• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EXPERIMENTAL STUDY OF EFFECTS OF AIR CONTENT ON CAVITATION AND PRESSURE FLUCTUATIONS*

    2010-05-06 08:22:07YEJinmingXIONGYingLIFangCHENShuangqiao
    水動力學研究與進展 B輯 2010年5期

    YE Jin-ming, XIONG Ying, LI Fang, CHEN Shuang-qiao

    College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033, China,

    EXPERIMENTAL STUDY OF EFFECTS OF AIR CONTENT ON CAVITATION AND PRESSURE FLUCTUATIONS*

    YE Jin-ming, XIONG Ying, LI Fang, CHEN Shuang-qiao

    College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033, China,

    E-mail: yjmcx2318@sina.com

    (Received August 20, 2009, Revised August 18, 2010)

    This article studies the effects of air content on propeller cavitation and pressure fluctuations. The cavitation is observed while the pressure fluctuations on the hull are measured. When adjusting the air content, the sheet cavitation range does not change distinctly, but the pressure fluctuations see obvious differences. The amplitudes of the pressure fluctuations increase with the decrease of the air content. The results indicate that the air content has little effect on the sheet cavitation range but has an important effect on the bubble cavitation and the tip vortex cavitation. When the air content decreases, the water tensile force increases, which results in the instability of the bubble cavitation and the tip vortex cavitation and the increase of the pressure fluctuations. To minimize the scale effects, the experiments should be run at a high Reynolds number with a high nuclei content. The high Reynolds number is often realized by increasing the flow velocity and the propeller rotation speed, and the high nuclei content is often made by increasing the dissolved air content.

    cavitation, pressure fluctuations, model test, air content

    1. Introduction

    The propeller is the most important source of the stern vibration. The cavitation on propellers makes pressure fluctuations especially serious. It is clear that the water quality has an important influence on the propeller cavitation inception process and the propeller induced pressure fluctuations[1-3]. The water quality is traditionally defined in terms of the dissolved air content level. In most numerical predictions of cavitation[4-10]and pressure fluctuations[11-13], the air content effects are not considered. The effects of the water quality or the air content on cavitation and fluctuations are often studied by experiments.

    Experimental studies of the influence of air on cavitation inception and dynamics over the past 20 years are reviewed by Billet[14]and Gindroz[15]. The influence of dissolved gas on the inception and development of the tip vortex cavitation was examined by Brian?on and Merle[16]. They demonstrated how both free and dissolved gas content would influence the cavitation of a stationary elliptic planform hydrofoil, including the core diameter and the dynamics of the vortex. While the size of the incident nuclei was not taken as an independently varying parameter in the study, it was shown that the dynamics and the fragmentation of larger bubbles in the vortex can influence the noise that the bubbles emit upon collapse. In order to correlate the water quality measurements with both visual and acoustic inception for several types of propeller cavitation, Grand Tunnel Hydrodynamic (GTH) offered a correlation for the propeller leading-edge sheet, between the bubble and tip vortex cavitation inception and water quality data as determined by the liquid tension and the microbubble event-rate. The results show clearly a dependency of the cavitation inceptionfor each propeller cavitation type on the liquid tension. The water quality is also important as shown in scale effects. The classical theory for scaling vaporous cavitation inception assumes that σ is constant, which implies that when scaling from one flow state to another, not only the characteristics of the flow field and its boundaries remain geometrically and kinematically similar but also cavitation occurs when the local pressure is equal to the liquid vapor pressure. However, the real flows often do not obey this classical theory and departures are often called the“scale effects”. Experimental results clearly show that in most cases, the cavitation inception index can be greater or less than the minimum pressure coefficient.

    In this article, the model test of pressure fluctuations induced by cavitation propeller is carried out in the large circulation channel. The ship wake is simulated by a ship model with all accessories. The cavitation is observed when the pressure fluctuations on the hull are measured. The effects of air content on cavitation and pressure fluctuations are studied.

    2. Test facility and test model

    The model test is carried out in the large circulation channel of the State Key Laboratory of Hydrodynamics. The work section is a rectangle of 2.2 m in width, 2 m in height and 10.5 m in length. The water speed range in the work section is from 1 m/s to 15 m/s, the pressure range at the center of the work section is from 0.005 MPa to 0.4 MPa.

    According to the dimension of the test section and the installation requirements, a ship hull model with all accessories is manufactured based on geometric similarity. The hull model is 6.76 m in length, and two propellers are both of internal rotation type. The appendages include one bulbous bow, two bilge keels, two fin stabilizers, several shift brackets and one rudder. The ship model is made of fiberglass. The serial number of the ship model is SM0404. The installation of the ship model and the propeller model is shown in Fig.1.

