洪麗敏 屈百達(dá)
摘 要:為了解決現(xiàn)代網(wǎng)絡(luò)中常見(jiàn)的網(wǎng)絡(luò)擁塞控制問(wèn)題,采用頻域設(shè)計(jì)的方法,把不確定時(shí)滯轉(zhuǎn)化為系統(tǒng)已知未建模動(dòng)態(tài)幅值界限的乘性不確定性;根據(jù)系統(tǒng)魯棒穩(wěn)定性及性能指標(biāo)的要求,把高速網(wǎng)絡(luò)基于速率的魯棒H∞擁塞控制反饋控制器的設(shè)計(jì)問(wèn)題轉(zhuǎn)化為工程應(yīng)用中常見(jiàn)的混合靈敏度優(yōu)化問(wèn)題,然后采用解析法求取滿足要求的H∞控制器。結(jié)果證明采用此方法設(shè)計(jì)的擁塞控制H∞反饋控制器較為簡(jiǎn)單,且能有效達(dá)到防止擁塞及使網(wǎng)絡(luò)利用效率最大化的目的。
關(guān)鍵詞:網(wǎng)絡(luò)擁塞;魯棒H∞控制;H∞性能指標(biāo);狀態(tài)反饋
中圖分類號(hào):TP29 文獻(xiàn)標(biāo)識(shí)碼:B
文章編號(hào):1004-373X(2009)01-155-03
H∞ Feedback Controller Design for Network Congestion Control Based on Flow Rate
HONG Limin1,QU Baida2
(College of Communication and Control Engineering,Jiangnan University,Wuxi,214122,China)
Abstract:This paper transforms uncertain time-delay system into system′s unmodeling dynamic breadth finitude′s multiplicative uncertainty by frequency domain design method,in order to resolve network congestion control problem in the modern high speed communication networks.According to the robust stabilization and requirement of performance index of system,problems of feedback controller about robust H∞ congestion control of the high speed communication networks which based on flow rate control are converted into the common engineering application problem of mixed-sensitivity,then working out the desirable H∞ controller by the analytic method.The result proves that H∞ feedback controller of congestion control is simple,the goal of preventing congestion and the efficiency of network using maximum by adopting frequency domain design method can be obtained.
Keywords:network congestion;robust H∞ control;H∞ performance index;state feedback
0 引 言
