• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Proton-Exchange Sulfonated Poly (ether ether ketone) (SPEEK)/SiOx-S Composite Membranes in Direct Methanol Fuel Cells*

    2009-05-12 03:32:50GAOQijun高啟君WANGYuxin王宇新XULi許莉WEIGuoqiang衛(wèi)國(guó)強(qiáng)andWANGZhitao王志濤
    關(guān)鍵詞:高啟王宇衛(wèi)國(guó)

    GAO Qijun (高啟君), WANG Yuxin (王宇新), XU Li (許莉), WEI Guoqiang (衛(wèi)國(guó)強(qiáng)) and WANG Zhitao (王志濤)

    ?

    Proton-Exchange Sulfonated Poly (ether ether ketone) (SPEEK)/SiO-S Composite Membranes in Direct Methanol Fuel Cells*

    GAO Qijun (高啟君)1,2, WANG Yuxin (王宇新)1,2, XU Li (許莉)1,**, WEI Guoqiang (衛(wèi)國(guó)強(qiáng))1,2and WANG Zhitao (王志濤)1,2

    1School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China2State Key Laboratory of Chemical Engineering, Tianjin 300072, China

    sulfonated poly(ether ether ketone), functionalized silica, composite membrane, direct methanol fuel cell

    1 INTRODUCTION

    Development and research on direct methanol fuel cells (DMFCs) have been an area of active interest since the 1990s [1]. DMFC technology has made significant progress over the years, but two obstacles still need to be surmounted before DMFC commercialization [2, 3]. First, the anode catalyst is inactive and unstable enough causing a high overpotential loss of the anode. Second, severe methanol crossover of the commercially available perfluorosulfonic acid (PFSA) proton-exchange membranes (PEM) (.., Nafionò) from anode to cathode reduces fuel efficiency and increases the mixed electrode potential of the cathode, resulting in low cell performance [2, 3]. Production of the commercially available PFSA polymer membranes is costly and time-consuming. Therefore, there is an urgent need to develop PEM with improved properties, including high proton conductivity, low methanol permeability, and low cost.

    Much effort has been made in recent years to develop an alternative fluorine-free polymer membranes [4-8] and to modify PFSA polymer membranes [9]. It is widely recognized that sulfonated poly (ether ether ketone) (SPEEK) polymers are very promising materials for membranes in DMFCs [4]. SPEEK polymers can, in theory, have higher ion-exchange capacity (IEC) than PFSA polymers, which may compensate for the demerit of weaker acidity of their own sulfonic groups (SO3H). SPEEK membranes also exhibit lower methanol crossover and are less costly to produce than PFSA membranes [5]. The demand for high proton conductivity calls for SPEEK membranes to have a high degree of sulfonation (DS) and to function at high temperatures. However, highly sulfonated SPEEK membranes tend to swell excessively or even dissolve at high temperatures. There have been several attempts to overcome the excessive swelling while maintaining high proton conductivity, for example, by synthesizing SPEEK with various hydrophobic block: hydrophilic block ratios [10], by introducing cross-links between some of the sulfonic groups in the SPEEK membrane [11], and by blending the SPEEK polymer with non-conductive engineering thermoplastics (.., SPEEK/PEI, SPEEK/PES, SPEEK/PBI) [12-14].

    Addition of inorganic particles (.., ZrO2) into the SPEEK matrix is also an important approach in PEM research [15]. This approach has two objectives: one is to improve the mechanical properties of the composite membranes and the other is to physically counteract methanol crossover [16, 17]. It has also been suggested that the size of the particles (nano or micro), surface properties (acid or basic), and the functionalization determine whether the filler, besides acting as a reinforcing components as above mentioned, can impart a significant improvement in proton conductivity [16-22].

