• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NUMERICAL STUDY OF CAVITATION ON THE SURFACE OF THE GUIDE VANE IN THREE GORGES HYDROPOWER UNIT*

    2010-05-06 08:22:26PENGYuchengCHENXiyang

    PENG Yu-cheng, CHEN Xi-yang

    School of energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, E-mail: fluidstar@smail.hust.edu.cn

    CAO Yan

    College of Electronic Information Engineering, Wuhan Polytechnic, Wuhan, 430074, China

    HOU Guo-xiang

    School of Traffic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

    NUMERICAL STUDY OF CAVITATION ON THE SURFACE OF THE GUIDE VANE IN THREE GORGES HYDROPOWER UNIT*

    PENG Yu-cheng, CHEN Xi-yang

    School of energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China, E-mail: fluidstar@smail.hust.edu.cn

    CAO Yan

    College of Electronic Information Engineering, Wuhan Polytechnic, Wuhan, 430074, China

    HOU Guo-xiang

    School of Traffic Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

    (Received March 7, 2010, Revised August 30, 2010)

    Large-area erosions such as rust and obvious cavitation were found on the surface of the guide vane in Three Gorges hydropower units. A numerical explanation of the cavitation is given in this article. At first, based on the characteristic performance curves of the prototype hydro-turbine supplied by ALSTOM together with the actual operating conditions, an operating point is chosen for numerical analysis using the Reynolds-Averaged Navier-Stokes (RANS) equations. The flow passages from the inlet of the spiral case to the outlet of the draft tube are included in the computational domain. The results show that the static pressure on the guide vane surface is much higher than the critical pressure of cavitation. Secondly, a tiny protrusion on the guide vane surface is considered and the problem is simplified to a 2-D problem to study the local detailed flow near the guide vane surface. The protrusion is 0.5 mm in height and is 5.0 mm in width. On the basis of the results of RANS simulations, the 2-D problem is studied using the Large Eddy Simulation (LES). It is shown that there exists a region in which the static pressure reaches a level below the vapor pressure of the water. Thirdly, a cavitation model is included for the 0.5 mm protrusion case and another tiny pit case, with a tiny pit 0.3 mm in depth and 1.0 mm in width. The results show that vapor bubble exists at the protrusion entrance and the pit exit as the low pressure regions.

    cavitation, guide vane, numerical analysis

    1. Introduction

    Static pressure governs the process of vapor bubble formation or boiling. In most cases, cavitation can occur near the fast moving blades of the turbine where the local dynamic head increases due to the action of blades which reduces the static pressure. Cavitation also occurs at the exit of the turbine when the water loses the major part of its pressure heads and any increase in dynamic head will lead to a decrease of static pressure and in its turn to cavitation.

    Cavitation seldom occurs on the guide vane surface. However, large-area erosions, including roughened spots, rust and obvious cavitation erosions, were found on the suction surface of the guide vane in the Three Gorges hydropower units. The erosions of rust, damaged coating and bluing can be seen in Figs.1(a), 1(b) and 1(c), respectively. The bluing shown in Fig.1(c) is at the cavitation erosion tails.

    Model tests are generally used to detect cavitation in a hydraulic turbine[1,2]and to investigate the cavitation structures[3,4]. On the other hand, the CFD is also widely and successfully used in cavitationstudies, and as a useful tool, can give realistic results in cavitation simulations[5-7]and predictions[8-10].

    The article presents a study of the cavitation occurred on the guide vane surface by using numerical methods with STAR-CD commercial code. The study is divided into two steps. The first step is a steady-state RANS simulation with complete flow passages from the inlet of the spiral case to the outlet of the draft tube, to obtain the contour of the static pressure and the velocity magnitude and to verify the possibility of cavitation on a smooth guide vane surface. In the second step, a transient LES method is used for a tiny protrusion and a tiny pit on the guide vane surface, to simulate the detailed flow near the guide vane surface and to investigate the difference between the scraggly and the smooth guide vane surfaces.

    Fig.1 Erosions on guide vane surface

    2. Numerical analysis based on RANS equations

    2.1 Geometry and discretization

    The full 3-D geometry of the Three Gorges ALSTOM hydro-unit shown in Fig.2 from the spiral case to the draft tube is included for the numerical analysis to obtain the pressure distribution near the guide vane. The up right corner is the runner’s geometry, of 10.5 m in diameter.

