• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EXPERIMENTAL STUDY OF EFFECTS OF AIR CONTENT ON CAVITATION AND PRESSURE FLUCTUATIONS*

    2010-05-06 08:22:07YEJinmingXIONGYingLIFangCHENShuangqiao
    水動力學研究與進展 B輯 2010年5期

    YE Jin-ming, XIONG Ying, LI Fang, CHEN Shuang-qiao

    College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033, China,

    EXPERIMENTAL STUDY OF EFFECTS OF AIR CONTENT ON CAVITATION AND PRESSURE FLUCTUATIONS*

    YE Jin-ming, XIONG Ying, LI Fang, CHEN Shuang-qiao

    College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033, China,

    E-mail: yjmcx2318@sina.com

    (Received August 20, 2009, Revised August 18, 2010)

    This article studies the effects of air content on propeller cavitation and pressure fluctuations. The cavitation is observed while the pressure fluctuations on the hull are measured. When adjusting the air content, the sheet cavitation range does not change distinctly, but the pressure fluctuations see obvious differences. The amplitudes of the pressure fluctuations increase with the decrease of the air content. The results indicate that the air content has little effect on the sheet cavitation range but has an important effect on the bubble cavitation and the tip vortex cavitation. When the air content decreases, the water tensile force increases, which results in the instability of the bubble cavitation and the tip vortex cavitation and the increase of the pressure fluctuations. To minimize the scale effects, the experiments should be run at a high Reynolds number with a high nuclei content. The high Reynolds number is often realized by increasing the flow velocity and the propeller rotation speed, and the high nuclei content is often made by increasing the dissolved air content.

    cavitation, pressure fluctuations, model test, air content

    1. Introduction

    The propeller is the most important source of the stern vibration. The cavitation on propellers makes pressure fluctuations especially serious. It is clear that the water quality has an important influence on the propeller cavitation inception process and the propeller induced pressure fluctuations[1-3]. The water quality is traditionally defined in terms of the dissolved air content level. In most numerical predictions of cavitation[4-10]and pressure fluctuations[11-13], the air content effects are not considered. The effects of the water quality or the air content on cavitation and fluctuations are often studied by experiments.

    Experimental studies of the influence of air on cavitation inception and dynamics over the past 20 years are reviewed by Billet[14]and Gindroz[15]. The influence of dissolved gas on the inception and development of the tip vortex cavitation was examined by Brian?on and Merle[16]. They demonstrated how both free and dissolved gas content would influence the cavitation of a stationary elliptic planform hydrofoil, including the core diameter and the dynamics of the vortex. While the size of the incident nuclei was not taken as an independently varying parameter in the study, it was shown that the dynamics and the fragmentation of larger bubbles in the vortex can influence the noise that the bubbles emit upon collapse. In order to correlate the water quality measurements with both visual and acoustic inception for several types of propeller cavitation, Grand Tunnel Hydrodynamic (GTH) offered a correlation for the propeller leading-edge sheet, between the bubble and tip vortex cavitation inception and water quality data as determined by the liquid tension and the microbubble event-rate. The results show clearly a dependency of the cavitation inceptionfor each propeller cavitation type on the liquid tension. The water quality is also important as shown in scale effects. The classical theory for scaling vaporous cavitation inception assumes that σ is constant, which implies that when scaling from one flow state to another, not only the characteristics of the flow field and its boundaries remain geometrically and kinematically similar but also cavitation occurs when the local pressure is equal to the liquid vapor pressure. However, the real flows often do not obey this classical theory and departures are often called the“scale effects”. Experimental results clearly show that in most cases, the cavitation inception index can be greater or less than the minimum pressure coefficient.

    In this article, the model test of pressure fluctuations induced by cavitation propeller is carried out in the large circulation channel. The ship wake is simulated by a ship model with all accessories. The cavitation is observed when the pressure fluctuations on the hull are measured. The effects of air content on cavitation and pressure fluctuations are studied.

    2. Test facility and test model

    The model test is carried out in the large circulation channel of the State Key Laboratory of Hydrodynamics. The work section is a rectangle of 2.2 m in width, 2 m in height and 10.5 m in length. The water speed range in the work section is from 1 m/s to 15 m/s, the pressure range at the center of the work section is from 0.005 MPa to 0.4 MPa.

    According to the dimension of the test section and the installation requirements, a ship hull model with all accessories is manufactured based on geometric similarity. The hull model is 6.76 m in length, and two propellers are both of internal rotation type. The appendages include one bulbous bow, two bilge keels, two fin stabilizers, several shift brackets and one rudder. The ship model is made of fiberglass. The serial number of the ship model is SM0404. The installation of the ship model and the propeller model is shown in Fig.1.