    Figure 1 Molecular structure of the functionalized silica with sulfonic acid groups (SiO-S)

    2 EXPERIMENTAL

    2.1 Materials

    2.2 Preparation of SiOx-S powder

    The SiO-S gel can be prepared from SiO-Cl hydrolyzed for 6 h at 80°C as described in a previous study [17]. The gel was washed repeatedly with deionized water until pH of the rinse water was 7 and then dried at 70°C for 24 h to remove water. The resultant SiO-S was ground to fine powder by a QM-ISP04 ball mill and finally stored in an airtight bottle before being used.

    The back-titration of sulfonic groups within the SiO-S powder was used to find whether the SiO-Cl hydrolyzed into the SiO-S completely.

    2.3 Synthesis of SPEEK

    PEEK (10g) was added gradually to 100 ml of concentrated sulfuric acid in a three-necked flask with vigorous stirring at 60°C. At a prescribed time point, the acid polymer solution was added to a large excessive ice-cold water with continuous agitation. The SPEEK precipitate was rinsed repeatedly with deionized water until the water reached pH 7. Then the SPEEK was dried at room temperature for 2 days followed by drying at 60°C for 24 h under vacuum. The IEC and DS of the sulfonated polymers were determined by a classical back-titration method as described in a previous study[23].

    2.4 Membrane preparation

    The membranes were prepared by solution casting. When the mass content of SiO-S powder is higher than 20%, the composite membrane becomes brittle in dry state at room temperature. Therefore, SPEEK/SiO-S (3%–20%) composite membranes (the degree of sulfonation for the SPEEK polymer is 55.1%, the mass content of SiO-S powder in the composite membranes is from 3% to 20%) were studied in this article.

    SPEEK and SPES-C in prescribed amount were dissolved separately in DMF (10%, by mass) and then the two solutions were mixed and stirred for 6 h. The mixed solution was cast onto a glass plate and dried overnight at 60°C in a vacuum oven, followed by annealing at 100°C for 4 h. After cooling to room temperature, the membrane was peeled from the glass plate with deionized water.

    SiO-S powder in prescribed amount was uniformly dispersed in DMF solvent with mechanical stirring. The desired amount of SPEEK was then added to the solvent to make a 10% (by mass) solution. After stirring for 6 h and degassing, the solution was cast onto a glass plate and dried overnight at 60°C in a vacuum oven, followed by annealing at 100°C for 4 h. After cooling to room temperature, the membrane was peeled from the glass plate with deionized water. Finally, the membrane was treated with 1 mol·L-1sulfuric acid at room temperature for 24 h and subsequently rinsed with deionized water several times to remove acid completely. Membranes were kept in deionized water before testing. The thickness of the dried membranes was 80-95 μm.

    2.5 Membrane characterization

    Fourier transform infrared spectroscopy (FT-IR) were measured in absorbance mode by using an FT-IR spectrometer (Bio-RAD FTS 6000) in the range of wave numbers 600-4000 cm-1to compare position of IR bands and to check the presence of functional groups and their interaction in composite membranes. Prior to FT-IR measurement, the samples were dried at 80°C for 24 h.

    Thermogravimetric analysis (TGA) was used to estimate the thermal stability of the composite membranes. We used a TGA thermogravimetric analyzer (TA-50 Instrument Shimadzu TGA) at a heating rate of 10 K·min-1in nitrogen gas in the temperature range 30-800°C. All specimens were dried overnight at 90°C under vacuum before measurements.

    The morphology of the cross-section of samples was examined with an environment-scanning electron microscope (PHILIPS XL30 ESEM). The samples werecryo-fractured in liquid nitrogen to obtain fresh cross-sections, which were coated with gold before measurements.

    The swelling degree (SD) of the specimens was obtained by measuring the area difference between the dry and the wet states as described in Ref. [23]. The membranes were cut into 3 cm×4 cm rectangles and dried overnight at 90°C under vacuum before measuring the area (d). The dried membranes were immersed for 48 h in 1 mol·L-1methanol to reach equilibrium at the desired temperature. The wet membranes were wiped dry with tissue paper and the area was measured again (w). SD was calculated (in area percent) as follows:

    wheredandware the areas of dry and corresponding wet membrane sheets, respectively. Three sheets of each membrane composition were measured by the above method, and the average was calculated.