    The flow passage from the inlet of the spiral case to the outlet of the draft tube is the computational domain, which is discretized by a multi-block structured mesh. Figure 3 displays the mesh for the spiral case. Figure 4 displays the mesh for the stay vane, the guide vane and the runner. The number of stay vane blades and guide vane blades is 24. Five different hydrofoils are included in the stay vane. The number of runner blades is 15. The guide opening in Fig.2 and Fig.4 is 86%. Mesh for the draft tube is displayed in Fig.5. The total number of all meshes is 1 850 760. However, the mesh in Fig.3 to Fig.5 is the initial one, which will be adaptively refined according to yplus values.

    Fig.2 Full 3-D geometry and runner’s geometry (up right corner)

    Fig.3 Mesh for spiral case

    Fig.4 Mesh for stay vane, guide vane and runner

    Fig.5 Mesh for draft tube

    2.2 Operating condition and boundary conditions

    The operating condition listed in Table 1 is chosen for the RANS simulation, which is based on the actual operating conditions and the performance curves of the prototype turbine supplied by ALSTOM Company.

    Table 1 operating condition for RANS simulation

    Table 2 Boundary conditions

    Given the head loss in the penstock, together with the formula as shown below and Bernoulli equation, the flow rate and the pressure at the inlet of the spiral case can be obtained, which are listed in Table 2, together with the runner speed. The efficiency is expressed as

    where η denotes the efficiency, P the output

    Fig.6 Refined mesh near guide vane surface

    Fig.7 y+distribution on a guide vane surface

    According to the formula in Ref.[12], the performance at the operating condition listed in Table 1 can be calculated as shown in the following Table 3.In addition, some other values can be obtained, for example, the thrust force acting on the runner along the axis is 12 959.81 kN, and the radial force is 208.84 kN.

    Table 3 Simulated performance

    It is shown that the simulated results in Table 3 are much closer to those in Table 1.

    2.4 Pressure distribution

    The static pressure contour on the guide vane surface is displayed in Fig.8, where the lowest pressure on the guide vane lower exit surface is about 4.3 atmospheres, as is far above the vaporization pressure 2 370 Pa.

    The lowest pressure in the full computational domain is to be found at the exit edge and the suction side of the runner blade. The lowest pressure is lower than 2 370 Pa, so cavitation may occur. Iso-surface of 2 370 Pa in the computational domain is displayed as a black area in Fig.9.

    As described above, it is impossible to have conventional cavitation on a smooth guide vane, unless the pressure in all runner passages is lower than the vapor pressure of water. However, if there are some tiny protrusions or tiny pits on the guide vane surface, it will be another story. The following section will discuss the detailed flow on the guide vane surface, where a tiny protrusion and a tiny pit is considered using the LES method and the cavitation model.

    Fig.8 Pressure contour on guide vane surface

    Fig.9 Iso-surface of 2 370 Pa near runner blade

    3. Transient analysis based on LES

    A LES in short, is a computation in which the large eddies are computed and the smallest subgrid-scale (SGS) eddies are modeled. Literature[13]conducted a numerical modeling study using the 2-D LES approach to evaluate the wind effects on the transport and dispersion processes close to a covered roadway. The LES results, although only two dimensional, are in a good quantitative agreement with the experimental data and only slightly overestimate the concentration levels. The covered roadway is similar with the geometry used in our article. Therefore the 2-D LES will be used in our study. Further investigations will be conducted in order to compare the results of 2-D and 3-D computations.

    3.1 Geometry and boundaries

    A tiny protrusion is considered on the guide vane surface in this section. The geometry is simplified to a 2-D problem as shown in Fig.10, together with the primary direction of flow.

    Fig.10 Geometry and boundaries (mm)

    At the entrance of the geometry, the velocity inlet boundary is specified. At the exit is the outlet boundary. At the lower wall, the standard wall function is used. In addition, at the upper wall, the frictionless slip wall is assumed to avoid its influence. The location of the reference pressure, Pref, is marked in Fig.10.

    Structured mesh is used and the meshes near theprotrusion are refined as shown in Fig. 11. The total number of finite volume cells is 86 580.

    Fig.11 Meshes near protrusion

    The velocity at the entrance and the reference pressure are chosen according to the RANS results. The velocity magnitude distribution and the pressure distribution at the mid section plane of the guide vane is shown in Fig.12 and Fig.13, respectively. It can be seen that the velocity at the inlet boundary is 21 m/s, and the pressure at the reference location (see Fig.10) is 6.4×105Pa.

    Fig.12 Velocity magnitude distribution at the mid section plane of the guide vane

    Fig.13 Pressure distribution at the mid section plane of the guide vane

    3.2 Results without using the cavitation model

    The Smagorinsky mode[14]is used to solve this problem. To obtain the best results from LES, second-order schemes are used for both the temporal and spatial discretization, with time step of 1×10-6s.

