• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NUMERICAL SIMULATION OF THE ENERGY DISSIPATION CHARACTERISTICS IN STILLING BASIN OF MULTI-HORIZONTAL SUBMERGED JETS*

    2010-05-06 08:22:34CHENJiangangZHANGJianminXUWeilinWANGYurong

    CHEN Jian-gang, ZHANG Jian-min, XU Wei-lin, WANG Yu-rong

    State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China, E-mail: chenjg@yeah.net

    NUMERICAL SIMULATION OF THE ENERGY DISSIPATION CHARACTERISTICS IN STILLING BASIN OF MULTI-HORIZONTAL SUBMERGED JETS*

    CHEN Jian-gang, ZHANG Jian-min, XU Wei-lin, WANG Yu-rong

    State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China, E-mail: chenjg@yeah.net

    (Received May 6, 2010, Revised August 16, 2010)

    3-D numerical simulation was carried out for the water flow in a stilling basin with multi-horizontal submerged jets by using two different turbulence models, namely, the VOF RNG k?ε and Mixture RNG k?ε turbulence models. The calculated water depth, velocity profile and pressure distribution are in good agreement with the data obtained in experiments. It indicates that the numerical simulation can effectively be used to study the water flow movement and the energy dissipation mechanism. The numerical simulation results show that the turbulent kinetic energy distribution obtained by using the Mixture turbulence model covers a region about 18% larger than that calculated by using the VOF turbulence model, and is in better agreement with the actual situation. Furthermore, the Mixture turbulence model is better than the VOF turbulence model in calculating the air entrainment.

    multi-horizontal submerged jets, numerical simulation, VOF method, Mixture method, hydraulic characteristics, stilling basin

    1. Introduction

    The safety of flood discharging and energy dissipation is a very important issue in hydraulic engineering, especially in cases of high water head and large unit discharge. Many studies were devoted to this problem. Rajanamam[1], Hager[2]and Ohtsu[3]performed experimental studies of the underflow energy dissipation with abrupt drops or symmetric expansions. Katakam[4]studied the characteristics of underflow energy dissipation with abrupt drops and sudden enlargement, and it is found that the required tail-water level to ensure the hydraulic jump can be reduced and the flow pattern in downstream is stable. It is also found that the relative energy loss in the stilling basin is larger than that in the sudden enlargement type basin and the abrupt drop type basin. Zhang et al.[5,6]obtained a theoretical equation for the sequent depth of submerged hydraulic jumps in the stilling basin. They also developed a theoretical equation for the energy dissipation ratio. Deng et al.[7]performed a series of experimental studies of the multi-horizontal submerged jets. It is found that the flow patterns with the change of the tailwater level are quite stable with a large aspect ratio in a stilling basin. Sun et al.[8]found that the contracted orifice width would cause stable flow patterns in the stilling basin, increase the energy loss and reduce the atomization. Huang et al.[9]studied the effect of drop height on the velocity near the slab in stilling basin. Deng et al.[7], Li et al.[10-12], Gao et al.[13], and Yang et al.[14]studied the velocity field in a stilling basin by numerical simulations. It is found that there is no perforative vertical whirl in the stilling basin, the vortex dissociates on the slab and is not fixed on a place.

    Multi-horizontal submerged jets are a new typeof energy dissipater. Compared to the ski-jump energy dissipater and the underflow energy dissipater, they have features of weak atomization, high energy dissipation ratio and stable flow pattern. Due to their complex vortex structure and strong air entrainment in the stilling basin, it is hard to simulate the structure and intensity of the vortex by a routine test method, however, the numerical simulation can provide a good supplement to physical model tests and be used to obtain the detailed hydraulic characteristics of the velocity field.

    With the development of the computer technology, the application of turbulence models and the improvement of numerical methods, the numerical simulation plays an important part in studying the problems of hydraulics. Studies by Karim and Mali[15], Xu et al.[16], Lu and Li[17]and Ai and Jin[18]show that the k?ε two-equation turbulence model is an useful tool in simulating this complex water flow. In this study, the characteristics of the hydraulic jumps in a stilling basin of multi-horizontal submerged jets are studied by using VOF RNG k?ε and Mixture RNG k?ε turbulence models, for a further understanding of the characteristics of energy dissipation and air entrainment in the stilling basin of multi-horizontal submerged jets.

    2. Numerical model and boundary conditions

    2.1 VOF turbulence model

    Although the flow pattern is very complex in a stilling basin of multi-horizontal submerged jets, the Navire-Stokes equation can still give a precise mathematical description of multi-horizontal submerged jets. Today, a numerical simulation of 3-D free surface flows has become computationally affordable[19,20]. The RNG k?ε model is used to calculate the hydraulic parameters of the flows through the energy dissipaters. This model can very well simulate the anisotropy of high-speed jets. The governing equations for the VOF turbulence model are as follows

    Continuity equation:

    where ρ and μ are the density of the averaged volume fraction and the molecule viscosity coefficient, respectively. μtis the turbulent viscosity coefficient, obtained through the turbulent kinetic k and the turbulent dissipation rateε as

    In the tensor expression, xirepresents x, y, z and ui, u , v , w , where i=1,2,3 , i andj are used as the summation subscripts. The general model constants of the equation include, η0=4.38, β =0.012, Cμ=0.085, C2ε=1.68, σk=0.7179, σε=0.7179.