    The proton conductivity of samples in the lateral direction was measured with a measurement cell and a frequency response analyzer (FRA) (Autolab PG-STAT20). Two stainless steel electrodes connected to the FRA were pressed against the membrane to be tested. The measurement temperature was controlled from room temperature to 160°C. The conductivity,, was calculated from the impedance data, using the relation/(×), whereandare the distance between the electrodes and the cross-section area of the membrane, respectively, andwas derived from the low intersection of the high-frequency semi circle on a complex impedance plane with the() axis. For membranes that dissolved below 160°C, their dissolution was tested by measuring the weight before and after the proton conductivity measurement. Besides, the proton conductivity of SiO-S powder was obtained as described in a previous study [23]. The powder needs to be pressed into a slice before testing.

    3 RESULTS AND DISCUSSION

    3.1 Preparation of the SiOx-S

    Table 1 The back-titration results of sulfonic groups within the SiOx-S hydrolyzed at different time

    3.2 Sulfonation

    3.3 FT-IR spectra

    3.4 Thermal stability

    Figure 3 TGA curves of SiOx-S powder, SPEEK/SiOx-S (18%) composite membrane and pure SPEEK membrane

    1—SiOx-S; 2—SPEEK/SiOx-S (18%); 3—SPEEK (DS = 55.1%)

    3.5 Morphology

    The basic homogeneous distribution of SiO-S powder within the SPEEK matrix and no sign of evident aggregation can be observed from the SEM images of the SPEEK/SiO-S composite membranes at magnification of up to 10000× (Fig. 4) although the SiO-S content reaches 20%. The nominal powder size is less than 500 nm as indicated by the SEM images.

    Figure 4 Cross-section images of SPEEK/SiO-S (5%) composite membrane and SPEEK/SiO-S (20%) composite membrane

    3.6 Swelling behavior

    Figure 5 Swelling degree of Nafionò115, SPEEK membrane and SPEEK/SiO-S composite membranes in 1 mol·L-1methanol solution at different temperatures

    Figure 6 Arrehenius plots of methanol permeability for Nafionò115, pure SPEEK membrane, and SPEEK/SiO-S composite membranes

    Figure 7 Arrehenius plots of proton conductivity at 100%RH for Nafionò115, SiO-S powder, pure SPEEK membrane and SPEEK/SiO-S (15%, 20%) composite membranes under 100% RH

    3.7 Methanol permeability

    Methanol fuel is fed in the form of liquid below 80°C, thus the methanol crossover is more serious than in the form of gas at higher temperatures [2]. We analyze the methanol permeability of the membranes below 80°C here. Fig. 6 shows the methanol permeability as a function of temperature for Nafionò115, pure SPEEK and SPEEK/SiO-S composite membranes. The methanol permeability of Nafionò115 at room temperature is 1.02×10-6cm2·s-1, which is very close to the value reported by Tricoli. [24, 26, 27], while that of SPEEK and SPEEK/ SiO-S membranes are approximately an order of magnitude lower than Nafionò115.

    The difference in methanol permeability between Nafionò115 and the SPEEK membrane can be explained qualitatively by the differences in their microstructures and the acidity of their sulfonic acid functional groups [4]. Nafionò115 macromolecules consist of very hydrophobic perfluorinated backbones and very hydrophilic side chains with sulfonic acid functional groups. The very different components lead to relatively large microphase separation in Nafionò115, which results in the low resistance to methanol permeation. The situation for SPEEK polymer is rather different. The carbon-hydrogen main chains with ether links, phenyl rings, and carbonyl groups in SPEEK make it less hydrophobic and more rigid compared with Nafionò115. Furthermore, the acidity of sulfonic acid functional groups of the SPEEK polymer is weaker than that of Nafionò115. Therefore, the microphase separation in the SPEEK membrane is not obvious and the hydrophilic ion channels are narrower, which results in low methanol permeability. This can also be proved by the results of schematic representation of the microstructure of Nafionò115 and SPEEK reported by Kreuer[4].