    Figure 14 shows the contour plot of the instantaneous static pressure. The deep color denotes the low pressure. The region in which the static pressure reaches a level below the vapor pressure of the water can be distinguished.

    Fig.14 Contour plot of the instantaneous static pressure without using the cavitation model

    3.3 Results obtained by using the cavitation model

    In this case, the barotropic model[15]is used to simulate cavitation. The result is displayed in Fig.15. Deep color means a low pressure. It is shown that there is a vapor bubble at the entrance of the protrusion.

    Fig.15 Contour plot of pressure obtained by using the cavitation model

    Fig.16 Contour plot of pressure

    3.4 Another case

    In this case, a 2-D tiny pit of 1 mm in width and 0.3 mm in depth is considered. Other geometry and boundary conditions are the same as those in Fig.10. The pressure contour at an instant is obtained by usingLES and the cavitation model is shown in Fig.16. Deep color means a low pressure in this figure. It is shown that there exists a vapor bubble at the exit of the pit.

    4. Conclusions

    The RANS equations are solved in the computational domain comprising the flow passages from the inlet of the spiral case to the outlet of the draft tube. An operation condition is chosen for the simulation based on the actual operation conditions and the characteristic performance curves of prototype hydro turbine supplied by ALSTOM. It is found that the simulated performance agrees well with the actual one. Meanwhile, the contour of the static pressure on the guide vane surface indicates that it is impossible to have conventional cavitation on a smooth guide vane.

    However, if there are tiny protrusions or tiny pits on the guide vane surface, it will be another story. Considering a tiny protrusion of 5 mm in width and 0.5 mm in height and a tiny pit of 1.0 mm in width and 0.3 mm in depth on the guide vane surface, the detailed flow near the protrusion and the pit is computed using the LES method. The boundary conditions are determined by the pressure contour and the velocity magnitude contour at the mid section of the guide vane obtained from the RANS simulation. The LES results show that there is a region in which the absolute static pressure is under the vapor pressure of the water. Further simulations by using the cavitation model show that there are vapor bubbles in the flow domain. Therefore, it can be said that the cavitation will occur only if the guide vane surface is scraggly, such as with deciduous coat or tiny pits caused by silt cutting.

    [1] ESCALER X., EGUSQUIZA E. and FARHAT M. et al. Detection of cavitation in hydraulic turbines[J]. Mechanical Systems and Signal Processing, 2006, 20(4): 983-1007.

    [2] MASJEDIAN JAZI A., RAHIMZADEH H. Detecting cavitation in globe valves by two methods: Characteristic diagrams and acoustic analysis[J]. Applied Acoustics, 2009, 70(11-12): 1440-1445.

    [3] METTIN R., LUTHER S. and OHL C. D. et al. Acoustic cavitation structures and simulations by a particle model[J]. Ultrasonics Sonochemistry, 1999, 6(1-2): 25-29.

    [4] DULAR M., BACHERT B. and STOFFEL B. et al. Relationship between cavitation structures and cavitation damage[J]. Wear, 2004, 257(11): 1176-1184.

    [5] LIU De-min, LIU Shu-hong and WU Yu-lin et al. LES numerical simulation of cavitation Bubble shedding on ALE 25 and ALE 15 hydrofoils[J]. Journal of Hydrodynamics, 2009, 21(6): 807-813.

    [6] WANG G., OSTOJA-STARZEWSKI M. Large eddy simulation of a sheet/cloud cavitation on a NACA0015 hydrofoil[J]. Applied Mathematical Modelling, 2007, 31(3): 417-447.

    [7] POUFFARY B., PATELLA R. F. and REBOUD J. L. et al. Numerical simulation of 3D cavitating flows: Analysis of cavitation head drop in turbomachinery[J]. Journal of Fluids Engineering, 2008, 130: 061301.

    [8] PARK K., SEOL H. and CHOI W. et al. Numerical prediction of tip vortex cavitation behavior and noise considering nuclei size and distribution[J]. Applied Acoustics, 2009, 70(5): 674-680.

    [9] HATTORI S., KISHIMOTO M. Prediction of cavitation erosion on stainless steel components in centrifugal pumps[J]. Wear, 2008, 265(11-12): 1870-1874.

    [10] YE Jin-ming, XIONG Ying. Prediction of podded propeller cavitation using an unsteady surface panel method[J]. Journal of Hydrodynamics, 2008, 20(6): 790-796.

