studies on heat transfer and friction factor characteristics of turbulent flow through a circular tube fitted with regularly spaced helical screw-tape inserts[J]. Applied Thermal Engineering, 2007, 27(8-9): 1311-1319.

    [17] JIN Zhi-hao, WANG Guan-qing and LIU Jie et al. Numerical simulation of fluid flow characteristics in wavy plates[J]. Journal of Hydrodynamics, Ser. A, 2004, 19(1): 26-30(in Chinese).

    [18] WU Mei-wei, ZHANG Zao-sun. Numerical research on the structure in turbulent pipe flow[J]. Journal of Hydrodynamics, Ser. A, 2002, 17(3): 324-333(in Chinese).

    [19] TANG Zhi-wei, YAN Gui-lan and GAO Li-li. Numerical simulation of heat transfer enhancement for twisted inserts in tubes[J]. Journal of Engineering Thermophysics, 2008, 29(7): 1211-1214(in Chinese).

    [20] SUN Dong-liang, WANG Liang-bi. Numerical simulation of fluid flow and heat transfer in tube inserting twisted-tape[J]. Journal Chemical Industry and Engineering, 2004, 55(9): 1422-1427(in Chinese).

    [21] ZHANG Lin, QIAN Wei-hong. 3D numerical simulation of flow and heat transfer in self-rotating twistedtape-inserted tube[J]. Journal Chemical Industry and Engineering, 2005, 56(9): 1633-1638(in Chinese).

    [22] SARMA P. K., KISHORE P. S. and RAO V. D. et al. A combined approach to predict friction coefficients and convective heat transfer characteristics in a tube with twisted tape inserts for a wide range of Re and Pr[J]. International Journal of Thermal Science, 2005, 44(4): 393-398.

    [23] ZENG Zhuo-xiong. A new turbulence modulation in second-order moment two-phase model and its application to horizontal channel[J]. Journal of Hydrodynamics, 2008 ,20(3): 331-338.

    [24] ZHANG Ming-liang, SHEN Yong-ming. Threedimensional simulation of meandering river based on 3-D RNG k-ε turbulence model[J]. Journal of Hydrodynamics, 2008, 20(4): 116-125.

    [25] LU Chang-gen, CAO Wei-dong and QIAN Jian-hua. A study on numerical method of Navier-Stokes equation and non-linear evolution of the coherent structures in a laminar boundary layer[J]. Journal of Hydrodynamics, Ser. B, 2006 ,18(3): 372-377.

    10.1016/S1001-6058(09)60101-3

    * Project supported by the National Basic Research Program of China (973 Program, Grant No. 2007CB206903).