    2.2 Mixture turbulence model

    The Mixture model is a simplified multiphase flow model, which is used to simulate the flow of multiphases with different velocities. It is assumed that the balance is maintained in short-range spatial scales. The model includes the mixed phase momentum equation, continuity equation and energy equation, as well as the relations between the volume fractions of different phases and about the slip velocity. The Mixture turbulence model differs from the VOF turbulence model in the following aspects. First, the Mixture model allows an inter-penetration among different phases, that is, the volume fraction takes a value from zero to one in the same control volume. Second, it allows a slip velocity betweendifferent phases. The governing equations are as follows

    Continuity equation:

    where ρkis the density of k phase, ukis the mass averaged velocity of k phase,αkis the volume fraction of k phase, F is the body force, g is the acceleration of gravity, μeff,mis the coefficient of the virtual viscosity, and μeff,m= μl,m+μt,m, and udr,kis the drift velocity of kphase.

    where ukpis the relative slip velocity betweenk phase and the first phase ( q phase),fdragis the resistance coefficient.

    Fig.1(a) Numerical simulation region

    Fig.1(b) Mesh of crest overflowing orifice

    2.3 Boundary conditions

    The numerical simulation was carried out for the stilling basin of multi-horizontal submerged jets, as is in a practical project. The drop elevations of crest overflowing orifices and mid-discharge orifices are 261.0 m and 253.0 m, respectively, namely, the drop heights are S1=16.0 m and S2=8.0 m, for crest overflowing orifices and mid-discharge orifices, respectively. The flood discharging section includes 6 crest overflowing orifices and 5 mid-discharge orifices, and these orifices are alternately arranged. The stilling basin is 228.0 m long and 108.0 m wide. The elevation of the stilling basin slab is 245.0 m. The calculation region and the computing grid are shownin Fig.1. The numerical simulation covers the flood discharging section, the head-water reservoir, the stilling basin and the downstream reach. The identical computing grid is used in the numerical simulation in this article, and the details of the numerical simulation are shown in Table 1.

    Table1 Details of the numerical simulation

    (1) Inflow boundary: The variable values on the inflow boundary must be given. The velocity of the inflow is calculated according to the discharge and the water level, and it is given on the inflow boundary.

    (2) Outflow boundary: The outflow boundary conditions are given on the exit of the calculation region, based on the uniform flow conditions.

    (3) Wall boundary: Using the wall-function method.

    (4)Computing grid: The identical grid is used in the numerical simulation for two different turbulence models.

    Fig.1(c) Mesh of mid-discharge orifice

    3. Numerical simulation results and analyses

    3.1 Water surface profile

    Fig.2 Water surface profile calculated and measured

    Figure 2 shows the simulated and measured results of the water surface profile of the multi-horizontal submerged jets in a stilling basin. The origin of the coordinate system is set at the intersection of the drop and the centerline of the slab of the stilling basin, where X is the distance from measuring points to the drop, H is the water depth, Ystands for the distance from measuring points to the midline of the stilling basin. VOF stands for the numerical results obtained by using the VOF turbulence model, Mixture stands for the numerical results obtained by using the Mixture turbulence model and Exp. stands for experimental results. It can be seen from Fig.2 that the computed water surface profile agrees very well with that measured from the physical model. In the experiments, it can be seen from the cross section that the water surface breaks in the stilling basin, therefore, the water depth near the sidewall is measured in detail. The aerated water in the foreside of the stilling basin is strongly turbulent and the free water surface fluctuates greatly and randomly, which makes it difficult to identify the testing point exactly, which is the main reason why the water surface profile in the foreside of the stillingbasin varies greatly. At the end of the stilling basin, the water flow is smooth and the wave is small, thus the measured and computed values see little difference. The water depth gradient is very large in the foreside of the stilling basin in Trail 1 and Trail 3, while the water depth is very flat in Trail 2 and the water surface profile has a relation with the water depth at the end sill of the stilling basin.

    Fig.3 Pressure distribution calculated and measured

    3.2 Pressure distribution

    Fig.4 Measured and calculated velocities near the slab

    The calculated and measured pressure distributions on the slab of the stilling basin are shown in Fig.3, where Y is the distance from measuring points to the centerline of stilling basin. It can be seen from Fig.3 that the calculated values agree very well with the measured ones except in the foreside of the stilling basin, where there is a small difference. Timeaveraged pressure values see little difference when X<80 min Trail 1 and Trail 2, while the measured and calculated pressures keep consistent when X>80 m. There is a great pressure gradient on the slab of the stilling basin when 10 m

    Fig.5 Distributions of turbulent kinetic energy and turbulence dissipation rate for Trail 3

    3.3 Velocity near the slab in stilling basin

    The measured and calculated velocities near the slab in the stilling basin are shown in Fig.4. The velocity measuring points are about 0.5 m from the slab of the stilling basin. It can be seen from Fig.4 that the calculated values agree well with the measured ones. The velocity near the slab in the stilling basin decays fast, the points of the maximum positive and negative velocities are almost at the same point in the stilling basin and the velocity distribution has the same trend. However, there is a little error in the numerical values. The measured and calculated velocities see a little difference when X<60 m in Trail 2 and Trail 3. The main reason is that during the experiments, the water in the stilling basin is severely turbulent and the location and size of the maximum velocity are not fixed, while the experimental value is the instantaneous maximum at a fixed point.