    [11] MENTER F. R. Zonal two equation k-ω turbulence models for aerodynamic flows[C]. Proc. 24th Fluid Dynamics Conference. Orlando, Florida, USA, 1993, AIAA 93-2906.

    [12] PENG Yu-cheng. Research on the abnormal vibration of unit 6 of the Three Gorges Left Bank Station under small guide opening conditions[D]. Ph. D. Thesis, Wuhan: Huazhong University of Science and Technology, 2007(in Chinese).

    [13] LAATAR A. H., BENAHMED M. and BELGHITH A. et al. 2D large eddy simulation of pollutant dispersion around a covered roadway[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90: 617-637.

    [14] SMAGORINSKY J. General circulation experiments with the primitive equations, Part I: The basic experiment[J]. Mon. Weather Rev., 1963, 91(3): 99-115.

    [15] SCHMIDT D. P., RUTLAND C. J. and CORRADINI M. L. A numerical study of cavitating flow through various nozzle shapes[J]. SAE Trans., 1997, 106(3):1664-1673.

    10.1016/S1001-6058(09)60106-2

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 50975103 and 51006039).

    Biography: PENG Yu-cheng (1975-), Male, Ph. D., Lecturer

    HOU Guo-xiang, E-mail: houguoxiang@163.com

    757午夜福利合集在线观看| 日韩成人在线观看一区二区三区| 亚洲,欧美精品.| 一夜夜www| 三级毛片av免费| 别揉我奶头~嗯~啊~动态视频| 91在线精品国自产拍蜜月 | 99热精品在线国产| 亚洲一区二区三区色噜噜| 九九久久精品国产亚洲av麻豆 | 亚洲av片天天在线观看| 日韩免费av在线播放| 国产私拍福利视频在线观看| 九九热线精品视视频播放| 午夜a级毛片| 日韩欧美国产一区二区入口| 久久精品91蜜桃| 国产男靠女视频免费网站| 亚洲精品美女久久av网站| 日韩高清综合在线| 亚洲在线自拍视频| 每晚都被弄得嗷嗷叫到高潮| 色综合站精品国产| 99热6这里只有精品| 免费观看精品视频网站| 老汉色∧v一级毛片| 免费电影在线观看免费观看| 好男人在线观看高清免费视频| 制服人妻中文乱码| 国产一区二区三区视频了| 亚洲激情在线av| 久久久久久久精品吃奶| 黄色丝袜av网址大全| 欧美不卡视频在线免费观看| 色综合亚洲欧美另类图片| 欧美在线一区亚洲| 精品久久久久久久久久久久久| 亚洲午夜精品一区,二区,三区| 一级a爱片免费观看的视频| 免费看美女性在线毛片视频| 欧美成人免费av一区二区三区| 亚洲专区字幕在线| 美女午夜性视频免费| 日本a在线网址| 又爽又黄无遮挡网站| 久久久久免费精品人妻一区二区| 色在线成人网| 久久99热这里只有精品18| 午夜亚洲福利在线播放| 午夜福利成人在线免费观看| 