    Fig.1 The installation of the ship model and the propeller model

    In the model test, the geometric similarity, the kinematic similarity and the dynamic similarity are required.

    (1)The ship model and the propeller model are made according to the geometric similarity.

    (2)The cavitation number in the model test is the same as that for the full-scale ship:

    For full-scale ship:

    where ρsis the density of sea water, hsthe depth of the full-scale propeller, Dsthe diameter of the full-scale propeller, nsthe rotational speed of the full-scale propeller, pathe atmosphere pressure, pvsthe vapor pressure of sea water, nmthe rotational speed of the model propeller, pvmthe vapor pressure of the test water, p0the pressure at the center of the test section,hpthe height between the propeller model center and the work section center

    (3)Reynolds number is larger than the critical Reynolds number.

    where Vais the advance velocity of the propeller model,L0.75Rthe length of 0.75R propeller section, ν the kinematic viscosity coefficient of the water.

    (4)The thrust coefficient of the model propeller is the same as that of the full-scale propeller.

    There are 8 pressure transducers installed at the hull stern. The pressured surfaces of the transducers are leveled with the hull surface, and the diameters of the pressured surfaces are 3.7 mm. The#transducers are assembled as shown in Fig.2, and the 2 transducer is placed at the center of the propeller disc upside up.

    In order to observe the propeller cavitation, two watertight CCDs are fixed, respectively, ahead and behind the port propeller. The cavity pattern and development on the blade surface can berecorded by the two CCDs with the stroboscope.

    Fig.2 The measurement points on the SM0404

    According to the thrust coefficient KTsand the cavitation numberσnsof the full-scale ship at the ship speed Vshipof 28.87 kn, the rotational speednmof the propeller model, the flow velocityVsmand the pressure at the test section are determined. The operation conditions of the test model and the full-scale ship are shown in Table 1.

    Table 1 The conditions of the full-scale ship and the test model

    The relative air content α/ αsof the water in the large channel is adjusted to 0.58. When the air content is stabilized, the following measurement operations are carried out:

    (1) Calibrate the sensitivity of the transducers, and measure the pressure fluctuations on the hull stern at different conditions.

    With Fast Fourier Transform(FFT) of the pressure time-domain signal p, the blade frequency amplitudes piand the phase-anglesφiof the pressure fluctuations can be obtained.

    The non-dimensional amplitudes are calculated as:

    (2) When there is the cavitation on the blades, the cavitation shape is plotted on the key blade at different angles.

    (3) Change the relative air content α/ αsto 0.50, 0.68 and 0.82, respectively, repeat the procedures of the Steps (1)-(2).

    3. Results and analysis

    When the relative air content α/ αsis 0.82, 0.68, 0.58 and 0.50, respectively, the pressure fluctuations coefficients at the different measurement points are shown as in Fig.3 - Fig.7.

    Fig.3 The 1st pressure fluctuations coefficients

    Fig.4 The 2nd pressure fluctuations coefficients

    Fig.5 The 3rd pressure fluctuations coefficients

    From the above results, it is shown that the air content has a great effect on the pressure fluctuations. The pressure fluctuation amplitudes increase with the decrease of the air content except the 2nd order amplitudes. For example, the 1st order amplitude at α/ αs=0.5is 14.4% larger than that at α/ αs=0.82on the measurement point 6#.

    Fig.6 The 4th pressure fluctuations coefficients

    Fig.7 The 5th pressure fluctuations coefficients

    Fig.8 The cavity shape on the key blade

    When the relative air content α/ αsis 0.58, the cavitation range on the key blade from 0oto 40ois shown in Fig.8. In the test, there are a large number of gas bubbles floating up in the water because of the low pressure in the channel, which affect the observation of the bubble cavitation and the tip vortex cavitation to some extent. But the sheet cavitation can be observed clearly because it is relatively stable and its range is relatively large. So the range of the sheet cavitation in Fig.3 is more accurate than those of the bubble cavitation and the tip vortex cavitation. When the relative air content α/ αsis adjusted to other values, the sheet cavitation range on the blade changes little.

    Unfortunately, the results of the cavitation observation indicate that the sheet cavitation ranges change too diminutively to be observed clearly. And it is also difficult to observe clearly the effects of the air content on the bubble cavitation and the tip vortex cavitation in our model test because of the instability of the bubble cavitation and the tip vortex cavitation and the large number of gas bubbles in the water. But from the results of the pressure fluctuations, it is shown that the air content has a great effect on the pressure fluctuations induced by the cavitating propeller. So the air content must have important effects on cavitaiton, especially on the bubble cavitation and the tip vortex cavitation.