    Biography: CUI Yong-zhang (1970- ), Male, Ph. D. Candidate, Associate Professor

    TIAN Mao-cheng, E-mail: tianmc65@sdu.edu.cn

    av在线蜜桃| 免费人成视频x8x8入口观看| 欧美高清性xxxxhd video| 18禁在线无遮挡免费观看视频 | 深爱激情五月婷婷| av福利片在线观看| 男人狂女人下面高潮的视频| 欧美在线一区亚洲| 久久精品综合一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 午夜福利在线观看免费完整高清在 | 亚洲专区国产一区二区| 久久人妻av系列| 午夜爱爱视频在线播放| 久久综合国产亚洲精品| 久久精品国产亚洲av香蕉五月| 99视频精品全部免费 在线| 人妻丰满熟妇av一区二区三区| 色av中文字幕| 在线看三级毛片| 99久久无色码亚洲精品果冻| а√天堂www在线а√下载| 俄罗斯特黄特色一大片| 丰满的人妻完整版| 深夜a级毛片| 亚洲电影在线观看av| 亚洲欧美日韩东京热| 天堂影院成人在线观看| 干丝袜人妻中文字幕| videossex国产| a级毛片免费高清观看在线播放| 九九久久精品国产亚洲av麻豆| 97超碰精品成人国产| 日韩 亚洲 欧美在线| 天天躁日日操中文字幕| a级毛片a级免费在线| 99在线人妻在线中文字幕| 久久久久久伊人网av| 91久久精品电影网| 两性午夜刺激爽爽歪歪视频在线观看| 又爽又黄a免费视频| 国产中年淑女户外野战色| 一级毛片久久久久久久久女| 国产精品免费一区二区三区在线| 自拍偷自拍亚洲精品老妇| 国产老妇女一区| 亚洲成av人片在线播放无| 亚洲美女搞黄在线观看 | 亚洲国产精品国产精品| 简卡轻食公司| 国产精品久久视频播放| 日韩强制内射视频| 精品一区二区免费观看| 大型黄色视频在线免费观看| 欧美激情久久久久久爽电影| 国产探花在线观看一区二区| 免费看av在线观看网站| 亚洲精品久久国产高清桃花| av在线天堂中文字幕| 国产成人91sexporn| 亚洲精品一区av在线观看| 亚洲成人av在线免费| 天堂av国产一区二区熟女人妻| 九九爱精品视频在线观看| 别揉我奶头~嗯~啊~动态视频| 欧美在线一区亚洲| 欧美一区二区国产精品久久精品| 日韩精品有码人妻一区| 亚洲精品亚洲一区二区| 九九在线视频观看精品| 免费看光身美女| 99精品在免费线老司机午夜| 中文字幕免费在线视频6| 午夜激情福利司机影院| videossex国产| 99九九线精品视频在线观看视频| 久久久久久久久久黄片| eeuss影院久久| 日韩av不卡免费在线播放| 成年女人看的毛片在线观看| 少妇熟女aⅴ在线视频| 美女被艹到高潮喷水动态| 久久人妻av系列| 成人亚洲精品av一区二区| 亚洲国产色片| 一区二区三区四区激情视频 | 男女那种视频在线观看| 欧美中文日本在线观看视频| 最近在线观看免费完整版| 色播亚洲综合网| 国产精品女同一区二区软件| 深夜精品福利| 黑人高潮一二区| 婷婷六月久久综合丁香| 日本五十路高清| 国产极品精品免费视频能看的| 少妇高潮的动态图| 亚洲精华国产精华液的使用体验 | 人妻久久中文字幕网| 久久99热6这里只有精品| aaaaa片日本免费| 三级毛片av免费| 国产精品一二三区在线看| 中国美女看黄片| 一区二区三区免费毛片| 日日摸夜夜添夜夜爱| 69人妻影院| 欧美一区二区亚洲| 一a级毛片在线观看| 日韩av不卡免费在线播放| 亚洲中文字幕一区二区三区有码在线看| 婷婷亚洲欧美| 国产精品一区二区三区四区免费观看 | 国产色爽女视频免费观看| 精品久久久久久成人av| 老司机福利观看| 亚洲av电影不卡..