    3.4 Turbulence flow characteristics

    Fig.6 Air entrainment distribution for Trail 3

    The distributions of the turbulent kinetic energy and the turbulence dissipation rate obtained by using the VOF RNG k?ε and Mixture RNG k?ε turbulence models are shown in Fig.5. It can be seen from Fig.5 that the turbulent kinetic energy takes the maximum on the foreside of the stilling basin, then gradually declines along the slab of the stilling basin. Near the foreside of the stilling basin, the flow is strongly turbulent and most of the energy is dissipated. The energy dissipation is very weak at the end of the stilling basin. It can be seen from the transverse section that there is a high efflux velocity at the core of the jet flow, while the velocity gradient is small. Turbulent kinetic energy at the core of the jet flow is smaller than that at the other shear area. Around the jet flow, the flow velocity decreases but the velocity gradient increases, thus the turbulent kinetic energy is very large. The turbulent kinetic energy distributions as obtained by using the VOF and Mixture turbulence models cover an region of 0 m

    3.5 Air concentration

    The air concentration distributions obtained by using the VOF RNG k?ε and Mixture RNG k?ε turbulence models in Trail 3 are shown in Fig.6, where the blue color stands for air and the red for water. The contours of the air concentration obtained by using the VOF turbulence model are densely distributed on the water surface, while the air concentration is small in the water body and is almost equal to zero near the slab and the side wall of the stilling basin. At the same time, there are some gas pockets of different sizes in the water body, which does not very well agree with the practical situation of the water flow movement. The air concentrationobtained by using the Mixture turbulence model is about 20% on average near the slab and the side wall of the stilling basin, as in agreement with the practical situation of the water flow movement. The Mixture model allows the interpenetration among different phases, namely, the volume fraction takes a value ranging from zero to one in a control volume, so the results obtained by using the Mixture turbulence model are better than those obtained by using the VOF turbulence model. The Mixture turbulence model can simulate the distribution of the air concentration in a turbulent flow, however, the two methods can not simulate the size of the air bubbles. During the experiments, it can be seen that the high-speed flow is strongly turbulent in the stilling basin and the water body has a certain air concentration, which can be calculated by the Mixture turbulence model with better agreement with the practical situation as compared with that calculated by using the VOF turbulence model. The VOF turbulence model has limitations when it is applied to strong air entrainment flows in predicting the air concentration.

    4. Conclusions

    The numerical simulation is carried out for the stilling basin of multi-horizontal submerged jets, as is in a practical project with the final scheme. The characteristics of the hydraulic jump in a stilling basin of multi-horizontal submerged jets are studied by using VOF RNG k?ε and Mixture RNG k?ε turbulence models in this article, and the numerical simulation results are verified by a series of model experiments. The conclusions are as follows:

    (1) 3-D numerical simulations are carried out for the water flow in a stilling basin of multi-horizontal submerged jets by using two different turbulence models, that is, the VOF RNG k?ε and the Mixture RNG k?ε turbulence models. The calculated results, such as water depth, velocity profile and pressure distribution, are in good agreement with those obtained by experiments. It indicates that the two turbulence models are valid.

    (2) The numerical results of the two turbulence models give a detailed picture of the mainstream decay process, vortex patterns, turbulence intensity and its distribution. The hydraulic characteristics and energy dissipation processes can be well described and the numerical simulation results can provide a good supplement to the results obtained in model experiments.

    (3) The turbulent kinetic energy distribution calculated by using the Mixture turbulence model covers a region about 18% larger than that calculated by using the VOF turbulence model on the average. Hence, the energy dissipation region calculated by using the Mixture turbulence model agrees better with the practical situation of the water flow movement.

    (4) The air concentration distribution calculated by using the Mixture turbulence model agrees very well with that in the stilling basin of multi-horizontal submerged jets, it indicates that the Mixture turbulence model is better than the VOF turbulence model in calculating the air concentration.

    [1] RAJANATNAM N., SUBRAMANYA K. Hydraulic jumps below abrupt symmetrical expansions[J]. J. Hydr. Div. ASCE, 1968, 94(2): 481-503.

    [2] HAGER W. H. B-Jumps at abrupt channel drops[J]. Journal of Hydraulic Engineering, ASCE,1985,111(5): 861-866.

    [3] OHTSU I, YASUDA Y. and ISHIKAWA M. Submerges hydraulic jump below abrupt expansion[J]. Journal of Hydraulic Engineering, ASCE,1999, 125(5): 492-499.

    [4] KATAKAM V. Spatial B-jump at channel enlargements with abrupt drop[J]. Journal of Hydraulic Engineering, ASCE, 1998, 124(6): 643-646.