    This can be explained as follows. The cavitation nuclei are the defects of the viscous fluid, which causes a decrease of tensile force. So the cavitation nuclei concentration in the water has significant influences on the water tensile force. The cavitation nuclei concentration decreases with the decrease of the air content, therefore, the water tensile force becomes bigger, which results in the instability of the bubble cavitation and tip vortex cavitation and the increase of pressure fluctuations.

    The water tensile force comes from the fluid viscosity characterized by Reynolds number. In the 23ITTC, both the gas pressure and the bubble tension terms become less important when the velocities increase. So the tensile effects are also related to Reynolds number. With the increase of Reynolds number, the tensile effects decrease. Because the Reynolds number in the real case is much larger than that in the model test, the tensile forces are not similar in the real case and in the model test, that is to say, the tensile effects in the model test are larger than those in the full-scale case, which is called the scale effects. To lower the scale effects, some measures must be taken to reduce the tensile effects in the model test. Based on the analysis above, there are two methods to reduce the tensile effects in the model test: increasing the nuclei content and increasing Reynolds number. So the experiments should be run at high Reynolds number with high nuclei content in order to minimize the scale effects. The high Reynolds number is often realized by increasing the flow velocity and the propeller rotation speed, and the high nuclei content is often obtained by increasing the dissolved air conten.

    4. Conclusions

    The effects of air content on propeller cavitation and pressure fluctuations are studied in this article.The cavitation is observed when the pressure fluctuations on the hull are measured. The air content is changed at the same working condition.

    When adjusting the air content, the sheet cavitation range does not change very distinctly, but the pressure fluctuations see obvious differences. The pressure fluctuation amplitudes increase with the decrease of air content except the second order amplitude. The results indicate that the air content has great effects on the pressure fluctuations induced by the cavitating propeller. So it must have important effects on the bubble cavitation and tip vortex cavitation.

    The reason is that the cavitation nuclei concentration decreases with the decrease of the air content. The cavitation nuclei concentration in the water has a significant influence on the tensile force of the water, and in its turn, on propeller cavitation characteristics. When the air content decreases, the water tensile forces become bigger, which would result in the instability of the cavity and the increase of the pressure fluctuations.

    Because Reynolds number in the full-scale case is much larger than that in the model test, the effects of the tensile force in the model test are larger than that in the full-scale case, which is called the scale effects. To minimize the scale effects, the experiments should be run at high Reynolds number with high nuclei content. The high Reynolds number is often realized by increasing the flow velocity and the propeller rotation speed, and the high nuclei content is often obtained by increasing the dissolved air content.

    [1] M?RCH K. A. Cavitation nuclei: Experiments and theory[J]. Journal of Hydrodynamics, 2009, 21(2): 176-189.

    [2] GINDROZ B., MATERA F. Influence of the cavitation nuclei on the cavitation bucket when predicting the full-scale behavior of a marine propeller[C]. 21st Symposium on Naval Hydrodynamics. Trondheim, Norway, 1996, 839-850.

    [3] GINDROZ B., BILLET M. L. Influence of the nuclei on the cavitation inception for different types of cavitation on ship propellers[J]. Journal of Fluids Engineering, 1998, 120: 171-178.

    [4] TAMURA Y. Improvement of bubble model for cavitating flow simulations[J]. Journal of Hydrodynamics, 2009, 21(1): 41-46.

    [5] XIONG Ying, YE Jin-ming and WANG De-xun. Prediction of unsteady cavitation of propeller using suface panel method[J]. Journal of Hydrodynamics, Ser. B, 2005, 16(1): 43-49.

    [6] YE Jin-ming, XIONG Ying. Prediction of podded propeller cavitation using unsteady surface-panel method based on velocity potential[J]. Journal of Hydrodynamics, 2008, 20(6): 912-918.

    [7] RHEE S., KAWAMURA T. and LI H. A study of propeller cavitation using a RANS CFD method[C]. Proceedings of 8th International Conference on Numerical Ship Hydrodynamics. Busan, Korea, 2003.

    [8] RHEE S. H., JOSHI S. Computational Validation for flow around a marine propeller using vnstructured mesh based Navier-Stokes solver[J]. JSME International Journal Series B, 2005, 48(3): 562-570.

    [9] KAWAMURA T., WATANABE T. and TAKEKOSHI T. Simulation of steady and unsteady cavitation on a marine propeller using a RANS CFD code[C]. Proceedings of 5th International Symposium on Cavitation. Osaka, Japan, 2003.