    Fig.1 The installation of the ship model and the propeller model

    In the model test, the geometric similarity, the kinematic similarity and the dynamic similarity are required.

    (1)The ship model and the propeller model are made according to the geometric similarity.

    (2)The cavitation number in the model test is the same as that for the full-scale ship:

    For full-scale ship:

    where ρsis the density of sea water, hsthe depth of the full-scale propeller, Dsthe diameter of the full-scale propeller, nsthe rotational speed of the full-scale propeller, pathe atmosphere pressure, pvsthe vapor pressure of sea water, nmthe rotational speed of the model propeller, pvmthe vapor pressure of the test water, p0the pressure at the center of the test section,hpthe height between the propeller model center and the work section center

    (3)Reynolds number is larger than the critical Reynolds number.

    where Vais the advance velocity of the propeller model,L0.75Rthe length of 0.75R propeller section, ν the kinematic viscosity coefficient of the water.

    (4)The thrust coefficient of the model propeller is the same as that of the full-scale propeller.

    There are 8 pressure transducers installed at the hull stern. The pressured surfaces of the transducers are leveled with the hull surface, and the diameters of the pressured surfaces are 3.7 mm. The#transducers are assembled as shown in Fig.2, and the 2 transducer is placed at the center of the propeller disc upside up.

    In order to observe the propeller cavitation, two watertight CCDs are fixed, respectively, ahead and behind the port propeller. The cavity pattern and development on the blade surface can berecorded by the two CCDs with the stroboscope.

    Fig.2 The measurement points on the SM0404

    According to the thrust coefficient KTsand the cavitation numberσnsof the full-scale ship at the ship speed Vshipof 28.87 kn, the rotational speednmof the propeller model, the flow velocityVsmand the pressure at the test section are determined. The operation conditions of the test model and the full-scale ship are shown in Table 1.

    Table 1 The conditions of the full-scale ship and the test model

    The relative air content α/ αsof the water in the large channel is adjusted to 0.58. When the air content is stabilized, the following measurement operations are carried out:

    (1) Calibrate the sensitivity of the transducers, and measure the pressure fluctuations on the hull stern at different conditions.

    With Fast Fourier Transform(FFT) of the pressure time-domain signal p, the blade frequency amplitudes piand the phase-anglesφiof the pressure fluctuations can be obtained.

    The non-dimensional amplitudes are calculated as:

    (2) When there is the cavitation on the blades, the cavitation shape is plotted on the key blade at different angles.

    (3) Change the relative air content α/ αsto 0.50, 0.68 and 0.82, respectively, repeat the procedures of the Steps (1)-(2).

    3. Results and analysis

    When the relative air content α/ αsis 0.82, 0.68, 0.58 and 0.50, respectively, the pressure fluctuations coefficients at the different measurement points are shown as in Fig.3 - Fig.7.

    Fig.3 The 1st pressure fluctuations coefficients

    Fig.4 The 2nd pressure fluctuations coefficients

    Fig.5 The 3rd pressure fluctuations coefficients

    From the above results, it is shown that the air content has a great effect on the pressure fluctuations. The pressure fluctuation amplitudes increase with the decrease of the air content except the 2nd order amplitudes. For example, the 1st order amplitude at α/ αs=0.5is 14.4% larger than that at α/ αs=0.82on the measurement point 6#.

    Fig.6 The 4th pressure fluctuations coefficients

    Fig.7 The 5th pressure fluctuations coefficients

    Fig.8 The cavity shape on the key blade

    When the relative air content α/ αsis 0.58, the cavitation range on the key blade from 0oto 40ois shown in Fig.8. In the test, there are a large number of gas bubbles floating up in the water because of the low pressure in the channel, which affect the observation of the bubble cavitation and the tip vortex cavitation to some extent. But the sheet cavitation can be observed clearly because it is relatively stable and its range is relatively large. So the range of the sheet cavitation in Fig.3 is more accurate than those of the bubble cavitation and the tip vortex cavitation. When the relative air content α/ αsis adjusted to other values, the sheet cavitation range on the blade changes little.

    Unfortunately, the results of the cavitation observation indicate that the sheet cavitation ranges change too diminutively to be observed clearly. And it is also difficult to observe clearly the effects of the air content on the bubble cavitation and the tip vortex cavitation in our model test because of the instability of the bubble cavitation and the tip vortex cavitation and the large number of gas bubbles in the water. But from the results of the pressure fluctuations, it is shown that the air content has a great effect on the pressure fluctuations induced by the cavitating propeller. So the air content must have important effects on cavitaiton, especially on the bubble cavitation and the tip vortex cavitation.