在线观看| 三级毛片av免费| 国产成人aa在线观看| 国产真实乱freesex| 给我免费播放毛片高清在线观看| 国产成人影院久久av| 亚洲精品影视一区二区三区av| 欧美一区二区亚洲| 听说在线观看完整版免费高清| 变态另类丝袜制服| 亚洲熟妇熟女久久| 天堂动漫精品| 波多野结衣高清作品| 国产一区二区激情短视频| 亚洲av成人av| 亚洲国产欧美人成| 噜噜噜噜噜久久久久久91| 激情 狠狠 欧美| a级毛片a级免费在线| 嫩草影院精品99| 深爱激情五月婷婷| 男女边吃奶边做爰视频| 色吧在线观看| 久久久久久伊人网av| 日韩欧美一区二区三区在线观看| 蜜臀久久99精品久久宅男| 婷婷精品国产亚洲av在线| 神马国产精品三级电影在线观看| 久久人人精品亚洲av| 少妇人妻一区二区三区视频| 久久婷婷人人爽人人干人人爱| 国产亚洲av嫩草精品影院| 神马国产精品三级电影在线观看| 久久久久久九九精品二区国产| 国产三级中文精品| 国产 一区精品| 男人舔女人下体高潮全视频| 少妇被粗大猛烈的视频| 国产私拍福利视频在线观看| 久久久久久久午夜电影| 舔av片在线| av在线播放精品| 99riav亚洲国产免费| 欧美激情在线99| 69人妻影院| av卡一久久| 丝袜美腿在线中文| 亚洲人与动物交配视频| 91久久精品国产一区二区成人| 俄罗斯特黄特色一大片| 俺也久久电影网| 国产乱人偷精品视频| 少妇熟女aⅴ在线视频| 国产精品久久久久久亚洲av鲁大| 国产精品一及| 久久韩国三级中文字幕| 久久精品夜色国产| 观看免费一级毛片| 欧美日韩综合久久久久久| 久久精品国产清高在天天线| 男女之事视频高清在线观看| 麻豆成人午夜福利视频| 91久久精品国产一区二区三区| 少妇的逼好多水| 欧美一区二区亚洲| 国产伦精品一区二区三区视频9| 亚洲成人中文字幕在线播放| 最新中文字幕久久久久| 国产高潮美女av| 久久热精品热| 久久鲁丝午夜福利片| 亚洲成人av在线免费| 99久久精品一区二区三区| 成人二区视频| 国产精品无大码| 91久久精品电影网| 人妻夜夜爽99麻豆av| 色哟哟哟哟哟哟| 精品一区二区三区视频在线观看免费| 又黄又爽又刺激的免费视频.| 国产亚洲欧美98| 毛片一级片免费看久久久久| 亚洲av一区综合| 亚洲成av人片在线播放无| 非洲黑人性xxxx精品又粗又长| 精品无人区乱码1区二区| 久久精品国产鲁丝片午夜精品| 国产中年淑女户外野战色| 久久6这里有精品| 丰满乱子伦码专区| 少妇丰满av| 伊人久久精品亚洲午夜| 国产色爽女视频免费观看| 一本一本综合久久| 久久国产乱子免费精品| 亚洲电影在线观看av| 久久久久国产精品人妻aⅴ院| 国产伦在线观看视频一区| 一本精品99久久精品77| 国产精品久久电影中文字幕| 亚洲成人久久爱视频| 性色avwww在线观看| 久久韩国三级中文字幕| or卡值多少钱| 色综合站精品国产| a级毛片a级免费在线| a级毛片免费高清观看在线播放| 国产一区二区亚洲精品在线观看| 激情 狠狠 欧美| 噜噜噜噜噜久久久久久91| 久久精品综合一区二区三区| 亚州av有码| 一夜夜www| 亚洲婷婷狠狠爱综合网| 夜夜爽天天搞| 两个人视频免费观看高清| 久久久精品94久久精品| 日韩欧美一区二区三区在线观看| 亚洲精品成人久久久久久| 亚洲精品成人久久久久久| 欧美人与善性xxx| 精品久久久久久久久久免费视频| 日本撒尿小便嘘嘘汇集6| 