    [10] HAN Bao-yu, XIONG Ying and CHEN Shuang-qiao. Numerical simulation of cavitation around 2-dimentional hydrofoil[J]. Chinese Journal of Hydrodynamics, 2009, 24(6): 740-746(in Chinese).

    [11] KEHR Y. Z., HSIN C. Y. and SUN Y. C. Calculations of pressure fluctuations on the ship hull induced by intermittently cavitating propellers[C]. Proceedings of 21st Symposium On Naval Hydrodynamics. Trondheim, Norway, 1997, 882-897.

    [12] YE Jin-ming, XIONG Ying. Predicting pressure fluctuations on ship hulls due to intermittently cavitating propellers[J]. Journal of Ship Mechanics, 2005, 9(6): 21-29.

    [13] YE Jin-ming, XIONG Ying. Research on effects of phase difference to pressure fluctuations induced by propeller cavitation of twin-screw ship[J]. Journal of Ship Mechanics, 2009, 13(2): 203-209(in Chinese).

    [14] BILLET M. L. The importance and measurement of cavitation nuclei[C]. Advances in Aerodynamics, Fluid Mechanics and Hydraulics, ASCE. Minneapolis, MN, USA, 1986.

    [15] GINDROZ B., BILLET M. L. Nuclei and acoustic cavitation inception on ship propellers[C]. 2nd International Symposium on Cavitation. Tokyo, Japan, 1994.

    [16] BRIANCON M. L., MERLE L. Inception, development, and noise of a tip vortex cavitation[C]. Proceedings of 21st Symposium on Naval Hydrodynamics. Trondheim, Norway, 1997, 851-864.

    10.1016/S1001-6058(09)60097-4

    * Project supported by the Foundation of the State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University (Grant No. 0811), the National Natural Science Foundation of China (Grant No. 51009145) and the Foundation of Ministry of Education Key Laboratory of High speed ship Engineering, Wuhan University of Technology (Grant No. HSSE 1004).