    This can be explained as follows. The cavitation nuclei are the defects of the viscous fluid, which causes a decrease of tensile force. So the cavitation nuclei concentration in the water has significant influences on the water tensile force. The cavitation nuclei concentration decreases with the decrease of the air content, therefore, the water tensile force becomes bigger, which results in the instability of the bubble cavitation and tip vortex cavitation and the increase of pressure fluctuations.

    The water tensile force comes from the fluid viscosity characterized by Reynolds number. In the 23ITTC, both the gas pressure and the bubble tension terms become less important when the velocities increase. So the tensile effects are also related to Reynolds number. With the increase of Reynolds number, the tensile effects decrease. Because the Reynolds number in the real case is much larger than that in the model test, the tensile forces are not similar in the real case and in the model test, that is to say, the tensile effects in the model test are larger than those in the full-scale case, which is called the scale effects. To lower the scale effects, some measures must be taken to reduce the tensile effects in the model test. Based on the analysis above, there are two methods to reduce the tensile effects in the model test: increasing the nuclei content and increasing Reynolds number. So the experiments should be run at high Reynolds number with high nuclei content in order to minimize the scale effects. The high Reynolds number is often realized by increasing the flow velocity and the propeller rotation speed, and the high nuclei content is often obtained by increasing the dissolved air conten.

    4. Conclusions

    The effects of air content on propeller cavitation and pressure fluctuations are studied in this article.The cavitation is observed when the pressure fluctuations on the hull are measured. The air content is changed at the same working condition.

    When adjusting the air content, the sheet cavitation range does not change very distinctly, but the pressure fluctuations see obvious differences. The pressure fluctuation amplitudes increase with the decrease of air content except the second order amplitude. The results indicate that the air content has great effects on the pressure fluctuations induced by the cavitating propeller. So it must have important effects on the bubble cavitation and tip vortex cavitation.

    The reason is that the cavitation nuclei concentration decreases with the decrease of the air content. The cavitation nuclei concentration in the water has a significant influence on the tensile force of the water, and in its turn, on propeller cavitation characteristics. When the air content decreases, the water tensile forces become bigger, which would result in the instability of the cavity and the increase of the pressure fluctuations.

    Because Reynolds number in the full-scale case is much larger than that in the model test, the effects of the tensile force in the model test are larger than that in the full-scale case, which is called the scale effects. To minimize the scale effects, the experiments should be run at high Reynolds number with high nuclei content. The high Reynolds number is often realized by increasing the flow velocity and the propeller rotation speed, and the high nuclei content is often obtained by increasing the dissolved air content.

    [1] M?RCH K. A. Cavitation nuclei: Experiments and theory[J]. Journal of Hydrodynamics, 2009, 21(2): 176-189.

    [2] GINDROZ B., MATERA F. Influence of the cavitation nuclei on the cavitation bucket when predicting the full-scale behavior of a marine propeller[C]. 21st Symposium on Naval Hydrodynamics. Trondheim, Norway, 1996, 839-850.

    [3] GINDROZ B., BILLET M. L. Influence of the nuclei on the cavitation inception for different types of cavitation on ship propellers[J]. Journal of Fluids Engineering, 1998, 120: 171-178.

    [4] TAMURA Y. Improvement of bubble model for cavitating flow simulations[J]. Journal of Hydrodynamics, 2009, 21(1): 41-46.

    [5] XIONG Ying, YE Jin-ming and WANG De-xun. Prediction of unsteady cavitation of propeller using suface panel method[J]. Journal of Hydrodynamics, Ser. B, 2005, 16(1): 43-49.

    [6] YE Jin-ming, XIONG Ying. Prediction of podded propeller cavitation using unsteady surface-panel method based on velocity potential[J]. Journal of Hydrodynamics, 2008, 20(6): 912-918.

    [7] RHEE S., KAWAMURA T. and LI H. A study of propeller cavitation using a RANS CFD method[C]. Proceedings of 8th International Conference on Numerical Ship Hydrodynamics. Busan, Korea, 2003.

    [8] RHEE S. H., JOSHI S. Computational Validation for flow around a marine propeller using vnstructured mesh based Navier-Stokes solver[J]. JSME International Journal Series B, 2005, 48(3): 562-570.

    [9] KAWAMURA T., WATANABE T. and TAKEKOSHI T. Simulation of steady and unsteady cavitation on a marine propeller using a RANS CFD code[C]. Proceedings of 5th International Symposium on Cavitation. Osaka, Japan, 2003.