别揉我奶头~嗯~啊~动态视频| 美女cb高潮喷水在线观看| av女优亚洲男人天堂| 亚洲av免费高清在线观看| 一区二区三区免费毛片| 久久午夜亚洲精品久久| 麻豆成人午夜福利视频| 女的被弄到高潮叫床怎么办| 日本黄色片子视频| 俺也久久电影网| 国产亚洲av嫩草精品影院| 在现免费观看毛片| 美女cb高潮喷水在线观看| 久久午夜亚洲精品久久| 天美传媒精品一区二区| 免费在线观看影片大全网站| 人人妻,人人澡人人爽秒播| 亚洲一级一片aⅴ在线观看| 女生性感内裤真人,穿戴方法视频| 精品久久久久久久久av| 一进一出好大好爽视频| 狂野欧美激情性xxxx在线观看| 国内精品一区二区在线观看| 青春草视频在线免费观看| 人人妻人人看人人澡| 国产成人freesex在线 | a级一级毛片免费在线观看| 男人狂女人下面高潮的视频| 一卡2卡三卡四卡精品乱码亚洲| 久久人妻av系列| 看片在线看免费视频| 亚洲天堂国产精品一区在线| 男女视频在线观看网站免费| 婷婷色综合大香蕉| 欧美日韩在线观看h| 深夜a级毛片| 国产一区二区亚洲精品在线观看| 成人av在线播放网站| 干丝袜人妻中文字幕| 精品久久久久久成人av| 国产精品永久免费网站| 又爽又黄a免费视频| 午夜久久久久精精品| 成人鲁丝片一二三区免费| 免费在线观看成人毛片| 国产美女午夜福利| 美女 人体艺术 gogo| aaaaa片日本免费| 美女高潮的动态| 中文字幕精品亚洲无线码一区| 麻豆乱淫一区二区| 国产亚洲欧美98| 精品无人区乱码1区二区| 中文字幕精品亚洲无线码一区| 欧美色欧美亚洲另类二区| 久久99热6这里只有精品| a级毛色黄片| 久久久久久久久久久丰满| 又黄又爽又刺激的免费视频.| 色5月婷婷丁香| 欧美日韩综合久久久久久| 99视频精品全部免费 在线| 国产三级在线视频| 久久精品国产亚洲av香蕉五月| 女人十人毛片免费观看3o分钟| 免费人成视频x8x8入口观看| 欧美色视频一区免费| 国产单亲对白刺激| 中出人妻视频一区二区| 蜜桃久久精品国产亚洲av| 国产久久久一区二区三区| 免费观看精品视频网站| av专区在线播放| 国产久久久一区二区三区| 国产精品电影一区二区三区| 麻豆一二三区av精品| 国产精品亚洲美女久久久| 我的老师免费观看完整版| 国产一区二区在线观看日韩| 亚洲自偷自拍三级| 一级毛片电影观看 | av在线亚洲专区| 欧美人与善性xxx| 网址你懂的国产日韩在线| 九九在线视频观看精品| 日本五十路高清| 久久精品国产亚洲av香蕉五月| 国产精品人妻久久久影院| 国产男人的电影天堂91| 日韩欧美免费精品| 国产片特级美女逼逼视频| 国产中年淑女户外野战色| a级毛色黄片| 日本黄色片子视频| 亚洲不卡免费看| 国产在线精品亚洲第一网站| 黄色一级大片看看| 搞女人的毛片| 高清午夜精品一区二区三区 | 一本一本综合久久| 美女高潮的动态| 亚洲在线自拍视频| 亚洲国产日韩欧美精品在线观看| 日韩在线高清观看一区二区三区| 搡老熟女国产l中国老女人| 国产高清不卡午夜福利| 国产欧美日韩精品一区二区| 亚洲,欧美,日韩| 不卡视频在线观看欧美| 欧美绝顶高潮抽搐喷水| 小说图片视频综合网站| 自拍偷自拍亚洲精品老妇| 亚洲美女视频黄频| 日韩中字成人| 波多野结衣高清作品| 男人舔女人下体高潮全视频| 国产一区亚洲一区在线观看| 偷拍熟女少妇极品色| 美女cb高潮喷水在线观看| 最近在线观看免费完整版| 精品午夜福利视频在线观看一区| 午夜久久久久精精品| 国产91av在线免费观看| 国产在视频线在精品| 午夜久久久久精精品| 在线国产一区二区在线| 伦精品一区二区三区| 亚洲,欧美,日韩| 国产色爽女视频免费观看| 在线国产一区二区在线| 久久久久免费精品人妻一区二区| 赤兔流量卡办理| 秋霞在线观看毛片| 午夜免费激情av| 长腿黑丝高跟| 久久精品久久久久久噜噜老黄 | 在线观看午夜福利视频| 久久99热6这里只有精品| 国产 一区 欧美 日韩| 又黄又爽又刺激的免费视频.