    [5] ZHANG Jian-min, YANG Yong-quan and XU Wei-lin et al. Theory of multi-horizontal submerged jets and experimental investigation[J]. Advances in Nature Science, 2005, 15(1): 97-102(in Chinese).

    [6] ZHANG Jian-min, WANG Yu-rong and YANG Yong-quan et al. Energy dissipation and hydraulics characteristics of multi-horizontal submerged jets[J]. Advances in Water Science, 2005, 16(1): 18-22(in Chinese).

    [7] DENG Jun, XU Wei-lin and ZHANG Jian-min et al. A new energy dissipator- multi-horizontal submerged jets[J]. Science in China Series E: Technological Sciences, 2009, 39(1): 29-38(in Chinese).

    [8] SUN Shuang-ke, LIU Hai-tao and XIA Qing-fu et al. Study on stilling basin with step-down floor for energy dissipation of hydraulic jump in high dams[J]. Journal of Hydraulic Engineering, 2005, 36(10): 1188-1193(in Chinese).

    [9] HUANG Qiu-jun, FENG Shu-rong and LI Yang-nong. Experimental study on energy dissipation characteristics of multi-horizontal submerged jets[J]. Chinese Journal of Hydrodynamics, 2008, 23(6): 694-701(in Chinese).

    [10] LI Yan-ling, HUA Guo-chun and ZHANG Jian-min et al. Analysis on energy dissipation of the single-lever with multi-strand and multi-lever with multi-strand horizontal submerged jets[J]. Journal of Hydrodynamics, Ser. A, 2006, 21(1): 26-31(in Chinese).

    [11] LI Yan-ling, HUA Guo-chun and ZHANG Jian-min. Factors affecting the hydraulic characteristics of horizontal submerged jets[J]. Advances in Water Science, 2006, 17(6): 761-766(in Chinese).

    [12] LI Yan-ling, YANG Yong-quan and HUA Guo-chun et al. Experimental study on multi-horizontal submerged jets[J].Journal of Sichuan University (Engineering Science Edition), 2004, 36(6): 32-36(in Chinese).

    [13] GAO Peng, YANG Yong-quan and DENG Jun et al. Investigation on complex flow pattern of multi-submerged jets into plunge pool[J]. Journal of Sichuan University (Engineering Science Edition),2006, 38(5): 70-75(in Chinese).

    [14] YANG Zhong-chao, DENGJun and YANG Yong-quan et al. Numerical simulation of multiple submerged jets on multilevel dicharged into plunge pool[J]. Journal of Hydraulic Engineering, 2006, 38(5): 70-75(in Chinese).

    [15] KARIM O. A. K., MALI K. H. M. Prediction of flow patterns in local scour holes caused by turbulent water jets[J]. Journal of Hydraulic Research, 2000, 38(4): 279-287.

    [16] XU Wei-lin, LIAO Hua-sheng and YANG Yong-quan et al. Numerical simulation of 3-D turbulent flows of plunge pool and energy dissipation analysis[J]. Journal of Hydrodynamics, Ser. A, 1996, 11(5): 561-569(in Chinese).

    [17] LU Lin, LI Yu-cheng. Numerical simulation of turbulent free surface flow over obstruction[J]. Journal of Hydrodynamics, 2008, 20(4): 414-423.

    [18] AI Cong-fang, JIN Sheng. Three-dimensional free surface flow model for simulating water wave motions[J]. Chinese Journal of hydrodynamics, 2008, 23(3): 338-347(in Chinese).

    [19] WANG Kun, JIN Sheng and LIU Gang. Numerical modeling of free-surface flows with bottom and surface-layer pressure treament[J]. Journal of Hydrodynamics, 2009, 21(3): 352-359.

    [20] WU Jian-hua, AI Wan-zheng. Flows through energy dissipaers with sudden reduction and sudden enlargement forms[J]. Journal of Hydrodynamics, 2010, 22(3): 360-365.

    10.1016/S1001-6058(09)60110-4

    * Project supported by the National Key Basic Research Program of China (973 Program, Grant No. 2007CB714105), the Science Foundation of Ministry of Education of China (Grant No. 2008108111) and the Program for New Century Excellent Talents in University (Grant No. NCET-08-0378).