    [10] HAN Bao-yu, XIONG Ying and CHEN Shuang-qiao. Numerical simulation of cavitation around 2-dimentional hydrofoil[J]. Chinese Journal of Hydrodynamics, 2009, 24(6): 740-746(in Chinese).

    [11] KEHR Y. Z., HSIN C. Y. and SUN Y. C. Calculations of pressure fluctuations on the ship hull induced by intermittently cavitating propellers[C]. Proceedings of 21st Symposium On Naval Hydrodynamics. Trondheim, Norway, 1997, 882-897.

    [12] YE Jin-ming, XIONG Ying. Predicting pressure fluctuations on ship hulls due to intermittently cavitating propellers[J]. Journal of Ship Mechanics, 2005, 9(6): 21-29.

    [13] YE Jin-ming, XIONG Ying. Research on effects of phase difference to pressure fluctuations induced by propeller cavitation of twin-screw ship[J]. Journal of Ship Mechanics, 2009, 13(2): 203-209(in Chinese).

    [14] BILLET M. L. The importance and measurement of cavitation nuclei[C]. Advances in Aerodynamics, Fluid Mechanics and Hydraulics, ASCE. Minneapolis, MN, USA, 1986.

    [15] GINDROZ B., BILLET M. L. Nuclei and acoustic cavitation inception on ship propellers[C]. 2nd International Symposium on Cavitation. Tokyo, Japan, 1994.

    [16] BRIANCON M. L., MERLE L. Inception, development, and noise of a tip vortex cavitation[C]. Proceedings of 21st Symposium on Naval Hydrodynamics. Trondheim, Norway, 1997, 851-864.

    10.1016/S1001-6058(09)60097-4

    * Project supported by the Foundation of the State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University (Grant No. 0811), the National Natural Science Foundation of China (Grant No. 51009145) and the Foundation of Ministry of Education Key Laboratory of High speed ship Engineering, Wuhan University of Technology (Grant No. HSSE 1004).