    Biography: YE Jin-ming (1978-), Male, Ph. D., Lecturer

    男插女下体视频免费在线播放| 亚洲国产色片| 一本精品99久久精品77| 天天一区二区日本电影三级| 国产高潮美女av| 热99在线观看视频| 男女之事视频高清在线观看| x7x7x7水蜜桃| 成人欧美大片| 精品不卡国产一区二区三区| 在线观看一区二区三区| 女人十人毛片免费观看3o分钟| 无人区码免费观看不卡| 小蜜桃在线观看免费完整版高清| 亚洲专区中文字幕在线| a级毛片免费高清观看在线播放| 在线观看午夜福利视频| 99热这里只有精品一区| 亚洲专区国产一区二区| 最新中文字幕久久久久| 亚洲精华国产精华精| 亚洲欧美精品综合久久99| 看片在线看免费视频| 中文亚洲av片在线观看爽| 国内揄拍国产精品人妻在线| 岛国在线免费视频观看| 免费黄网站久久成人精品 | 男女床上黄色一级片免费看| 最近在线观看免费完整版| 亚洲在线自拍视频| 日韩人妻高清精品专区| 淫秽高清视频在线观看| 免费在线观看亚洲国产| 老司机深夜福利视频在线观看| 久久久久亚洲av毛片大全| 国产精品,欧美在线| 国产精品女同一区二区软件 | 夜夜夜夜夜久久久久| 真实男女啪啪啪动态图| 国产探花极品一区二区| 少妇丰满av| 搡老妇女老女人老熟妇| 蜜桃久久精品国产亚洲av| 国内精品一区二区在线观看| 日韩欧美一区二区三区在线观看| 久久性视频一级片| 亚洲欧美日韩高清在线视频| 成人特级黄色片久久久久久久| 无遮挡黄片免费观看| 国产精品免费一区二区三区在线| 国产欧美日韩一区二区精品| 人妻久久中文字幕网| 国产精品久久久久久久久免 | 亚洲欧美日韩东京热| 日本成人三级电影网站| 12—13女人毛片做爰片一| 午夜福利在线在线| 国产精品免费一区二区三区在线| 超碰av人人做人人爽久久| 毛片女人毛片| 午夜福利成人在线免费观看| 日日夜夜操网爽| 网址你懂的国产日韩在线| ponron亚洲| 一进一出好大好爽视频| 极品教师在线免费播放| 男人的好看免费观看在线视频| 美女高潮的动态| 99热这里只有是精品50| 国产伦精品一区二区三区四那| 天天一区二区日本电影三级| ponron亚洲| 国产精品久久久久久精品电影| 90打野战视频偷拍视频| 成人无遮挡网站| 免费在线观看成人毛片| 国内久久婷婷六月综合欲色啪| 午夜视频国产福利| 白带黄色成豆腐渣| 国产三级中文精品| 国产伦精品一区二区三区视频9| 亚洲精品粉嫩美女一区| 性色av乱码一区二区三区2| 久久九九热精品免费| 免费看日本二区| 亚洲欧美日韩高清在线视频| 美女高潮的动态| 国产av一区在线观看免费| 人人妻人人看人人澡| 在线a可以看的网站| av中文乱码字幕在线| 久久99热这里只有精品18| 丰满乱子伦码专区| 国产精品久久视频播放| 在线免费观看不下载黄p国产 | 99热这里只有是精品在线观看 | 丰满的人妻完整版| 国产一区二区激情短视频| 欧美在线一区亚洲| 精品欧美国产一区二区三| 欧美黄色淫秽网站| 亚洲第一电影网av| 麻豆一二三区av精品| 国内精品一区二区在线观看| 永久网站在线| 最好的美女福利视频网| 91麻豆精品激情在线观看国产| 白带黄色成豆腐渣| 亚洲经典国产精华液单 | 精品无人区乱码1区二区| 夜夜躁狠狠躁天天躁| 波多野结衣巨乳人妻| 婷婷亚洲欧美| 日韩人妻高清精品专区| 中文字幕人成人乱码亚洲影| 亚洲,欧美精品.| 偷拍熟女少妇极品色| 国产精品久久视频播放| x7x7x7水蜜桃| 亚洲第一电影网av| 搡老熟女国产l中国老女人| 小说图片视频综合网站| 国产精品影院久久| 一区福利在线观看| 欧美精品国产亚洲| 日韩欧美免费精品| 国产精华一区二区三区| 一级黄片播放器| 高清在线国产一区| 亚洲成av人片在线播放无| av天堂中文字幕网| 日韩精品青青久久久久久| 久久精品国产自在天天线| 亚洲精品粉嫩美女一区| 欧美黑人巨大hd| 午夜激情欧美在线| 丰满人妻熟妇乱又伦精品不卡| 亚洲,欧美,日韩| 1000部很黄的大片| 精品国产三级普通话版| 午夜福利免费观看在线| 日韩欧美精品免费久久 | 亚洲成人久久性| 亚洲国产精品sss在线观看| 色吧在线观看| 亚洲av日韩精品久久久久久密| 嫩草影院入口| 久久九九热精品免费| 欧美3d第一页| 淫妇啪啪啪对白视频| 成人高潮视频无遮挡免费网站| 1000部很黄的大片| 精品国产三级普通话版| 一个人免费在线观看电影| 亚洲人与动物交配视频| 高潮久久久久久久久久久不卡| 色尼玛亚洲综合影院| 桃红色精品国产亚洲av| 很黄的视频免费| 精品久久久久久成人av| 久久久久性生活片| 久久久久精品国产欧美久久久| 国产亚洲精品综合一区在线观看| 熟女电影av网| 一级a爱片免费观看的视频| 亚洲,欧美精品.