    Biography: CHEN Jian-gang (1982-), Male, Ph. D. Candidate

    ZHANG Jian-min, E-mail: jmzhangscu@263.net

    日韩中文字幕视频在线看片| 久久精品aⅴ一区二区三区四区| 久久久久久免费高清国产稀缺| 一本大道久久a久久精品| 国产在视频线精品| 亚洲成人手机| 久久久久人妻精品一区果冻| 亚洲情色 制服丝袜| 久久久久人妻精品一区果冻| 中文字幕最新亚洲高清| 男女高潮啪啪啪动态图| 夫妻午夜视频| 午夜激情久久久久久久| 成人影院久久| 色播在线永久视频| 天美传媒精品一区二区| 成人漫画全彩无遮挡| 激情五月婷婷亚洲| 午夜激情久久久久久久| 亚洲免费av在线视频| 国产成人91sexporn| 精品久久久久久电影网| 性少妇av在线| av片东京热男人的天堂| 国产97色在线日韩免费| 大片电影免费在线观看免费| 国产男人的电影天堂91| 可以免费在线观看a视频的电影网站 | 久久狼人影院| 亚洲,欧美精品.| 90打野战视频偷拍视频| 国产福利在线免费观看视频| 男女国产视频网站| 免费看av在线观看网站| 在线精品无人区一区二区三| 精品国产乱码久久久久久小说| 校园人妻丝袜中文字幕| 999久久久国产精品视频| 欧美激情极品国产一区二区三区| 观看av在线不卡| 久久人人爽av亚洲精品天堂| 国产精品一二三区在线看| 亚洲视频免费观看视频| 91aial.com中文字幕在线观看| 国产人伦9x9x在线观看| 亚洲三区欧美一区| 国产在线视频一区二区| 操美女的视频在线观看| 在现免费观看毛片| 赤兔流量卡办理| 电影成人av| av网站在线播放免费| 老司机深夜福利视频在线观看 | 国产乱来视频区| 国产又色又爽无遮挡免| 午夜日本视频在线| 日本爱情动作片www.在线观看| 美女视频免费永久观看网站| 亚洲av电影在线进入| 一区二区av电影网| 日韩欧美精品免费久久| 在线观看一区二区三区激情| 永久免费av网站大全| 久久免费观看电影| 久久午夜综合久久蜜桃| 国产激情久久老熟女| www.熟女人妻精品国产| 国产一级毛片在线| 国产在线免费精品| 少妇的丰满在线观看| 超碰成人久久| 狠狠精品人妻久久久久久综合| 丁香六月天网| 天天躁狠狠躁夜夜躁狠狠躁| 极品少妇高潮喷水抽搐| 亚洲av在线观看美女高潮| 一个人免费看片子| 日韩电影二区| 80岁老熟妇乱子伦牲交| 人人妻人人爽人人添夜夜欢视频| 岛国毛片在线播放| 成年人免费黄色播放视频| 天堂中文最新版在线下载| av网站免费在线观看视频| 国产极品天堂在线| 日韩精品有码人妻一区| 少妇人妻 视频| 在线观看三级黄色| 久久久久人妻精品一区果冻| 日韩欧美精品免费久久| 秋霞在线观看毛片| 欧美97在线视频| 色94色欧美一区二区| 大话2 男鬼变身卡| 国产精品无大码| 欧美日韩视频精品一区| 亚洲美女视频黄频| 国产男女内射视频| 国产亚洲午夜精品一区二区久久| 在线观看三级黄色| 又粗又硬又长又爽又黄的视频| 嫩草影院入口| 女的被弄到高潮叫床怎么办| 黄色 视频免费看| av在线app专区| 久久精品熟女亚洲av麻豆精品| 深夜精品福利| 人体艺术视频欧美日本| 男女下面插进去视频免费观看| 超色免费av| 亚洲精品乱久久久久久| 欧美国产精品va在线观看不卡| 精品一区二区三卡| 国产精品成人在线| 国产成人a∨麻豆精品| 伊人久久国产一区二区| 日韩av在线免费看完整版不卡| 国产精品一区二区在线不卡| 久久久久久久国产电影| 欧美xxⅹ黑人| 欧美久久黑人一区二区| 老熟女久久久| 亚洲欧美精品自产自拍| www.熟女人妻精品国产| 丝袜在线中文字幕| 色网站视频免费| 精品一区二区三区四区五区乱码 | 一区二区av电影网| 五月天丁香电影| 巨乳人妻的诱惑在线观看| 亚洲七黄色美女视频| 精品久久蜜臀av无| 国产 精品1| 久久国产精品男人的天堂亚洲| av.