    Biography: YE Jin-ming (1978-), Male, Ph. D., Lecturer

    国产精品欧美亚洲77777| 人人妻人人添人人爽欧美一区卜| 国产欧美亚洲国产| 大又大粗又爽又黄少妇毛片口| 十八禁高潮呻吟视频| 蜜桃在线观看..| 亚洲国产精品一区二区三区在线| av又黄又爽大尺度在线免费看| 亚洲情色 制服丝袜| 婷婷色综合www| 国产在线一区二区三区精| 不卡视频在线观看欧美| 一区二区三区精品91| 丰满乱子伦码专区| 麻豆精品久久久久久蜜桃| 亚洲精品久久成人aⅴ小说 | 我的女老师完整版在线观看| 美女cb高潮喷水在线观看| 久热久热在线精品观看| 看十八女毛片水多多多| 乱码一卡2卡4卡精品| 久久久国产精品麻豆| av免费观看日本| 欧美日韩视频高清一区二区三区二| 少妇熟女欧美另类| 18+在线观看网站| a级毛片在线看网站| 一边亲一边摸免费视频| 97精品久久久久久久久久精品| 久久精品熟女亚洲av麻豆精品| 欧美日韩一区二区视频在线观看视频在线| 777米奇影视久久| 一本大道久久a久久精品| 久久精品国产鲁丝片午夜精品| 亚洲中文av在线| 婷婷色综合大香蕉| 丝袜美足系列| 亚洲国产毛片av蜜桃av| 成年美女黄网站色视频大全免费 | 国产免费又黄又爽又色| 久久人妻熟女aⅴ| 久久久久视频综合| a 毛片基地| h视频一区二区三区| 纵有疾风起免费观看全集完整版| 免费av中文字幕在线| 成年人午夜在线观看视频| 欧美一级a爱片免费观看看| 国产免费福利视频在线观看| 精品午夜福利在线看| 一本大道久久a久久精品| 国产高清三级在线| 欧美精品人与动牲交sv欧美| 中国国产av一级| 国产 精品1| 亚洲精品久久成人aⅴ小说 | 久久国产亚洲av麻豆专区| av国产精品久久久久影院| 蜜桃在线观看..| 亚洲,欧美,日韩| 中文天堂在线官网| 欧美日韩在线观看h| 国产精品 国内视频| freevideosex欧美| 中文天堂在线官网| 男的添女的下面高潮视频| 人妻夜夜爽99麻豆av| 亚洲美女黄色视频免费看| 日本wwww免费看| 少妇的逼好多水| 久久久久久久精品精品| 国产精品久久久久成人av| 老司机影院成人| 亚洲精品456在线播放app| 久久精品国产a三级三级三级| 成年女人在线观看亚洲视频| 在线精品无人区一区二区三| 国产有黄有色有爽视频| 美女大奶头黄色视频| 在线观看三级黄色| 秋霞在线观看毛片| 日本黄色日本黄色录像| 日韩中字成人| 夜夜骑夜夜射夜夜干| 成人综合一区亚洲| 中文欧美无线码| 日本爱情动作片www.在线观看| 中文字幕制服av| 伦理电影大哥的女人| 久久精品国产自在天天线| 国产免费视频播放在线视频| 新久久久久国产一级毛片| 国产成人精品久久久久久| 大片电影免费在线观看免费| 在线观看www视频免费| 日韩,欧美,国产一区二区三区| av福利片在线| 国产精品免费大片| 人人妻人人澡人人看| 黑人高潮一二区| 久久99蜜桃精品久久| 制服诱惑二区| 亚洲怡红院男人天堂| 最近最新中文字幕免费大全7| 国产日韩一区二区三区精品不卡 | 国产日韩欧美视频二区| 国产乱人偷精品视频| 亚洲精品一二三| 国产成人精品在线电影| 九九在线视频观看精品| 街头女战士在线观看网站| 99久久中文字幕三级久久日本| 一级二级三级毛片免费看| 我要看黄色一级片免费的| 欧美 日韩 精品 国产| 日韩一区二区视频免费看| 久久精品人人爽人人爽视色| 午夜激情久久久久久久| 欧美3d第一页| 欧美三级亚洲精品| 久久综合国产亚洲精品| 精品亚洲成a人片在线观看| 一级毛片黄色毛片免费观看视频| 亚洲精品乱久久久久久| a 毛片基地| 高清视频免费观看一区二区| 亚洲精品乱久久久久久| 欧美丝袜亚洲另类| 精品国产一区二区三区久久久樱花| 精品久久蜜臀av无| 欧美成人精品欧美一级黄| 色网站视频免费| 大码成人一级视频| 国产69精品久久久久777片| 黄色配什么色好看| 黑人高潮一二区| 51国产日韩欧美| 国产伦理片在线播放av一区| 国产精品秋霞免费鲁丝片| 春色校园在线视频观看| 国产av一区二区精品久久| 国产极品天堂在线| 99九九在线精品视频| 黄色欧美视频在线观看| 国产极品天堂在线| 日韩不卡一区二区三区视频在线| av国产久精品久网站免费入址| 精品久久久噜噜| 男女边摸边吃奶| 国产黄片视频在线免费观看| 久久婷婷青草| 