| 99国产精品一区二区蜜桃av| 97超级碰碰碰精品色视频在线观看| 精品久久久久久久久久免费视频| 国产探花极品一区二区| 国内精品美女久久久久久| 婷婷六月久久综合丁香| 亚洲av第一区精品v没综合| 三级毛片av免费| 乱码一卡2卡4卡精品| 少妇熟女aⅴ在线视频| 午夜免费成人在线视频| 国产高清视频在线观看网站| 天天躁日日操中文字幕| 欧美xxxx性猛交bbbb| av黄色大香蕉| 757午夜福利合集在线观看| 精品人妻偷拍中文字幕| 日韩欧美三级三区| 亚洲aⅴ乱码一区二区在线播放| 午夜激情欧美在线| 男女那种视频在线观看| 搞女人的毛片| 亚洲自拍偷在线| 亚洲av日韩精品久久久久久密| 久9热在线精品视频| 丰满人妻熟妇乱又伦精品不卡| 一本综合久久免费| 亚洲一区二区三区色噜噜| 国产主播在线观看一区二区| 51午夜福利影视在线观看| 美女 人体艺术 gogo| 久久人妻av系列| 激情在线观看视频在线高清| 亚洲乱码一区二区免费版| 九色成人免费人妻av| 日本一二三区视频观看| 亚洲av电影不卡..在线观看| 亚洲成av人片在线播放无| 日韩精品青青久久久久久| 少妇的逼好多水| 真人一进一出gif抽搐免费| 亚洲第一电影网av| 国产精品1区2区在线观看.| 成人三级黄色视频| 乱人视频在线观看| 美女 人体艺术 gogo| 亚洲三级黄色毛片| 国产精品久久久久久久电影| 少妇人妻一区二区三区视频| 国产精品爽爽va在线观看网站| 非洲黑人性xxxx精品又粗又长| 啦啦啦观看免费观看视频高清| 亚洲精品在线美女| 色吧在线观看| 一个人观看的视频www高清免费观看| 色综合欧美亚洲国产小说| 最后的刺客免费高清国语| 91在线精品国自产拍蜜月| 欧美黄色淫秽网站| 91在线观看av| 神马国产精品三级电影在线观看| 国产精品爽爽va在线观看网站| 国产亚洲欧美98| 国产探花极品一区二区| 亚洲国产精品999在线| 免费大片18禁| 国产亚洲欧美98| 91狼人影院| 色在线成人网| 亚洲无线在线观看| bbb黄色大片| 18+在线观看网站| 村上凉子中文字幕在线| 听说在线观看完整版免费高清| 国产精品美女特级片免费视频播放器| 中文字幕久久专区| 三级国产精品欧美在线观看| 一二三四社区在线视频社区8| 欧美成人一区二区免费高清观看| 欧美极品一区二区三区四区| 欧美绝顶高潮抽搐喷水| 国产野战对白在线观看| 一级毛片久久久久久久久女| 三级毛片av免费| 欧美高清成人免费视频www| 淫妇啪啪啪对白视频| 久久国产精品影院| av欧美777| 午夜福利在线观看吧| 欧美国产日韩亚洲一区| 网址你懂的国产日韩在线| 3wmmmm亚洲av在线观看| 免费观看人在逋| 免费在线观看成人毛片| 小蜜桃在线观看免费完整版高清| 精品人妻偷拍中文字幕| 亚洲av日韩精品久久久久久密| 很黄的视频免费| 亚洲午夜理论影院| 在线观看av片永久免费下载| 亚洲av成人av| 国产欧美日韩一区二区精品| 窝窝影院91人妻| 在线观看av片永久免费下载| 国产精品爽爽va在线观看网站| 国产成人aa在线观看| 午夜免费男女啪啪视频观看 | 亚洲aⅴ乱码一区二区在线播放| 欧美成人免费av一区二区三区| 国产免费男女视频| 国产男靠女视频免费网站| 免费观看人在逋| 欧美另类亚洲清纯唯美| 少妇高潮的动态图| av欧美777| 欧美成狂野欧美在线观看| 亚洲人与动物交配视频| xxxwww97欧美| 两人在一起打扑克的视频| 校园春色视频在线观看| 精品99又大又爽又粗少妇毛片 | 88av欧美| 男女下面进入的视频免费午夜| 高清日韩中文字幕在线| 两个人视频免费观看高清| 亚洲久久久久久中文字幕| 成人国产综合亚洲| 国产一区二区在线观看日韩| 欧美xxxx黑人xx丫x性爽| 老司机午夜福利在线观看视频| 韩国av一区二区三区四区| 一a级毛片在线观看| 在线观看午夜福利视频| 精品人妻一区二区三区麻豆 | 高清日韩中文字幕在线| 最近中文字幕高清免费大全6 | 99视频精品全部免费 在线| 国产欧美日韩一区二区三| 色播亚洲综合网| 一卡2卡三卡四卡精品乱码亚洲| 在线观看舔阴道视频| 午夜影院日韩av| 亚洲内射少妇av| 一级作爱视频免费观看| 国产成人a区在线观看| 久久热精品热| 听说在线观看完整版免费高清| 国产精品伦人一区二区| av专区在线播放| 亚洲国产高清在线一区二区三| 国产男靠女视频免费网站| 97超视频在线观看视频| 最后的刺客免费高清国语| 淫妇啪啪啪对白视频| 12—13女人毛片做爰片一| 国产三级黄色录像| 18禁黄网站禁片午夜丰满| 国产av麻豆久久久久久久| 国产精品综合久久久久久久免费| 天堂√8在线中文| 午夜精品久久久久久毛片777| 内地一区二区视频在线| av福利片在线观看| www.