欧美日韩综合久久久久久 | 99久久国产精品久久久| 波多野结衣巨乳人妻| 老熟妇乱子伦视频在线观看| 99热这里只有是精品50| 午夜日韩欧美国产| 久久人人精品亚洲av| 变态另类丝袜制服| 99久久精品国产亚洲精品| 人人妻人人看人人澡| 好男人电影高清在线观看| 国产精品九九99| 操出白浆在线播放| 亚洲无线观看免费| 国产精品香港三级国产av潘金莲| 午夜免费激情av| 级片在线观看| 国产免费男女视频| 国产极品精品免费视频能看的| 国产精品综合久久久久久久免费| 国产黄a三级三级三级人| 久9热在线精品视频| 看免费av毛片| av中文乱码字幕在线| 国内毛片毛片毛片毛片毛片| 又爽又黄无遮挡网站| 国产精品乱码一区二三区的特点| 欧美午夜高清在线| 欧美日韩福利视频一区二区| 搡老熟女国产l中国老女人| 亚洲真实伦在线观看| 女生性感内裤真人,穿戴方法视频| 99热只有精品国产| a级毛片a级免费在线| 亚洲国产色片| 亚洲一区二区三区不卡视频| 欧美av亚洲av综合av国产av| 18禁美女被吸乳视频| 欧美极品一区二区三区四区| 网址你懂的国产日韩在线| 九九久久精品国产亚洲av麻豆 | 国内精品一区二区在线观看| 热99在线观看视频| 久久午夜亚洲精品久久| 国产午夜精品论理片| 精品久久久久久,| 最近最新中文字幕大全免费视频| 日本一本二区三区精品| 99国产极品粉嫩在线观看| 国产精品av久久久久免费| 美女高潮的动态| 又黄又爽又免费观看的视频| 久久精品夜夜夜夜夜久久蜜豆| 免费搜索国产男女视频| 欧洲精品卡2卡3卡4卡5卡区| 日本黄色视频三级网站网址| 国产av不卡久久| 久久久久九九精品影院| 欧美成人一区二区免费高清观看 | 亚洲中文字幕一区二区三区有码在线看 | 国产高清有码在线观看视频| 欧美乱妇无乱码| 亚洲色图 男人天堂 中文字幕| 国产成人影院久久av| 国产成人啪精品午夜网站| 又黄又爽又免费观看的视频| 中文字幕人妻丝袜一区二区| xxxwww97欧美| 国产熟女xx| 欧美+亚洲+日韩+国产| 欧美一区二区国产精品久久精品| 亚洲精品456在线播放app | 久久久国产成人精品二区| 国产久久久一区二区三区| 成年版毛片免费区| 亚洲,欧美精品.| tocl精华| 国产av麻豆久久久久久久| 日韩免费av在线播放| 久久久精品欧美日韩精品| 丝袜人妻中文字幕| 制服丝袜大香蕉在线| 成年人黄色毛片网站| 怎么达到女性高潮| 亚洲自拍偷在线| 精品免费久久久久久久清纯| 精品久久久久久成人av| 动漫黄色视频在线观看| 亚洲精品色激情综合| 成人午夜高清在线视频| 亚洲国产欧美一区二区综合| 国产欧美日韩一区二区精品| 国产亚洲精品综合一区在线观看| 最好的美女福利视频网| 国产精品久久久久久人妻精品电影| 欧美国产日韩亚洲一区| 999精品在线视频| 99在线人妻在线中文字幕| 成人av在线播放网站| 一级毛片高清免费大全| 一a级毛片在线观看| 麻豆av在线久日| av黄色大香蕉| 男人舔女人的私密视频| 女生性感内裤真人,穿戴方法视频| 免费观看人在逋| 欧美xxxx黑人xx丫x性爽| 法律面前人人平等表现在哪些方面| 久久香蕉精品热| 久久久水蜜桃国产精品网| e午夜精品久久久久久久| 曰老女人黄片| 亚洲18禁久久av| 老司机午夜十八禁免费视频| 亚洲人成网站在线播放欧美日韩| 国产精品精品国产色婷婷| 中出人妻视频一区二区| 成人av一区二区三区在线看| 亚洲国产欧美一区二区综合| 亚洲午夜理论影院| 国产91精品成人一区二区三区| 亚洲成人久久爱视频| 搞女人的毛片| 亚洲精品国产精品久久久不卡| 最新美女视频免费是黄的| 久久热在线av| 欧美日韩国产亚洲二区| 在线永久观看黄色视频| 日本黄色片子视频| 国产一区二区三区视频了| 香蕉丝袜av| 国产aⅴ精品一区二区三区波| 999久久久国产精品视频| 欧美zozozo另类| 日韩大尺度精品在线看网址| 成人三级黄色视频| 国产精华一区二区三区| 色老头精品视频在线观看| 国产一区在线观看成人免费| 久久这里只有精品中国| 俺也久久电影网| 国产亚洲精品综合一区在线观看| 