大香蕉久久成人网| 免费日韩欧美在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 在线精品无人区一区二区三| 大片电影免费在线观看免费| 亚洲av综合色区一区| 国产高清不卡午夜福利| 久久久久人妻精品一区果冻| 国产一区有黄有色的免费视频| 婷婷色麻豆天堂久久| 日日爽夜夜爽网站| 国产又色又爽无遮挡免| av免费在线看不卡| 婷婷色av中文字幕| 午夜福利网站1000一区二区三区| 青青草视频在线视频观看| 精品人妻一区二区三区麻豆| 黄片无遮挡物在线观看| 亚洲四区av| 色5月婷婷丁香| 制服诱惑二区| 2021少妇久久久久久久久久久| 午夜免费男女啪啪视频观看| 十分钟在线观看高清视频www| 少妇人妻精品综合一区二区| 国产高清不卡午夜福利| 欧美日韩视频高清一区二区三区二| 亚洲精品一区蜜桃| 久久99蜜桃精品久久| 性色avwww在线观看| 久热这里只有精品99| av免费观看日本| 亚洲四区av| 人妻一区二区av| 精品久久久久久电影网| 日韩 亚洲 欧美在线| 免费看光身美女| 亚洲一级一片aⅴ在线观看| 亚洲精品成人av观看孕妇| 人人妻人人澡人人爽人人夜夜| 有码 亚洲区| 欧美日韩亚洲高清精品| 母亲3免费完整高清在线观看 | 极品人妻少妇av视频| 简卡轻食公司| 国产在线免费精品| 一级毛片电影观看| 久久精品国产鲁丝片午夜精品| 一级,二级,三级黄色视频| 国产免费视频播放在线视频| 国产毛片在线视频| 国产亚洲欧美精品永久| 在线亚洲精品国产二区图片欧美 | 国产精品久久久久久久久免| 伊人亚洲综合成人网| 国产av国产精品国产| 免费人成在线观看视频色| 国产 一区精品| 国产亚洲精品久久久com| 精品人妻熟女毛片av久久网站| 成人国语在线视频| 啦啦啦啦在线视频资源| 日韩一本色道免费dvd| 卡戴珊不雅视频在线播放| 在线观看免费视频网站a站| 精品国产乱码久久久久久小说| 亚洲欧美中文字幕日韩二区| 日本免费在线观看一区| 美女福利国产在线| 久久久精品免费免费高清| 亚洲怡红院男人天堂| 亚洲精品成人av观看孕妇| 人体艺术视频欧美日本| 久久97久久精品| 午夜免费观看性视频| 一区二区av电影网| 热re99久久精品国产66热6| 免费观看在线日韩| 18禁在线无遮挡免费观看视频| 午夜免费男女啪啪视频观看| 国产国拍精品亚洲av在线观看| 国产爽快片一区二区三区| 日韩av不卡免费在线播放| 亚洲高清免费不卡视频| 国产成人freesex在线| 中文精品一卡2卡3卡4更新| 久久久久久久国产电影| 亚洲精品,欧美精品| 热99国产精品久久久久久7| 国产精品一区二区三区四区免费观看| 在线观看国产h片| 乱码一卡2卡4卡精品| 国产精品一国产av| 狂野欧美激情性bbbbbb| 日本黄大片高清| 卡戴珊不雅视频在线播放| 免费看不卡的av| 成人国语在线视频| 亚洲国产成人一精品久久久| 大香蕉久久成人网| 亚洲精品第二区| 日本-黄色视频高清免费观看| 啦啦啦视频在线资源免费观看| 久久这里有精品视频免费| 一区二区av电影网| 在线亚洲精品国产二区图片欧美 | 自线自在国产av| 欧美亚洲 丝袜 人妻 在线| 国内精品宾馆在线| 成人亚洲精品一区在线观看| 日韩成人av中文字幕在线观看| 在线观看免费视频网站a站| 色婷婷av一区二区三区视频| 纯流量卡能插随身wifi吗| 国产精品国产三级专区第一集| 最近手机中文字幕大全| 老司机影院毛片| 亚洲情色 制服丝袜| 少妇精品久久久久久久| 日韩av不卡免费在线播放| 国产精品女同一区二区软件| 丰满饥渴人妻一区二区三| 国产午夜精品一二区理论片| 亚洲熟女精品中文字幕| 国产视频首页在线观看| 最近2019中文字幕mv第一页| 少妇精品久久久久久久| 在线看a的网站| 国产成人精品婷婷| 99热6这里只有精品| 伊人久久精品亚洲午夜| 国产一区二区在线观看av| 国产精品久久久久成人av| 美女中出高潮动态图| 免费人妻精品一区二区三区视频| 国产av国产精品国产| 丁香六月天网| 久久热精品热| 观看美女的网站| 久久精品国产亚洲av天美| 全区人妻精品视频| 九色成人免费人妻av| 免费看av在线观看网站| 女人久久www免费人成看片| 日韩视频在线欧美| 久久国产精品大桥未久av| 亚洲综合色网址| 欧美日韩av久久| av国产久精品久网站免费入址| 丁香六月天网| 