色视频.com| 亚洲最大成人手机在线| 窝窝影院91人妻| 国产免费一级a男人的天堂| 综合色av麻豆| 欧美乱妇无乱码| 国产探花在线观看一区二区| 国产精品乱码一区二三区的特点| 美女大奶头视频| 丝袜美腿在线中文| 久久国产精品人妻蜜桃| 久久香蕉精品热| 一进一出抽搐动态| 亚洲欧美日韩东京热| 欧美bdsm另类| 毛片一级片免费看久久久久 | 在线免费观看的www视频| 久久久色成人| 少妇的逼水好多| 97人妻精品一区二区三区麻豆| 观看美女的网站| 校园春色视频在线观看| 亚洲中文字幕日韩| 精品久久国产蜜桃| 老司机午夜十八禁免费视频| 国产精品99久久久久久久久| av中文乱码字幕在线| 欧美性感艳星| 亚洲成a人片在线一区二区| 国产精品一区二区三区四区免费观看 | 国产免费男女视频| 少妇人妻一区二区三区视频| 色精品久久人妻99蜜桃| 精品久久久久久久久久久久久| 99久久久亚洲精品蜜臀av| 国产精品精品国产色婷婷| 国产精品伦人一区二区| 精品不卡国产一区二区三区| 亚洲熟妇中文字幕五十中出| 99热6这里只有精品| 日本熟妇午夜| 在线免费观看的www视频| 精品人妻熟女av久视频| 少妇高潮的动态图| 床上黄色一级片| 国产大屁股一区二区在线视频| 午夜福利在线在线| 99riav亚洲国产免费| 国产伦在线观看视频一区| 久久久久久久久久黄片| 18禁黄网站禁片午夜丰满| 欧美不卡视频在线免费观看| 美女黄网站色视频| 国产单亲对白刺激| 男人舔奶头视频| 午夜精品在线福利| 91在线观看av| 欧美黄色片欧美黄色片| 成年女人毛片免费观看观看9| 1000部很黄的大片| 久久久久久久精品吃奶| 国产欧美日韩精品一区二区| 国产不卡一卡二| 51国产日韩欧美| 熟女电影av网| 搡老妇女老女人老熟妇| 少妇的逼水好多| 美女黄网站色视频| 男人狂女人下面高潮的视频| 国产免费一级a男人的天堂| 老鸭窝网址在线观看| 午夜免费男女啪啪视频观看 | 看黄色毛片网站| 国产欧美日韩一区二区三| 99久国产av精品| 成人毛片a级毛片在线播放| 欧美zozozo另类| 天堂av国产一区二区熟女人妻| 久久精品国产亚洲av香蕉五月| 99热这里只有是精品在线观看 | 美女cb高潮喷水在线观看| 伊人久久精品亚洲午夜| 亚洲精品色激情综合| 成年免费大片在线观看| 精品一区二区三区视频在线观看免费| 亚洲欧美日韩卡通动漫| 丁香六月欧美| 亚洲综合色惰| 欧美成人免费av一区二区三区| 精品人妻偷拍中文字幕| 99riav亚洲国产免费| 老司机深夜福利视频在线观看| 国产一区二区激情短视频| 久久久久精品国产欧美久久久| 一级a爱片免费观看的视频| 99精品久久久久人妻精品| 一个人看的www免费观看视频| 听说在线观看完整版免费高清| 脱女人内裤的视频| 搡女人真爽免费视频火全软件 | av天堂中文字幕网| 美女xxoo啪啪120秒动态图 | 在线免费观看的www视频| 人妻久久中文字幕网| 日本五十路高清| av女优亚洲男人天堂| 亚洲国产精品合色在线| 国产一区二区三区在线臀色熟女| 日本一本二区三区精品| 搡女人真爽免费视频火全软件 | 国产高清视频在线播放一区| 18美女黄网站色大片免费观看| 两性午夜刺激爽爽歪歪视频在线观看| 天堂√8在线中文| 最近最新中文字幕大全电影3| 色噜噜av男人的天堂激情| 97超级碰碰碰精品色视频在线观看| 午夜日韩欧美国产| 日韩欧美精品v在线| bbb黄色大片| 国产精品亚洲一级av第二区| 亚洲av熟女| 91狼人影院| 亚洲av电影在线进入| 国内精品久久久久精免费| 午夜a级毛片| 亚洲精品456在线播放app | 欧美又色又爽又黄视频| 久久性视频一级片| 国产精品98久久久久久宅男小说| 国产精品精品国产色婷婷| 天堂网av新在线| 国产免费av片在线观看野外av| 