88av欧美| 欧洲精品卡2卡3卡4卡5卡区| 伊人久久大香线蕉亚洲五| 色播亚洲综合网| 免费在线观看日本一区| 国产高清激情床上av| 在线观看日韩欧美| 亚洲专区国产一区二区| 午夜福利免费观看在线| 一本精品99久久精品77| 巨乳人妻的诱惑在线观看| 成人无遮挡网站| 亚洲第一电影网av| 啦啦啦韩国在线观看视频| 一区二区三区激情视频| 叶爱在线成人免费视频播放| 精品国产乱子伦一区二区三区| 亚洲国产精品999在线| 黄片大片在线免费观看| 岛国在线观看网站| 久久精品国产清高在天天线| 亚洲欧美日韩卡通动漫| 两人在一起打扑克的视频| 韩国av一区二区三区四区| 亚洲 欧美 日韩 在线 免费| 草草在线视频免费看| tocl精华| 麻豆成人av在线观看| 久久久国产精品麻豆| 色尼玛亚洲综合影院| 嫩草影视91久久| 又大又爽又粗| 日本熟妇午夜| 99国产综合亚洲精品| 亚洲精品乱码久久久v下载方式 | 黄色女人牲交| 日韩欧美免费精品| a级毛片在线看网站| 男女那种视频在线观看| 亚洲av成人不卡在线观看播放网| 国产精品爽爽va在线观看网站| 两人在一起打扑克的视频| 久久精品国产亚洲av香蕉五月| 亚洲av日韩精品久久久久久密| 亚洲成a人片在线一区二区| 国产免费男女视频| 日本 av在线| a在线观看视频网站| 国产伦精品一区二区三区四那| 欧美日本亚洲视频在线播放| 国产成人精品久久二区二区91| 成人18禁在线播放| 亚洲一区二区三区色噜噜| 亚洲精品国产精品久久久不卡| 亚洲欧美激情综合另类| 两性午夜刺激爽爽歪歪视频在线观看| 国产不卡一卡二| 久久天躁狠狠躁夜夜2o2o| 99热这里只有是精品50| 国产爱豆传媒在线观看| 国产精品女同一区二区软件 | 在线十欧美十亚洲十日本专区| 国产主播在线观看一区二区| 成人无遮挡网站| 啦啦啦观看免费观看视频高清| 老熟妇仑乱视频hdxx| 国产一区二区三区在线臀色熟女| 国产单亲对白刺激| 成人国产综合亚洲| 久久婷婷人人爽人人干人人爱| 亚洲精品久久国产高清桃花| 欧美一级a爱片免费观看看| 又粗又爽又猛毛片免费看| 黄色视频,在线免费观看| 成人三级做爰电影| 国产亚洲av高清不卡| 日本精品一区二区三区蜜桃| 好男人在线观看高清免费视频| 中文字幕av在线有码专区| 亚洲成人精品中文字幕电影| 日韩av在线大香蕉| av黄色大香蕉| 久久久久久九九精品二区国产| 99国产精品一区二区蜜桃av| 亚洲一区高清亚洲精品| 中文字幕最新亚洲高清| 日本熟妇午夜| 亚洲欧美日韩无卡精品| 麻豆国产97在线/欧美| 亚洲精品久久国产高清桃花| 观看免费一级毛片| 老司机在亚洲福利影院| 亚洲国产精品sss在线观看| 日本免费a在线| av女优亚洲男人天堂 | 中文字幕人成人乱码亚洲影| 淫秽高清视频在线观看| 最近在线观看免费完整版| 久久热在线av| 老熟妇乱子伦视频在线观看| 五月伊人婷婷丁香| 久久久久久久精品吃奶| www国产在线视频色| 在线a可以看的网站| 亚洲熟妇中文字幕五十中出| 精品一区二区三区视频在线 | 激情在线观看视频在线高清| 国产精品一及| 欧美日韩一级在线毛片| 香蕉久久夜色| 精品国产三级普通话版| 给我免费播放毛片高清在线观看| 亚洲av中文字字幕乱码综合| 成人国产一区最新在线观看| 国内毛片毛片毛片毛片毛片| 99久国产av精品| 亚洲精品456在线播放app | 亚洲色图av天堂| av中文乱码字幕在线| 最近视频中文字幕2019在线8| 一卡2卡三卡四卡精品乱码亚洲| 全区人妻精品视频| 床上黄色一级片| 精品日产1卡2卡| 亚洲中文字幕日韩| 成年女人永久免费观看视频| xxxwww97欧美| 老熟妇乱子伦视频在线观看| 国产91精品成人一区二区三区| 可以在线观看的亚洲视频| 中文资源天堂在线| 亚洲国产看品久久| 午夜福利视频1000在线观看| 久久久久久久久中文| 欧美av亚洲av综合av国产av| 亚洲精品久久国产高清桃花| 丁香六月欧美| 国产又色又爽无遮挡免费看| 国产亚洲av嫩草精品影院| 99久久99久久久精品蜜桃| 99re在线观看精品视频| 后天国语完整版免费观看| 