目前比較常用的擁塞控制方法有兩種,一種是基于速率控制,源端以一定速率發(fā)送數(shù)據(jù)包,通過(guò)網(wǎng)絡(luò)反饋的信息來(lái)調(diào)節(jié)數(shù)據(jù)包發(fā)生速率;另一種是基于窗口控制,宿端告訴源端以一定窗口寬度發(fā)送數(shù)據(jù),通過(guò)反饋信息調(diào)節(jié)窗口大小?;谒俾实膿砣刂品椒ㄒ云浜?jiǎn)單及易于實(shí)現(xiàn)性正在ATM等高速網(wǎng)絡(luò)中得到越來(lái)越普遍的應(yīng)用,也引起了許多學(xué)者的研究興趣。在設(shè)計(jì)基于速率的擁塞控制反饋控制器時(shí),時(shí)滯以及多時(shí)滯問(wèn)題是必須考慮的一個(gè)重要因素,目前有許多文章對(duì)其進(jìn)行了探討。然而使用最多的還是H∞魯棒控制的方法,如設(shè)計(jì)基于H∞理論的流速控制器用于解決多源單瓶頸網(wǎng)絡(luò)中時(shí)變不確定多時(shí)滯問(wèn)題[1];通過(guò)利用瓶頸的輸出速率信息對(duì)以往只利用隊(duì)列期望長(zhǎng)度誤差信息設(shè)計(jì)的H∞反饋控制器進(jìn)行改進(jìn),加快了收斂速度減小了跟蹤誤差[2]。在基于前文的基礎(chǔ)上設(shè)計(jì)多源單瓶頸網(wǎng)絡(luò)的魯棒H∞擁塞控制反饋控制器,目的是防止擁塞且使網(wǎng)絡(luò)達(dá)到最大利用效率,以及消除時(shí)滯的影響,使系統(tǒng)可魯棒鎮(zhèn)定。
1 問(wèn)題描述
圖1所示為多源單瓶頸網(wǎng)絡(luò)擁塞控制反饋系統(tǒng),q(t)≥0表示瓶頸節(jié)點(diǎn)的實(shí)際數(shù)據(jù)緩沖隊(duì)列長(zhǎng)度; qe(t)>0為期望數(shù)據(jù)最大緩沖隊(duì)列長(zhǎng)度;qe:ri(t)≥0為通過(guò)擁塞控制反饋控制器調(diào)節(jié)的各源端數(shù)據(jù)輸出率;ri(t-τi)為瓶頸點(diǎn)的各源數(shù)據(jù)輸入速率;τi表示各源時(shí)變不確定時(shí)滯,且滿足0≤τi(t)≤τm;c(t)為瓶頸點(diǎn)數(shù)據(jù)輸出速率。該系統(tǒng)的動(dòng)態(tài)模型可表示為[3]:
q(t)=∑ni=1ri(t-τi)-c(t)(1)
引理1[4] 給定被控對(duì)象為P(s),控制器為K(s),加法不確定性的加權(quán)函數(shù)為Wq(s),P=P0(1+Wq),規(guī)范化不確定性Δ(s),Δ(s)∈ BH∞。
(1) 對(duì)于任意對(duì)象加性不確定性,系統(tǒng)魯棒鎮(zhèn)定的充要條件是:
① 有一個(gè)使圖2所示的反饋控制系統(tǒng)對(duì)于任意的Δ(s)∈ BH∞都穩(wěn)定的控制器K;
② ‖(I+KP0) -1KWq‖∞<1 即(I+KP0) -1KWq∈BH∞;
(2) 對(duì)于任意對(duì)象乘性不確定性,系統(tǒng)魯棒鎮(zhèn)定的充要條件是:
① 有一個(gè)使圖3所示的反饋控制系統(tǒng)對(duì)于任意的Δ(s)∈ BH∞都穩(wěn)定的控制器K;
② ‖(I+P0K) -1PKWq‖∞<1即(I+P0K) -1P0KWq∈BH∞。
圖1 網(wǎng)絡(luò)擁塞控制反饋系統(tǒng)
圖2 具有加法不確定性的控制系統(tǒng)
圖3 具有乘法不確定性的控制系統(tǒng)
引理2 令P=N1D -11=N2D -12∈RL∞且N2D2=N1D1W,如果P=ND -1∈RH∞,且是右互質(zhì)分解的,則D -1∈RH∞且可取W=D -1。
據(jù)此可對(duì)上述反饋系統(tǒng)的P0進(jìn)行互質(zhì)分解P0=ND -1,K能鎮(zhèn)定P0的集合為:
U+DWV-NW:NU+DV=1
式中:U,V,W均為穩(wěn)定、正則、實(shí)有理函數(shù)。
2 H∞擁塞控制反饋控制器的設(shè)計(jì)
考慮到各源公平性的原則,設(shè)ri(t)由以下控制律決定:
ri(t)=K eie(t)+1nK cic(t)(2)
其中e(t)=qe(t)-q(t),則反饋系統(tǒng)框圖如圖4所示[5]。
圖4 反饋系統(tǒng)框圖
圖4中P(s)代表時(shí)滯環(huán)節(jié),是多輸入單輸出系(MISO),其傳遞函數(shù)為P(s)=e -τ1s,…,e -τns;Ke(s)及Kc(s)代表反饋控制器,是單輸入多輸出系統(tǒng)(SIMO),其傳遞函數(shù)分別為:Ke(s)=[KT e1(s),…,KT en(s)〗T;Kc(s)=[KT c1(s),…,KT cn(s)]T;R(s)=[RT1(s),…,RTn(s)]T為源端被控輸出速率。
2.1 系統(tǒng)的魯棒可鎮(zhèn)定性分析
設(shè)G(s)=1se -τ1s,…,e -τns,G0(s)=1s1,…,1,則:
G(s)G0(s)-1=[e -τ1s-1,…,e -τns-1]≤
Wt(jω)
式中:Wt(jω)=[W t1(jω),…,W tn(jω)],且對(duì)于笑亍蔙,0≤τi(t)≤τm,有:
Wn(jω)≥e -jτmω-1(3)
因此,由引理1知,對(duì)于上述不確定時(shí)滯系統(tǒng)可魯棒鎮(zhèn)定的充要條件是能鎮(zhèn)定G0(s)的標(biāo)稱系統(tǒng),且滿足以下H∞性能指標(biāo)[6]:
‖Wt(s)G0(s)Ke(s)(1+G0(s)Ke(s)) -1‖∞≤1(4)
對(duì)G0(s)=1/s[1,…,1]作互質(zhì)分解,設(shè)G0(s)=N(s)D(s) -1,其中D(s)=a/(s+a),N(s)=1/(s+a)[1,…,1],a為任意大于0標(biāo)量。由引理2知對(duì)于標(biāo)稱系統(tǒng)可魯棒鎮(zhèn)定的充要條件為反饋控制器滿足以下形式:
Ke(s)={} -1(5)
式中N(s)U(s)+D(s)V(s)=1,從而取U(s)=a/n[1,…,1]T,V(s)=1。
2.2 系統(tǒng)的性能要求分析
對(duì)e(t)求導(dǎo)得:
(t)=-∑ni=1K eie(t-τi)-1n∑ni=1K cic(t-τi)+c(t)(6)
即有:
E(s)C(s)=1-1n∑ni=1K ci(s)e -τiss+∑ni=1K ei(s)e -τis(7)
為確保q(t)跟蹤qe(t)的穩(wěn)態(tài)誤差為0,由上式有∑ni=1K ci(0)=n及∑ni=1K ei(0)→∞,考慮到各源公平性可取K ci(0)=1,且知K ei(s)有一極點(diǎn)s=0,從而由 式(5)可知V(0)=N(0)W(0),即W(0)=an[1,…,1]T, 可設(shè)W(s)=an[1,…,1]TF(s),顯然有F(0)=1,從而:
Ke(s)=an1+sF(s)s+a1-aF(s)s+a[1,…,1]T(8)
由圖4可知:
E(s)=qe -1+
C(s) -1(9)
為使網(wǎng)絡(luò)達(dá)到最大利用效率,‖E(s)‖∞應(yīng)盡量最小,可令1s-1nG0(s)Kc(s)=0,即∑ni=1K ci(s)=n,考慮到各源公平性可取K ci(s)=1,從而為保證網(wǎng)絡(luò)利用效率,需滿足以下H∞性能指標(biāo)[7]:
‖γ -1Ws(s) -1‖≤1(10)
式中:Ws(s)是靈敏度權(quán)函數(shù),為使控制器Ke(s)出現(xiàn)0極點(diǎn),同時(shí)為了保證E(s)在低頻段有較大的衰減度可取Ws(s)=1s2,標(biāo)量γ>0為選取的H∞性能指標(biāo)。綜合性能指標(biāo)式(4)和式(10)有:
‖Wt(s)G0(s)Ke(s)·
γ -1Ws(s) -1‖∞≤1(11)
這即是一個(gè)工程應(yīng)用中常見(jiàn)的混合靈敏度優(yōu)化問(wèn)題??紤]式(5),上述性能指標(biāo)也可寫(xiě)成如下形式:
γ -1WsD(V-NW)WtN(U+DW)∞≤1(12)
即:
‖Wt(s)as+a·