在线天堂| 久久久久视频综合| 一二三四在线观看免费中文在| 久久久欧美国产精品| 亚洲av国产av综合av卡| 国产成人av激情在线播放| 婷婷成人精品国产| 人体艺术视频欧美日本| 国产片内射在线| 日韩一区二区三区影片| 亚洲男人天堂网一区| 日本午夜av视频| 日日爽夜夜爽网站| 新久久久久国产一级毛片| 精品国产乱码久久久久久男人| 成年女人毛片免费观看观看9 | 免费观看a级毛片全部| 欧美日韩视频高清一区二区三区二| 日本欧美国产在线视频| 久久人人97超碰香蕉20202| 一区二区日韩欧美中文字幕| 伊人亚洲综合成人网| 高清av免费在线| 精品久久久精品久久久| 自线自在国产av| 亚洲成人av在线免费| 一本—道久久a久久精品蜜桃钙片| 美国免费a级毛片| 国产精品蜜桃在线观看| 国产一区二区三区综合在线观看| 少妇人妻久久综合中文| 国产精品一区二区精品视频观看| 久久鲁丝午夜福利片| 亚洲欧洲国产日韩| 成年人午夜在线观看视频| av视频免费观看在线观看| 男女下面插进去视频免费观看| 少妇的丰满在线观看| 免费黄色在线免费观看| 叶爱在线成人免费视频播放| 观看美女的网站| 亚洲精品一区蜜桃| 最新的欧美精品一区二区| 国产免费视频播放在线视频| 考比视频在线观看| 日本vs欧美在线观看视频| 亚洲欧美精品综合一区二区三区| 黑丝袜美女国产一区| 一边亲一边摸免费视频| 人人妻,人人澡人人爽秒播 | 黄色一级大片看看| 日韩,欧美,国产一区二区三区| 香蕉丝袜av| 亚洲国产中文字幕在线视频| 黑人巨大精品欧美一区二区蜜桃| 男的添女的下面高潮视频| 中文字幕最新亚洲高清| 欧美精品高潮呻吟av久久| 国产黄色免费在线视频| 天天躁日日躁夜夜躁夜夜| 另类亚洲欧美激情| 最近最新中文字幕免费大全7| 最近2019中文字幕mv第一页| 精品国产露脸久久av麻豆| 久久久精品94久久精品| 精品亚洲乱码少妇综合久久| 国产精品一国产av| 丝袜脚勾引网站| 国产在线视频一区二区| 国产片内射在线| 悠悠久久av| 国产探花极品一区二区| 久久精品久久久久久噜噜老黄| 黄色毛片三级朝国网站| 午夜影院在线不卡| 纵有疾风起免费观看全集完整版| 男女国产视频网站| 国产精品一二三区在线看| 五月开心婷婷网| 各种免费的搞黄视频| 在线观看www视频免费| 99国产综合亚洲精品| 国产亚洲最大av| 亚洲国产精品国产精品| 亚洲av国产av综合av卡| 2021少妇久久久久久久久久久| 午夜福利,免费看| 各种免费的搞黄视频| 亚洲精品国产区一区二| 1024视频免费在线观看| 欧美人与性动交α欧美软件| 欧美激情极品国产一区二区三区| 中国国产av一级| 精品人妻一区二区三区麻豆| 69精品国产乱码久久久| 水蜜桃什么品种好| 国产精品av久久久久免费| 久久ye,这里只有精品| 国产日韩欧美亚洲二区| 在线观看免费午夜福利视频| 丰满饥渴人妻一区二区三| 国产伦人伦偷精品视频| 亚洲国产欧美网| 亚洲精品一二三| 日本vs欧美在线观看视频| 精品国产超薄肉色丝袜足j| 免费观看人在逋| xxxhd国产人妻xxx| 狠狠精品人妻久久久久久综合| 夫妻性生交免费视频一级片| 可以免费在线观看a视频的电影网站 | 亚洲图色成人| 黄色视频不卡| 操出白浆在线播放| 亚洲国产av新网站| 青青草视频在线视频观看| 免费黄色在线免费观看| 国产一卡二卡三卡精品 | 亚洲国产精品一区三区| 少妇人妻精品综合一区二区| 另类亚洲欧美激情| 一级片免费观看大全| 搡老乐熟女国产| 最近的中文字幕免费完整| 欧美在线黄色| 叶爱在线成人免费视频播放| 精品国产乱码久久久久久小说| xxxhd国产人妻xxx| 如何舔出高潮| 在线天堂中文资源库| 日本av免费视频播放| 综合色丁香网| av线在线观看网站| 国产在线免费精品| 十分钟在线观看高清视频www| 一级黄片播放器| 亚洲欧美精品自产自拍| 国产1区2区3区精品| 国产午夜精品一二区理论片| 最近最新中文字幕免费大全7| 欧美成人精品欧美一级黄| 久久天躁狠狠躁夜夜2o2o | 亚洲成人免费av在线播放| 日本av免费视频播放| 亚洲欧美一区二区三区国产| 精品国产一区二区三区久久久樱花| 日韩不卡一区二区三区视频在线| 日韩一区二区三区影片| 麻豆av在线久日| 中文字幕av电影在线播放| 日韩制服丝袜自拍偷拍| av.