男女免费视频国产| 色哟哟·www| 国产精品久久久久久精品古装| 五月开心婷婷网| 国产精品人妻久久久影院| 久久精品夜色国产| 91精品三级在线观看| 亚洲美女视频黄频| 精品一区二区三区视频在线| 亚洲,欧美,日韩| 少妇人妻久久综合中文| 女性被躁到高潮视频| 伦精品一区二区三区| 亚洲av.av天堂| 97精品久久久久久久久久精品| 黄色配什么色好看| 黄片播放在线免费| 97超碰精品成人国产| 少妇的逼好多水| 国产日韩欧美在线精品| 午夜激情久久久久久久| 日韩精品免费视频一区二区三区 | 欧美人与性动交α欧美精品济南到 | 国产极品天堂在线| 99热这里只有是精品在线观看| 永久免费av网站大全| 国产在视频线精品| 成年美女黄网站色视频大全免费 | 这个男人来自地球电影免费观看 | 人人妻人人澡人人看| 欧美亚洲日本最大视频资源| 观看av在线不卡| 久久精品久久久久久久性| 久久久午夜欧美精品| 狂野欧美激情性bbbbbb| 精品人妻偷拍中文字幕| 简卡轻食公司| 亚洲av中文av极速乱| 亚洲人与动物交配视频| 亚洲av国产av综合av卡| 三级国产精品片| 婷婷色麻豆天堂久久| 狂野欧美激情性bbbbbb| 欧美亚洲 丝袜 人妻 在线| 一级黄片播放器| 22中文网久久字幕| 曰老女人黄片| 精品人妻偷拍中文字幕| 麻豆乱淫一区二区| 国产精品无大码| a级毛色黄片| 超色免费av| 三级国产精品片| 欧美日韩成人在线一区二区| 国产69精品久久久久777片| 国产黄频视频在线观看| 91精品国产九色| 欧美精品一区二区免费开放| 欧美日韩亚洲高清精品| 九九久久精品国产亚洲av麻豆| 亚洲不卡免费看| 又大又黄又爽视频免费| 亚洲少妇的诱惑av| xxx大片免费视频| 久久久久久久亚洲中文字幕| 一级片'在线观看视频| 夜夜爽夜夜爽视频| 一级a做视频免费观看| 精品一品国产午夜福利视频| 男女高潮啪啪啪动态图| 高清视频免费观看一区二区| 日日摸夜夜添夜夜爱| 成人免费观看视频高清| av电影中文网址| 欧美三级亚洲精品| 国产精品一区www在线观看| 交换朋友夫妻互换小说| 99热全是精品| 免费观看a级毛片全部| 久久久久久久大尺度免费视频| 国产一区二区在线观看日韩| 精品亚洲乱码少妇综合久久| 五月玫瑰六月丁香| av视频免费观看在线观看| 亚洲精品国产色婷婷电影| 日韩在线高清观看一区二区三区| 综合色丁香网| 国产精品.久久久| 精品少妇内射三级| 国产高清不卡午夜福利| 五月天丁香电影| 欧美精品一区二区大全| 秋霞在线观看毛片| 成人手机av| 国产一级毛片在线| 搡女人真爽免费视频火全软件| 国产乱人偷精品视频| 成人国语在线视频| 日韩欧美一区视频在线观看| 国产精品一区二区在线不卡| 99re6热这里在线精品视频| av在线播放精品| 国产成人精品福利久久| 最后的刺客免费高清国语| 亚洲第一区二区三区不卡| 高清欧美精品videossex| 高清黄色对白视频在线免费看| 中文乱码字字幕精品一区二区三区| 91久久精品电影网| 国产日韩欧美视频二区| av福利片在线| 午夜福利视频在线观看免费| 国产亚洲午夜精品一区二区久久| 熟女av电影| 久久精品久久精品一区二区三区| 国产免费现黄频在线看| 国产精品熟女久久久久浪| 国产成人精品无人区| 少妇 在线观看| 国产精品无大码| 中文字幕制服av| 亚洲综合色惰| 秋霞伦理黄片| 校园人妻丝袜中文字幕| 大陆偷拍与自拍| 久久国内精品自在自线图片| 国产精品 国内视频| 久久99热6这里只有精品| 婷婷色综合大香蕉| 免费黄频网站在线观看国产| 男女边吃奶边做爰视频| 不卡视频在线观看欧美| 人妻人人澡人人爽人人| 日韩一本色道免费dvd| 日本黄色片子视频| 国产一区二区在线观看av| 欧美精品高潮呻吟av久久| 五月玫瑰六月丁香| 尾随美女入室| 大片免费播放器 马上看| 午夜福利在线观看免费完整高清在| 欧美日韩av久久| 久久99蜜桃精品久久| 国产爽快片一区二区三区| 日韩大片免费观看网站| 久久毛片免费看一区二区三区| 午夜免费鲁丝| 成人亚洲欧美一区二区av| 女性被躁到高潮视频| 免费高清在线观看视频在线观看| 中文字幕制服av| 亚洲一级一片aⅴ在线观看| 99久久精品一区二区三区| 青青草视频在线视频观看| 亚洲成色77777| 青青草视频在线视频观看| 18禁动态无遮挡网站| 蜜桃久久精品国产亚洲av| 精品人妻偷拍中文字幕| 