    As can be seen in Fig. 6, the methanol permeability of the SPEEK/SiO-S composite membranes is even lower and decreases with the increased SiO-S content in the membrane. The addition of SiO-S inhibits effectively the swelling of SPEEK matrix (Fig. 5) and thus imposes higher resistance to methanol crossover. The higher resistance to methanol crossover of the SPEEK/SiO-S composite membranes is beneficial to improve open circuit voltage (OCV) of DMFCs [2].

    3.8 Proton conductivity

    The relation between the conductivity and the reciprocal of the temperature for all the SPEEK and SPEEK/SiO-S membranes, before they dissolve, can be described by the Arrhenius equation and exhibits straight lines in a semilogarithmic graph (Fig. 7). The apparent activation energy of proton transfer, which is equal to the slope of the corresponding lines of different membranes, is obtained from the Arrhenius plot. It is noteworthy that the apparent activation energy of the SPEEK membrane has approximately 38 kJ×mol-1, in contrast to 9 kJ×mol-1for Nafionò115. The very high apparent activation energy of the SPEEK membrane is believed to be a consequence of its low swelling degree and slow variation with temperature (as shown in Fig. 7). Narrow ion channels and rich branches with dead-end “pockets” in the membrane will contribute to the high barrier to proton transfer [4].

    SPEEK and SiO-S materials are weakly acidic compared with Nafionò115. The dissociation of sulfonic acid functional groups in these materials increases at high temperatures [5, 23], whereas that of Nafionò115 approaches 100% at room temperature. Therefore, the elevation of temperature increases both the proton mobility and the proton content in the SPEEK and SPEEK/SiO-S membranes, which results in a much faster increase of proton conductivity with temperature.

    The proton conductivity of SiO-S powder is 0.018 S×cm-1at room temperature and 100% RH, and reaches 0.086 S·cm-1at 120°C. The proton conductivity of composite membranes increases slightly as mass content of SiO-S powder increases, although SiO-S powder has lower proton conductivity than the pure SPEEK membrane. The increase in conductivity upon addition of SiO-S can be rationalized based on previous studies [16-22, 28]. This phenomenon has been observed by Kim. [29] in composite PEMs based on heteropolyacid in sulfonated polysulfones. The presence of the additive was found to enhance the proton conductivity, while at the same time decrease the water uptake. In this case, it is not completely understood whether the filler participates actively in the proton conduction by enhancing proton dissociation or by providing favorable pathways for the proton along polymer-particle interfaces [16-18, 22]. The conductivity results obtained in this study are very similar to that of previous studies above, and it is likely that a similar mechanism is in place. The lower apparent activation energy of proton transfer through the composite membranes than through the pure SPEEK membrane also shows that the similar mechanism exists. The apparent activation energy of the SPEEK/SiO-S (20%) composite membrane is 33.09 kJ×mol-1. The conductivity of SPEEK/SiO-S (20%) exceeds slightly that of Nafionò115 at 145°C and 100% RH and approaches 0.17S×cm-1.

    3.9 Working temperature

    Figure 8 shows*as a function of the mass content of SiO-S in the composite membranes. SPEEK membranes of 55.1% DS is useful only below 90°C. The*of the composite membranes is, however, markedly increased as the mass content of SiO-S powder increases. As discussed in Section 3.6, the addition of SiO-S to SPEEK matrix inhibits effectively the swelling and dissolution of the membranes below 80°C. The membranes’ swelling at temperature above 100°C was quickly measured by measuring the area changes after their conductivity was tested at the temperature. It can be found that the content of SiO-S increased from 10% to 20%, the swelling degree of composite membranes decreased from 67.8% to 30.4% at 110°C and the content of SiO-S increased from 15% to 20%, the swelling degree of composite membranes decreased from 72.3% to 35.8% at 130°C. The increase of*with the increased content of SiO-S in the composite membrane should be attributed to the depressed swelling and dissolution of the composite membranes at high temperatures.