在线天堂| 丁香六月欧美| 久久婷婷青草| 国产一区二区三区av在线| 9191精品国产免费久久| 精品少妇黑人巨大在线播放| 一级毛片电影观看| 狠狠精品人妻久久久久久综合| 日韩av不卡免费在线播放| 久久精品国产综合久久久| 亚洲第一av免费看| 久久久国产精品麻豆| 热99国产精品久久久久久7| 欧美人与善性xxx| 最黄视频免费看| 一区二区三区乱码不卡18| 国产又色又爽无遮挡免| 免费在线观看黄色视频的| 午夜福利影视在线免费观看| 两个人免费观看高清视频| 超色免费av| 一区二区三区乱码不卡18| 秋霞伦理黄片| 亚洲天堂av无毛| 不卡av一区二区三区| 两个人免费观看高清视频| 成人黄色视频免费在线看| 一本久久精品| 亚洲在久久综合| 自拍欧美九色日韩亚洲蝌蚪91| 晚上一个人看的免费电影| 免费观看av网站的网址| 日韩大片免费观看网站| 中文乱码字字幕精品一区二区三区| 国产伦理片在线播放av一区| 欧美日韩视频精品一区| 亚洲婷婷狠狠爱综合网| 国产日韩欧美亚洲二区| 久久99一区二区三区| 国产亚洲午夜精品一区二区久久| 午夜激情av网站| 久久精品国产a三级三级三级| 美女高潮到喷水免费观看| 精品国产一区二区久久| 99久久99久久久精品蜜桃| 亚洲国产看品久久| 日韩大码丰满熟妇| 欧美日韩国产mv在线观看视频| 涩涩av久久男人的天堂| 这个男人来自地球电影免费观看 | 亚洲av成人不卡在线观看播放网 | 满18在线观看网站| 我要看黄色一级片免费的| 国产男女超爽视频在线观看| 精品久久久精品久久久| 欧美日韩一区二区视频在线观看视频在线| 中文字幕精品免费在线观看视频| 亚洲av电影在线进入| 在线观看免费高清a一片| 日韩,欧美,国产一区二区三区| 青青草视频在线视频观看| 欧美激情 高清一区二区三区| 午夜久久久在线观看| 一级爰片在线观看| 久久久国产一区二区| 国产精品久久久av美女十八| 久久久久国产一级毛片高清牌| 涩涩av久久男人的天堂| 精品久久蜜臀av无| 国产淫语在线视频| 国产精品 欧美亚洲| 亚洲精品久久成人aⅴ小说| 久久久国产一区二区| 日韩视频在线欧美| 高清av免费在线| 亚洲国产看品久久| 男女高潮啪啪啪动态图| 久久亚洲国产成人精品v| 男女高潮啪啪啪动态图| 欧美老熟妇乱子伦牲交| 亚洲国产精品一区三区| 不卡视频在线观看欧美| 亚洲精品av麻豆狂野| 黄色一级大片看看| 亚洲成人手机| 香蕉丝袜av| 高清欧美精品videossex| 香蕉丝袜av| 欧美人与性动交α欧美软件| 男女下面插进去视频免费观看| 久久久久网色| 色精品久久人妻99蜜桃| 丰满饥渴人妻一区二区三| 久久精品亚洲av国产电影网| 国产精品久久久久久久久免| 人人妻人人澡人人看| 亚洲美女搞黄在线观看| 日日撸夜夜添| 欧美97在线视频| 亚洲精品国产一区二区精华液| 国产精品香港三级国产av潘金莲 | 欧美日韩av久久| 美女大奶头黄色视频| 水蜜桃什么品种好| 在线观看免费日韩欧美大片| 曰老女人黄片| 日韩熟女老妇一区二区性免费视频| 日韩av免费高清视频| 97精品久久久久久久久久精品| 十八禁网站网址无遮挡| 免费不卡黄色视频| 日韩一区二区三区影片| 老司机影院毛片| 久久久国产一区二区| 欧美日韩亚洲高清精品| 狠狠婷婷综合久久久久久88av| 制服人妻中文乱码| 91成人精品电影| 婷婷色麻豆天堂久久| 精品卡一卡二卡四卡免费| 国产av一区二区精品久久| 少妇人妻久久综合中文| 亚洲精品成人av观看孕妇| 看十八女毛片水多多多| 日韩av免费高清视频| 亚洲图色成人| 欧美日韩成人在线一区二区| 99久国产av精品国产电影| 亚洲在久久综合| 午夜久久久在线观看| 涩涩av久久男人的天堂| 日本av免费视频播放| 一区二区三区激情视频| 又大又黄又爽视频免费| 免费黄频网站在线观看国产| 一边亲一边摸免费视频| 久久av网站| 免费观看性生交大片5| 亚洲av日韩精品久久久久久密 | 国产精品久久久久久精品电影小说| 日韩人妻精品一区2区三区| 一级a爱视频在线免费观看| 只有这里有精品99| 亚洲专区中文字幕在线 | 午夜福利乱码中文字幕| 黑人欧美特级aaaaaa片| 久久精品人人爽人人爽视色| 日本欧美国产在线视频| 亚洲av国产av综合av卡| 欧美 日韩 精品 国产| 日韩制服骚丝袜av| 国产免费又黄又爽又色| 国产日韩一区二区三区精品不卡| 捣出白浆h1v1| 久久精品国产综合久久久| 国产成人精品久久久久久| 欧美精品亚洲一区二区| 亚洲色图 男人天堂 中文字幕| 黄色 视频免费看| 一区二区av电影网| 精品一区二区三卡| 亚洲情色 制服丝袜| 五月开心婷婷网| 日韩免费高清中文字幕av| 人成视频在线观看免费观看| 久久久久久免费高清国产稀缺| 99香蕉大伊视频| 精品亚洲成a人片在线观看| 国产亚洲欧美精品永久| 亚洲第一青青草原| 亚洲成人手机| 国产精品久久久久久人妻精品电影 | 国产一区二区三区综合在线观看| 人妻人人澡人人爽人人| 久久免费观看电影| 久久久久久久大尺度免费视频| 国产麻豆69| 