γ -1Ws(s)ss+a‖∞≤1(13)
采用頻域整形方法根據(jù)式(13)可求取F(s),從而得到符合系統(tǒng)設(shè)計(jì)要求的擁塞控制H∞反饋控制器。
3 實(shí)例分析
設(shè)網(wǎng)絡(luò)擁塞控制系統(tǒng)瓶頸點(diǎn)輸出速率為c(t)= 1 000+100sin(0.1t),t≥0;期望緩沖隊(duì)列長(zhǎng)度為qe(t)=100;系統(tǒng)最大時(shí)滯為τm=0.1;H∞性能指標(biāo)γ=1。
易知e -jτmω-1≤0.21jω0.1jω+1,笑亍蔙。從而可以選擇Wt(s)=0.21s0.1s+1,又選擇靈敏度加權(quán)函數(shù)Ws(s)=1s2;G0(s)=1s[1,…,1]??紤]到各源的公平性,只需對(duì)其中一個(gè)源的H∞控制器K et(s)進(jìn)行研究,于是求得:
K ei(s)=1ss4-1s4-Ψ(s)1+Ψ(s)
式中:Ψ(s)=s2(0.1s+1)(s+2.11)(0.21s3+0.7s2+1.17s+1)(s-2.11)。
4 結(jié) 語(yǔ)
研究了多源單瓶頸網(wǎng)絡(luò)的擁塞控制魯棒H∞反饋控制器的設(shè)計(jì)問(wèn)題,首先建立一個(gè)網(wǎng)絡(luò)擁塞控制系統(tǒng)的動(dòng)態(tài)模型,然后進(jìn)行H∞擁塞控制反饋控制器的設(shè)計(jì),再對(duì)其性能要求進(jìn)行分析,最后通過(guò)一個(gè)實(shí)例表明采用此方法設(shè)計(jì)的擁塞控制H∞反饋控制器較為簡(jiǎn)單,且能有效達(dá)到防止擁塞及使網(wǎng)絡(luò)利用效率最大化的目的。
參考文獻(xiàn)
[1]Wang L Y,Schwiebert L.Robust Control and Rate Coordination for Efficiency and Faimess in ABR Traffic with Explicit Rate Marking.Proc.of the American Control Conference.Chicago,IL,2000:1 975-1 979.
[2]Choi H H,Chung M J.Memoryless H∞ Controller Design for Linear Systems with Delayed State and Control.Automatica,1995,31(6):917-919.
[3]鄭剛,宋永華,譚民.TCP擁塞控制的混雜建模與分析.控制與決策,2004,19(7):799-803.
[4]謝永芳,黃洋,桂衛(wèi)華,等.數(shù)值界不確定關(guān)聯(lián)大系統(tǒng)分散魯棒H∞控制.信息與控制,2005,34(5):523-527.
[5]潘瑜,肖冬榮,張中秋.一種時(shí)滯不確定系統(tǒng)的強(qiáng)穩(wěn)定魯棒控制器設(shè)計(jì).武漢理工大學(xué)學(xué)報(bào),2002,26(3):393-396.
[6]Lee Y S,Moon Y S,Kwon W H.Delay-dependent Robust H∞ Control for Uncertain Systems with a State-delay.Automatica,2004,40(1):65-72.
[7]于之訓(xùn),陳輝堂,王月娟.基于H∞和μ綜合的閉環(huán)網(wǎng)絡(luò)控制系統(tǒng)的設(shè)計(jì)[J].同濟(jì)大學(xué)學(xué)報(bào),2001,29 (3):307-311.
作者簡(jiǎn)介
洪麗敏 女,1980年出生,河南商城人,碩士研究生。主要研究方向?yàn)楝F(xiàn)代控制技術(shù)在網(wǎng)絡(luò)方面的應(yīng)用。
屈百達(dá) 男,1956年出生,教授。主要研究方向?yàn)榭刂评碚撆c應(yīng)用,系統(tǒng)工程研究。