国产高清有码在线观看视频| 日本欧美视频一区| 精品久久久久久电影网| 日韩免费高清中文字幕av| 少妇被粗大的猛进出69影院 | 国产熟女欧美一区二区| 一二三四中文在线观看免费高清| 麻豆成人av视频| 成人18禁高潮啪啪吃奶动态图 | 亚洲美女黄色视频免费看| 国产乱来视频区| 久久久久久久久久久免费av| 2021少妇久久久久久久久久久| 午夜日本视频在线| 在线亚洲精品国产二区图片欧美 | 中国美白少妇内射xxxbb| 久久 成人 亚洲| 亚洲欧美一区二区三区黑人 | 免费日韩欧美在线观看| 国产精品成人在线| 91成人精品电影| 精品一区在线观看国产| 国产探花极品一区二区| 欧美 亚洲 国产 日韩一| 亚洲精品自拍成人| 国产爽快片一区二区三区| 精品午夜福利在线看| 亚洲无线观看免费| av电影中文网址| 国产黄色免费在线视频| 高清毛片免费看| 精品久久久久久久久av| 国产成人精品福利久久| 日韩欧美精品免费久久| 精品国产一区二区三区久久久樱花| 美女内射精品一级片tv| 国产一区二区三区综合在线观看 | 午夜福利视频在线观看免费| av天堂久久9| .国产精品久久| a 毛片基地| 美女主播在线视频| 美女中出高潮动态图| 黄色怎么调成土黄色| 中文字幕人妻丝袜制服| 简卡轻食公司| 国产极品粉嫩免费观看在线 | 日本vs欧美在线观看视频| 考比视频在线观看| 国产免费视频播放在线视频| 91久久精品电影网| 亚洲人成网站在线播| 久久久国产一区二区| 不卡视频在线观看欧美| 五月天丁香电影| 哪个播放器可以免费观看大片| 欧美精品高潮呻吟av久久| 人人澡人人妻人| 全区人妻精品视频| 另类精品久久| 在线观看三级黄色| 人妻制服诱惑在线中文字幕| av女优亚洲男人天堂| 日本色播在线视频| 久久国产精品男人的天堂亚洲 | 中文字幕亚洲精品专区| 亚洲内射少妇av| 国产成人精品福利久久| 精品人妻熟女av久视频| 日本wwww免费看| 国产精品国产av在线观看| 精品卡一卡二卡四卡免费| 男女边摸边吃奶| 亚洲av在线观看美女高潮| 国产片内射在线| 成人亚洲精品一区在线观看| 男人爽女人下面视频在线观看| 天天躁夜夜躁狠狠久久av| 麻豆精品久久久久久蜜桃| 日本色播在线视频| 欧美 亚洲 国产 日韩一| 91久久精品国产一区二区三区| 国产精品麻豆人妻色哟哟久久| 激情五月婷婷亚洲| 91精品三级在线观看| 欧美日韩国产mv在线观看视频| 成年美女黄网站色视频大全免费 | 波野结衣二区三区在线| 五月天丁香电影| 久久99精品国语久久久| 狠狠精品人妻久久久久久综合| 少妇人妻久久综合中文| 丝袜喷水一区| 亚洲内射少妇av| 国产伦理片在线播放av一区| 中文字幕av电影在线播放| 日本-黄色视频高清免费观看| 韩国av在线不卡| 国产一区二区在线观看日韩| 久久久a久久爽久久v久久| √禁漫天堂资源中文www| 欧美变态另类bdsm刘玥| av国产精品久久久久影院| 大陆偷拍与自拍| 久久精品夜色国产| 免费观看a级毛片全部| 97在线人人人人妻| 2018国产大陆天天弄谢| 人妻一区二区av| 91久久精品国产一区二区成人| 国产白丝娇喘喷水9色精品| 春色校园在线视频观看| 高清黄色对白视频在线免费看| 一本一本综合久久| 亚洲精品亚洲一区二区| 热re99久久精品国产66热6| 少妇丰满av| 一个人免费看片子| 一级a做视频免费观看| 人人妻人人爽人人添夜夜欢视频| 日日爽夜夜爽网站| 熟女电影av网| 九色亚洲精品在线播放| 在线观看免费日韩欧美大片 | 国产一区二区在线观看日韩| 亚洲国产精品国产精品| 精品午夜福利在线看| 青春草视频在线免费观看| 日日撸夜夜添| 高清毛片免费看| 精品久久蜜臀av无| 在线观看免费视频网站a站| 国产成人av激情在线播放 | 免费大片18禁| 欧美精品一区二区大全| 高清在线视频一区二区三区| 午夜免费鲁丝| 91午夜精品亚洲一区二区三区| 精品亚洲成国产av| 国精品久久久久久国模美| 这个男人来自地球电影免费观看 | 日本爱情动作片www.在线观看| 久久免费观看电影| 亚洲国产毛片av蜜桃av| 在线观看免费高清a一片| 国产精品国产三级专区第一集| 日韩视频在线欧美| 成人无遮挡网站| 国产 一区精品| 国产精品国产av在线观看| 日本欧美国产在线视频| 草草在线视频免费看| 亚洲久久久国产精品| 欧美xxxx性猛交bbbb| 各种免费的搞黄视频|