    Figure 8*of the SPEEK/SiO-S composite membranes with different SiO-S mass contents

    The extension of the working temperature of the membrane is beneficial for DMFC in many aspects. Working at higher temperature, the membrane exhibits higher proton conductivity, which leads to lower ohmic losses in DMFC. The electrocatalysts are also more active and more tolerant to carbon monoxide poisoning [30] at high temperatures. When methanol fuel is fed in the form of gas at high temperature, the methanol crossover and its negative effects can be reduced markedly. Operating at high temperature also simplifies the management of water and heat in the DMFC systems [30].

    4 CONCLUSIONS

    The results of this study indicate a strong potential of these composite membranes for use in DMFCs. SPEEK/SiO-S composite membranes with high levels of dimensional stability were prepared. The methanol permeability of the membranes was shown to be about one order of magnitude lower than that of Nafionò115, and to decrease with the increase of SiO-S content. The addition of the SiO-S into the membranes not only increases slightly the proton conductivity of composite membranes but also effectively inhibits their swelling, which enables them to be used at higher temperature, thus presenting higher proton conductivity. The results of this study indicate a strong potential of these composite membranes for use in DMFCs.

    1 Kuver, A., Kamloth, K.P., “Comparative study of methanol crossover acrosselectropolymerized and commercial proton exchange membrane electrolytes for the acid direct methanol fuel cell”,., 43 (16), 2527-2535 (1998).

    2 Ren, X., Zawadzinski, T.A., Uribe, F., Dai, H., “Methanol cross-over in direct methanol fuel cells”,..., 95 (23), 284-289 (1995).

    3 Heinzel, A., Barragan, V.M., “A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells”,., 84, 70-74 (1999).

    4 Kreuer, K.D., “On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells”,..., 185, 29-39 (2001).

    5 Yang, B., Manthiram, A., “Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells”,.., 6, A229-A231 (2003).

    6 Wycisk, R., Lee, J.K., Pintauro, P.N., “Sulfonated polyphosphazene- polybenzimidazole membranes for DMFCs”,..., 152, A892-A898 (2005).

    7 Dai, H., Guan, R., Li, C.H., Liu, J.H., “Development and characterization of sulfonated poly(ether sulfone) for proton exchange membrane materials”,., 178, 339-345 (2007).

    8 Shahi, V.K., “Highly charged proton-exchange membrane: Sulfonated poly(ether sulfone)-silica polyelectrolyte composite membranes for fuel cells”,., 177, 3395-3404 (2007).

    9 Park, K.T., Jung, U.H., Choi, D.W., Chun, K., Lee, H.M., Kim, S.H., “ZrO2-SiO2/Nafion (R) composite membrane for polymer electrolyte membrane fuel cells operation at high temperature and low humidity”,., 177, 247-253 (2008).

    10 Zhao, C., Li, X., Na, H., “Synthesis of sulfonated poly(ether ether ketone) (S-PEEKs) material for proton exchange membrane”,..., 280, 643-650 (2006).

    11 Mikhailenko, S.U.D., Wang, K.P., Kaliaguine, S., Xing, P.X., Robertson, G.P., Guiver, M.D., “Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone) (SPEEK)”,..., 233, 93-99 (2004).

    12 Mikhailenko, S.D., Zaidi, S.M.J., Kaliaguine, S., “Electrical properties of sulfonated polyether ether ketone/polyetherimide blend membranes doped with inorganic acids”,...,:.., 33, 1386-1395 (2000).

    13 Manea, C., Mulder, M., “Characterization of polymer blends of polyether sulfone/sulfonated polysulfone and polyether sulfone/sulfonated polyetherether ketone for direct methanol fuel cell applications”,..., 206, 443-453 (2002).