搡老熟女国产l中国老女人| 久久99热这里只有精品18| 国产真实乱freesex| 成人高潮视频无遮挡免费网站| 久久久久久久久久黄片| aaaaa片日本免费| 国产精品国产高清国产av| 岛国视频午夜一区免费看| 亚洲一区高清亚洲精品| 精品不卡国产一区二区三区| 亚洲国产欧美人成| 精品午夜福利视频在线观看一区| 精品国产超薄肉色丝袜足j| 久久中文字幕一级| 国产aⅴ精品一区二区三区波| 婷婷精品国产亚洲av在线| 日本 欧美在线| 亚洲国产欧美网| 久久久成人免费电影| 国产麻豆成人av免费视频| 99国产精品一区二区三区| 深夜精品福利| 国产日本99.免费观看| 亚洲人成网站在线播放欧美日韩| 精品久久久久久久毛片微露脸| 99热这里只有精品一区 | 国产精品日韩av在线免费观看| 午夜福利成人在线免费观看| 国产精品综合久久久久久久免费| 日本a在线网址| 精品国产乱子伦一区二区三区| 99re在线观看精品视频| 国产精华一区二区三区| 欧美日韩国产亚洲二区| 五月玫瑰六月丁香| 美女高潮的动态| 国产一级毛片七仙女欲春2| 叶爱在线成人免费视频播放| 国产 一区 欧美 日韩| 午夜福利18| 在线观看日韩欧美| 欧美日韩精品网址| 国产精品日韩av在线免费观看| 国产激情久久老熟女| 日韩人妻高清精品专区| 欧美xxxx黑人xx丫x性爽| 香蕉久久夜色| 深夜精品福利| 一卡2卡三卡四卡精品乱码亚洲| 99久久久亚洲精品蜜臀av| 亚洲欧美日韩卡通动漫| 国产精品野战在线观看| 久久99热这里只有精品18| 久久久久性生活片| 成年女人看的毛片在线观看| 日本免费a在线| 国产激情欧美一区二区| 国产真人三级小视频在线观看| 18禁黄网站禁片午夜丰满| 国内精品一区二区在线观看| 床上黄色一级片| 在线播放国产精品三级| 人人妻人人澡欧美一区二区| 99riav亚洲国产免费| 黑人操中国人逼视频| 岛国视频午夜一区免费看| 国产69精品久久久久777片 | 久久天躁狠狠躁夜夜2o2o| 久久精品国产综合久久久| 宅男免费午夜| 亚洲第一欧美日韩一区二区三区| 三级国产精品欧美在线观看 | 欧美日韩瑟瑟在线播放| 亚洲无线在线观看| 久久人妻av系列| 日韩欧美精品v在线| 好男人在线观看高清免费视频| 精品福利观看| 淫秽高清视频在线观看| 级片在线观看| 午夜影院日韩av| 国产亚洲av嫩草精品影院| 色老头精品视频在线观看| 成人特级av手机在线观看| 亚洲av成人精品一区久久| 国产精品av视频在线免费观看| 亚洲成人久久爱视频| 黄色日韩在线| 91在线精品国自产拍蜜月 | 老熟妇乱子伦视频在线观看| 国产一区二区三区在线臀色熟女| 中文在线观看免费www的网站| 91av网一区二区| 午夜激情欧美在线| 精品国产亚洲在线| 夜夜爽天天搞| 亚洲一区二区三区不卡视频| 久久香蕉国产精品| 人妻丰满熟妇av一区二区三区| 色噜噜av男人的天堂激情| www.精华液| 国产爱豆传媒在线观看| 久久天躁狠狠躁夜夜2o2o| 国产精品99久久久久久久久| 女生性感内裤真人,穿戴方法视频| 国产高清videossex| 一a级毛片在线观看| 日本撒尿小便嘘嘘汇集6| 在线观看免费视频日本深夜| 91在线精品国自产拍蜜月 | 国产精品99久久99久久久不卡| 日韩欧美免费精品| 99久久精品一区二区三区| 宅男免费午夜| 亚洲精品乱码久久久v下载方式 | 欧美三级亚洲精品| 亚洲性夜色夜夜综合| 亚洲国产中文字幕在线视频| 97碰自拍视频| a在线观看视频网站| 色老头精品视频在线观看| 制服丝袜大香蕉在线| 国产亚洲精品综合一区在线观看| 一二三四社区在线视频社区8| 久久午夜综合久久蜜桃| 一a级毛片在线观看| 亚洲一区高清亚洲精品| 国产爱豆传媒在线观看| 男插女下体视频免费在线播放| 变态另类成人亚洲欧美熟女| 亚洲av熟女| 久久精品亚洲精品国产色婷小说| 亚洲国产欧洲综合997久久,| 国产高清videossex| 国产高清激情床上av| 国产v大片淫在线免费观看| 亚洲精品一区av在线观看| 热99re8久久精品国产| 一区二区三区高清视频在线| 十八禁人妻一区二区| 