| 午夜日韩欧美国产| av在线亚洲专区| 在线天堂最新版资源| 欧美又色又爽又黄视频| 村上凉子中文字幕在线| 久久精品国产自在天天线| 国产亚洲91精品色在线| 亚州av有码| 日本 av在线| 小蜜桃在线观看免费完整版高清| 久久久久久久久中文| 黄色日韩在线| 国产精品综合久久久久久久免费| 亚洲美女黄片视频| 欧美性猛交╳xxx乱大交人| 给我免费播放毛片高清在线观看| 国产aⅴ精品一区二区三区波| 人妻制服诱惑在线中文字幕| 日韩一区二区视频免费看| 99久国产av精品国产电影| 国产精品久久久久久久久免| 男女那种视频在线观看| 99热精品在线国产| 在线观看66精品国产| 久久久午夜欧美精品| 国产精品三级大全| 日韩成人av中文字幕在线观看 | 俺也久久电影网| 国产精品美女特级片免费视频播放器| 成人综合一区亚洲| 波野结衣二区三区在线| 色哟哟·www| 国产精华一区二区三区| 日本三级黄在线观看| 99久久精品一区二区三区| 不卡一级毛片| 色吧在线观看| 18禁裸乳无遮挡免费网站照片| 国产精品一二三区在线看| 免费一级毛片在线播放高清视频| 成人三级黄色视频| a级毛片免费高清观看在线播放| 春色校园在线视频观看| 晚上一个人看的免费电影| 国产亚洲精品综合一区在线观看| 免费看光身美女| 欧美又色又爽又黄视频| 男女下面进入的视频免费午夜| 男女之事视频高清在线观看| 精品日产1卡2卡| 国产视频一区二区在线看| 91午夜精品亚洲一区二区三区| 免费观看在线日韩| 久久精品国产亚洲av香蕉五月| 亚洲高清免费不卡视频| 国产亚洲精品av在线| 国产男靠女视频免费网站| 听说在线观看完整版免费高清| 午夜激情欧美在线| 亚洲国产精品成人久久小说 | 波野结衣二区三区在线| av福利片在线观看| 国产精品无大码| 一本久久中文字幕| 国产精品一区二区免费欧美| 熟女电影av网| 在线观看一区二区三区| 亚洲精品久久国产高清桃花| 尤物成人国产欧美一区二区三区| 伦理电影大哥的女人| 国产爱豆传媒在线观看| 久久久精品94久久精品| 熟女人妻精品中文字幕| 美女高潮的动态| 日本成人三级电影网站| 在线观看一区二区三区| 嫩草影院新地址| 精品人妻熟女av久视频| 国产伦精品一区二区三区四那| 日本黄大片高清| 精品一区二区三区视频在线观看免费| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲第一电影网av| 两性午夜刺激爽爽歪歪视频在线观看| 日日啪夜夜撸| 中文字幕熟女人妻在线| 精品无人区乱码1区二区| 国产成人a区在线观看| 日本与韩国留学比较| 国产白丝娇喘喷水9色精品| av国产免费在线观看| 午夜影院日韩av| 亚洲自偷自拍三级| a级毛片免费高清观看在线播放| 午夜亚洲福利在线播放| 能在线免费观看的黄片| 天天一区二区日本电影三级| 男女啪啪激烈高潮av片| 亚州av有码| 久久国内精品自在自线图片| 好男人在线观看高清免费视频| 国产 一区 欧美 日韩| 在线观看免费视频日本深夜| 国产女主播在线喷水免费视频网站 | 十八禁网站免费在线| 午夜福利在线观看吧| 久久精品夜色国产| 日韩在线高清观看一区二区三区| 亚洲精品亚洲一区二区| 