中出人妻视频一区二区| 久久久久亚洲av毛片大全| 少妇人妻精品综合一区二区 | 久久香蕉精品热| 69av精品久久久久久| 中文字幕av在线有码专区| 88av欧美| 精品久久久久久久久久久久久| 搡老岳熟女国产| 亚洲成a人片在线一区二区| 我的老师免费观看完整版| 男人的好看免费观看在线视频| 两性午夜刺激爽爽歪歪视频在线观看| 精品久久国产蜜桃| 精品久久久久久久久久免费视频| 男人舔女人下体高潮全视频| 无人区码免费观看不卡| 亚洲国产高清在线一区二区三| 一区二区三区免费毛片| 欧美激情久久久久久爽电影| 超碰av人人做人人爽久久| netflix在线观看网站| 欧美日韩中文字幕国产精品一区二区三区| 天堂网av新在线| 日本精品一区二区三区蜜桃| 最近最新中文字幕大全电影3| 欧美在线黄色| 久久久国产成人精品二区| 人人妻,人人澡人人爽秒播| 国产淫片久久久久久久久 | 他把我摸到了高潮在线观看| 午夜福利成人在线免费观看| 3wmmmm亚洲av在线观看| 特级一级黄色大片| 国产精品自产拍在线观看55亚洲| 天堂av国产一区二区熟女人妻| 国产国拍精品亚洲av在线观看| 淫妇啪啪啪对白视频| 长腿黑丝高跟| 午夜精品一区二区三区免费看| 丰满人妻一区二区三区视频av| 亚洲男人的天堂狠狠| 最新中文字幕久久久久| 如何舔出高潮| 一级a爱片免费观看的视频| 首页视频小说图片口味搜索| 精品久久久久久,| 成年免费大片在线观看| av中文乱码字幕在线| 日本撒尿小便嘘嘘汇集6| 色在线成人网| 久久久久性生活片| 亚洲av成人不卡在线观看播放网| 一级作爱视频免费观看| 国产免费一级a男人的天堂| 国产亚洲精品久久久com| 99久久久亚洲精品蜜臀av| 国产人妻一区二区三区在| 免费在线观看影片大全网站| 1024手机看黄色片| 国产高清视频在线播放一区| 国产人妻一区二区三区在| 一区二区三区高清视频在线| 在现免费观看毛片| 999久久久精品免费观看国产| 桃红色精品国产亚洲av| 日韩中文字幕欧美一区二区| 嫁个100分男人电影在线观看| 精品不卡国产一区二区三区| 日本 欧美在线| av福利片在线观看| 色精品久久人妻99蜜桃| av天堂中文字幕网| 久久天躁狠狠躁夜夜2o2o| 国产精品98久久久久久宅男小说| 欧美成人性av电影在线观看| 欧美激情久久久久久爽电影| 欧美激情在线99| 免费av不卡在线播放| 女人十人毛片免费观看3o分钟| h日本视频在线播放| 嫩草影院入口| 欧美区成人在线视频| 美女cb高潮喷水在线观看| 一区二区三区激情视频| 亚洲最大成人手机在线| 我的老师免费观看完整版| 欧美日韩福利视频一区二区| 99久久久亚洲精品蜜臀av| 可以在线观看的亚洲视频| 精品一区二区三区人妻视频| 简卡轻食公司| 国产乱人视频| 一级黄片播放器| 无遮挡黄片免费观看| 特大巨黑吊av在线直播| 国内揄拍国产精品人妻在线| 精品久久久久久久久久久久久| 美女黄网站色视频| 亚洲欧美日韩高清在线视频| 亚洲国产欧洲综合997久久,| 可以在线观看毛片的网站| or卡值多少钱| 欧美乱色亚洲激情| 99国产精品一区二区蜜桃av| 在线观看66精品国产| 国产亚洲精品久久久com| ponron亚洲| 夜夜夜夜夜久久久久| 丁香欧美五月| 丰满人妻熟妇乱又伦精品不卡| 97超视频在线观看视频| 欧美潮喷喷水| 国产精品精品国产色婷婷| 亚洲最大成人中文| 亚洲精品久久国产高清桃花| 99久久久亚洲精品蜜臀av| aaaaa片日本免费| 欧美bdsm另类| 国产 一区 欧美 日韩| 国产精品三级大全| 一本综合久久免费| 色播亚洲综合网| 国产精品久久久久久久电影| 1024手机看黄色片| 日本五十路高清| 亚洲avbb在线观看| 天堂动漫精品| 成人精品一区二区免费| 性色av乱码一区二区三区2| 国产精品国产高清国产av| 久久久久国内视频| 每晚都被弄得嗷嗷叫到高潮| 成人性生交大片免费视频hd| 自拍偷自拍亚洲精品老妇| 成人亚洲精品av一区二区| 色吧在线观看| av专区在线播放| 日本免费a在线| 亚洲av二区三区四区| 国产精品嫩草影院av在线观看 | 国产精品亚洲美女久久久| 久久久久久久精品吃奶| 国产精品久久久久久久电影| 久9热在线精品视频| 亚洲真实伦在线观看| 欧美高清性xxxxhd video| 国产高清视频在线观看网站| 国产精品人妻久久久久久| 岛国在线免费视频观看| 网址你懂的国产日韩在线| 亚洲最大成人手机在线| 国产乱人视频|