网址你懂的国产日韩在线| 久久久久久久精品吃奶| 超碰成人久久| 18禁美女被吸乳视频| 国产伦一二天堂av在线观看| 舔av片在线| 欧美高清成人免费视频www| 变态另类丝袜制服| 夜夜躁狠狠躁天天躁| 久久精品国产清高在天天线| 丰满人妻熟妇乱又伦精品不卡| 99re在线观看精品视频| www国产在线视频色| 久久国产乱子伦精品免费另类| 久久久久性生活片| 日韩精品青青久久久久久| 在线观看日韩欧美| 亚洲成人久久性| 国产淫片久久久久久久久 | 亚洲av第一区精品v没综合| 国产免费男女视频| 免费大片18禁| netflix在线观看网站| 综合色av麻豆| 中文字幕高清在线视频| 亚洲精品粉嫩美女一区| 高潮久久久久久久久久久不卡| 日本精品一区二区三区蜜桃| 制服人妻中文乱码| 人人妻,人人澡人人爽秒播| 美女 人体艺术 gogo| 国产爱豆传媒在线观看| 麻豆国产av国片精品| 日本黄色视频三级网站网址| 国产成人影院久久av| 亚洲成人免费电影在线观看| 中国美女看黄片| 欧美日韩综合久久久久久 | 午夜福利视频1000在线观看| 一区二区三区激情视频| 亚洲五月婷婷丁香| 全区人妻精品视频| 青草久久国产| 精品不卡国产一区二区三区| 又大又爽又粗| 国产精品久久久久久久电影 | 熟女人妻精品中文字幕| 午夜视频精品福利| 可以在线观看的亚洲视频| 老熟妇仑乱视频hdxx| 麻豆成人午夜福利视频| 99久久久亚洲精品蜜臀av| av女优亚洲男人天堂 | 99在线视频只有这里精品首页| 午夜视频精品福利| 狂野欧美白嫩少妇大欣赏| 久久久久久九九精品二区国产| 午夜精品久久久久久毛片777| 老汉色∧v一级毛片| 在线观看免费午夜福利视频| 两个人的视频大全免费| 亚洲人成电影免费在线| 伊人久久大香线蕉亚洲五| 国产麻豆成人av免费视频| 日韩精品青青久久久久久| 精品熟女少妇八av免费久了| 国产99白浆流出| 精品欧美国产一区二区三| 午夜视频精品福利| 国产成人一区二区三区免费视频网站| 好男人电影高清在线观看| 国产日本99.免费观看| 人人妻人人澡欧美一区二区| 亚洲一区高清亚洲精品| 亚洲成人中文字幕在线播放| 校园春色视频在线观看| 草草在线视频免费看| 中文字幕最新亚洲高清| 日韩欧美三级三区| 人妻丰满熟妇av一区二区三区| 女生性感内裤真人,穿戴方法视频| 看片在线看免费视频| 露出奶头的视频| 国产熟女xx| 狠狠狠狠99中文字幕| 99国产精品一区二区三区| 亚洲黑人精品在线| 国产精品98久久久久久宅男小说| www.www免费av| 两个人的视频大全免费| 18禁黄网站禁片午夜丰满| 亚洲精品一区av在线观看| 首页视频小说图片口味搜索| 97人妻精品一区二区三区麻豆| 蜜桃久久精品国产亚洲av| 免费av毛片视频| 亚洲人成网站高清观看| 19禁男女啪啪无遮挡网站| 午夜日韩欧美国产| 国内毛片毛片毛片毛片毛片| 亚洲av五月六月丁香网| 又大又爽又粗| 悠悠久久av| 欧美3d第一页| 国产又色又爽无遮挡免费看| 国产人伦9x9x在线观看| 99精品欧美一区二区三区四区| 国产激情偷乱视频一区二区| 舔av片在线| 激情在线观看视频在线高清| 又大又爽又粗| 国产高清视频在线播放一区| av片东京热男人的天堂| 男人舔女人下体高潮全视频| 最新美女视频免费是黄的| 国产一区二区在线av高清观看| 日韩欧美在线乱码| 制服丝袜大香蕉在线| 免费av不卡在线播放| 好男人在线观看高清免费视频| 嫩草影视91久久| 免费看日本二区| 久久精品国产亚洲av香蕉五月| 国产精品一区二区免费欧美| 国产精品日韩av在线免费观看| 国产伦一二天堂av在线观看| 国产精品 国内视频| 国内精品美女久久久久久| 午夜激情欧美在线| 日韩 欧美 亚洲 中文字幕| 国产aⅴ精品一区二区三区波| 欧美一区二区国产精品久久精品| 老司机深夜福利视频在线观看| a在线观看视频网站| 男人舔女人的私密视频| 99热6这里只有精品| 在线观看一区二区三区| 国产成人av激情在线播放| 国产精品自产拍在线观看55亚洲| 亚洲午夜精品一区,二区,三区| 黄片大片在线免费观看|