亚洲自偷自拍三级| 国产亚洲精品久久久com| 国产 一区 欧美 日韩| 亚洲国产高清在线一区二区三| 欧美日韩精品成人综合77777| 男女之事视频高清在线观看| 国产精品野战在线观看| 午夜福利在线在线| 综合色av麻豆| 亚洲成人久久爱视频| 欧美高清成人免费视频www| 国产免费一级a男人的天堂| 国产一区二区激情短视频| 国产乱人偷精品视频| 国产成人精品久久久久久| 国产国拍精品亚洲av在线观看| 国产淫片久久久久久久久| 日韩一区二区视频免费看| 欧美+亚洲+日韩+国产| 一级毛片电影观看 | 久久99热这里只有精品18| 欧美在线一区亚洲| 尤物成人国产欧美一区二区三区| 亚洲人成网站在线播放欧美日韩| 丰满人妻一区二区三区视频av| 中国美女看黄片| 一卡2卡三卡四卡精品乱码亚洲| 久久热精品热| 欧美性猛交╳xxx乱大交人| 日本黄色片子视频| 不卡视频在线观看欧美| av天堂在线播放| 免费大片18禁| 国产精品美女特级片免费视频播放器| 真人做人爱边吃奶动态| 99国产极品粉嫩在线观看| 欧美日韩乱码在线| 日本三级黄在线观看| 国产熟女欧美一区二区| 国产精品国产三级国产av玫瑰| 免费看日本二区| 91狼人影院| 国产高清激情床上av| 亚洲四区av| 赤兔流量卡办理| 亚洲欧美日韩无卡精品| 午夜爱爱视频在线播放| 91狼人影院| 久久这里只有精品中国| 国产亚洲精品久久久com| aaaaa片日本免费| 内射极品少妇av片p| 免费av毛片视频| 国产精品久久久久久久久免| 在线a可以看的网站| 国产av不卡久久| 秋霞在线观看毛片| 日韩成人伦理影院| 男人舔女人下体高潮全视频| 一本一本综合久久| 久久亚洲国产成人精品v| 此物有八面人人有两片| 日韩欧美免费精品| 18禁在线无遮挡免费观看视频 | 欧美潮喷喷水| 自拍偷自拍亚洲精品老妇| 少妇裸体淫交视频免费看高清| 亚洲国产精品久久男人天堂| 我的老师免费观看完整版| 久久人人爽人人爽人人片va| 女人被狂操c到高潮| 看十八女毛片水多多多| 国产不卡一卡二| 干丝袜人妻中文字幕| 国产精品一区二区三区四区免费观看 | 国产av麻豆久久久久久久| av在线观看视频网站免费| 国产精品,欧美在线| 高清毛片免费观看视频网站| 亚洲天堂国产精品一区在线| 在线观看av片永久免费下载| 天美传媒精品一区二区| 国产精品不卡视频一区二区| 热99在线观看视频| 性色avwww在线观看| 97超碰精品成人国产| 九九久久精品国产亚洲av麻豆| 色av中文字幕| 国产老妇女一区| 我要看日韩黄色一级片| 在线播放国产精品三级| 神马国产精品三级电影在线观看| 色播亚洲综合网| 99久久九九国产精品国产免费| 精品午夜福利在线看| 最近的中文字幕免费完整| 免费av不卡在线播放| 黄片wwwwww| 亚洲欧美日韩卡通动漫| 国产欧美日韩精品一区二区| av国产免费在线观看| 亚洲最大成人手机在线| 国产又黄又爽又无遮挡在线| 99国产极品粉嫩在线观看| 久久精品国产亚洲网站| 国产老妇女一区| av在线天堂中文字幕| 国产 一区 欧美 日韩| 22中文网久久字幕| 日日干狠狠操夜夜爽| 青春草视频在线免费观看| 五月伊人婷婷丁香| 午夜精品国产一区二区电影 | 欧美+日韩+精品| АⅤ资源中文在线天堂| 国产成人a区在线观看| 自拍偷自拍亚洲精品老妇| 最近手机中文字幕大全| 日本熟妇午夜| 国产高清视频在线观看网站| 成人美女网站在线观看视频| 深夜a级毛片| 国产真实乱freesex| 日本成人三级电影网站| 午夜免费激情av| 国产精品乱码一区二三区的特点| 哪里可以看免费的av片|