国产精品麻豆人妻色哟哟久久| 国产亚洲午夜精品一区二区久久| 精品少妇黑人巨大在线播放| 女人爽到高潮嗷嗷叫在线视频| 人成视频在线观看免费观看| 婷婷成人精品国产| 最近最新中文字幕免费大全7| 黄色怎么调成土黄色| 大香蕉久久网| 又黄又粗又硬又大视频| 亚洲一区二区三区欧美精品| 最近2019中文字幕mv第一页| 日韩一本色道免费dvd| 97人妻天天添夜夜摸| 婷婷色麻豆天堂久久| 国产日韩欧美视频二区| 久久精品亚洲av国产电影网| 亚洲成人一二三区av| 成人黄色视频免费在线看| 18禁动态无遮挡网站| 最黄视频免费看| 丝瓜视频免费看黄片| 99久久精品国产亚洲精品| 无遮挡黄片免费观看| 亚洲成国产人片在线观看| 精品亚洲乱码少妇综合久久| 日本wwww免费看| 91成人精品电影| av网站在线播放免费| 成人午夜精彩视频在线观看| 大片电影免费在线观看免费| 91成人精品电影| 成年女人毛片免费观看观看9 | 一级片'在线观看视频| 国产一区二区激情短视频 | 精品国产露脸久久av麻豆| 国产av国产精品国产| 岛国毛片在线播放| 一区二区三区四区激情视频| 日韩,欧美,国产一区二区三区| 免费观看性生交大片5| 欧美日本中文国产一区发布| 青青草视频在线视频观看| 久久av网站| 黑人欧美特级aaaaaa片| 黄片小视频在线播放| 制服人妻中文乱码| 人妻一区二区av| 我的亚洲天堂| 亚洲在久久综合| 亚洲 欧美一区二区三区| 国产成人精品福利久久| 高清不卡的av网站| 日韩熟女老妇一区二区性免费视频| 91精品国产国语对白视频| 黄色视频不卡| 男男h啪啪无遮挡| 日韩熟女老妇一区二区性免费视频| 中文字幕高清在线视频| 黑丝袜美女国产一区| 人妻人人澡人人爽人人| 免费观看av网站的网址| 亚洲精品日本国产第一区| 麻豆av在线久日| 亚洲熟女毛片儿| 免费高清在线观看视频在线观看| 黄网站色视频无遮挡免费观看| 国产精品无大码| 国产爽快片一区二区三区| 女人精品久久久久毛片| h视频一区二区三区| 黄片播放在线免费| 性高湖久久久久久久久免费观看| 精品久久久精品久久久| 免费女性裸体啪啪无遮挡网站| 亚洲欧美日韩另类电影网站| 亚洲国产av影院在线观看| 午夜免费男女啪啪视频观看| 亚洲欧美一区二区三区久久| 亚洲精品日韩在线中文字幕| 97在线人人人人妻| 久久热在线av| 天堂中文最新版在线下载| 韩国高清视频一区二区三区| 国产成人欧美在线观看 | 两性夫妻黄色片| 涩涩av久久男人的天堂| 黄片播放在线免费| 男女免费视频国产| 久久久久久人人人人人| 亚洲欧洲日产国产| 亚洲av电影在线进入| 麻豆乱淫一区二区| 桃花免费在线播放| 亚洲男人天堂网一区| 99久国产av精品国产电影| av免费观看日本| 日韩视频在线欧美| 国产成人免费无遮挡视频| 人成视频在线观看免费观看| 亚洲美女搞黄在线观看| av天堂久久9| 免费观看人在逋| 国产精品久久久久久精品古装| 精品午夜福利在线看| 国产欧美亚洲国产| 亚洲欧美中文字幕日韩二区| 国产欧美日韩综合在线一区二区| 欧美变态另类bdsm刘玥| 精品久久久精品久久久| 国产一区二区三区av在线| 欧美97在线视频| 久久韩国三级中文字幕| 丝袜人妻中文字幕| 国产精品久久久av美女十八| 亚洲,一卡二卡三卡| 国产精品 国内视频| 女人高潮潮喷娇喘18禁视频| 国产精品女同一区二区软件| 最近最新中文字幕大全免费视频 | 久久久久久久久久久免费av| 亚洲精品日本国产第一区| 亚洲熟女精品中文字幕| 午夜影院在线不卡| 在线观看免费高清a一片| 丝袜人妻中文字幕| 国产一区有黄有色的免费视频| 日韩成人av中文字幕在线观看| 人成视频在线观看免费观看| 亚洲伊人色综图| 欧美日韩视频高清一区二区三区二| 亚洲一码二码三码区别大吗| 自线自在国产av| 日本猛色少妇xxxxx猛交久久| 国产高清不卡午夜福利| 国产精品一二三区在线看| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久久久久久免费av| 青春草国产在线视频| av网站在线播放免费| 国产成人精品在线电影| 久久久久久免费高清国产稀缺| 一边亲一边摸免费视频| 色网站视频免费| 国产精品久久久久久久久免| 一级毛片电影观看| 黄频高清免费视频| 欧美日韩亚洲高清精品| 久久ye,这里只有精品| 大话2 男鬼变身卡| 乱人伦中国视频| 校园人妻丝袜中文字幕| 伊人亚洲综合成人网|