    14 Zhang, H.Q., Li, X.F., Zhao, C.J., Fu, T.Z., Shi, Y.H., Na, H., “Composite membranes based on highly sulfonated PEEK and PBI: Morphology characteristics and performance”,..., 308, 67-74 (2008).

    15 Silva, V.S., Ruffmann, B., Silva, H., Gallego, Y.A., Mends, A., Madeira, L.M., Nunes, S.P., “Proton electrolyte membrane properties and direct methanol fuel cell performance/I. Characterization of hybrid sulfonated poly (ether ether ketone)/zirconium oxide membranes”,., 140, 34-40 (2005).

    16 Uchida, H., Ueno,Y., Hagihara, H., Watanabe, M., “Self-humidifying electrolyte membranes for fuel cells—Preparation of highly dispersed TiO2particles in Nafion 112”,.., 150, A57-A62 (2003).

    17 Martinelli, A., Matic, A., Jacobsson, P., borjesson, L., Navarra, M.A., Fernicola, A., Panero, S., Scrosati, B., “Structural analysis of PVA-based proton conducting membranes”,., 177, 2431-2435 (2006).

    18 Kim, D.S., Park, H.B., Rhim, J.W., Lee, Y.M., “Preparation and characterization of crosslinked PVA/SiO2hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications ”,..., 240, 37-48 (2004).

    19 Croce, F., Persi, L., Scrosati, B., Serraino-Fiory, F., Plichta, E., Hendrickson, M.A., “Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes”,., 46, 2457-2461 (2001).

    20 Shao, Z.G.., Joghee, P., Hsing, I.M., “Preparation and characterization of hybrid Nafion-silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells”,.., 229, 43-51 (2004).

    21 Xu, W.L., Liu, C.P., Xue, X.Z., Su, Y., Lv, Y.Z., Xing, W., Lu, T.H., “New proton exchange membranes based on poly (vinyl alcohol) for DMFCs ”,., 171, 121-127 (2004).

    22 Sambandam, S., Ramani, V., “SPEEK/functionalized silica composite membranes for polymer electrolyte fuel cells”,., 170, 259-267 (2007).

    23 Li, L., Wang, Y.X., “Sulfonated polyethersulfone Cardo membranes for direct methanol fuel cell”,..., 246, 167-172 (2005).

    24 Li, L., Wang, Y.X., “A hybrid membrane of poly(vinyl alcohol) and phosphotungstic acid for fuel cells”,...., 10 (5), 614-617 (2002).

    25 Zaidi, S.M.J., Mikhailenko, S.D., Robertson, G.P., Guiver, M.D., Kaliaguine, S., “Proton conducting composite membranes from polyetherether ketone and heteropolyacids for fuel cell applications”,..., 173, 17-34 (2000).

    26 Tricoli, V., Carretta, N., Bartolozzi, M., “A comparative investgation of proton and methanol transport in fluorinated ionomeric membranes”,..., 147, 1286-1290 (2000).

    27 Huang, M.Y., Wang, Y.X., Cai, Y.Q., Xu, L., “Sulfonated poly(ether ether ketone)/zirconium tricarboxybutylphosphonate composite proton-exchange membranes for direct methanol fuel cells”,, 4, 337-342 (2007).

    28 Gasa, J.V., Boob, S., Weiss, R.A., Shaw, M.T., “Proton-exchange membranes composed of slightly sulfonated poly(ether ketone ketone) and highly sulfonated crosslinked polystyrene particles”,..., 269, 177-186 (2006).

    29 Kim, Y.S., Wang, F., Hickner, M., Zawodzinski, T.A., McGrath, J.E., “Fabrication and characterization of heteropolyacid (H3PW12O40)/ directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications”,..., 212, 263-282 (2003).

    30 Li, Q.F., Huang, R.H., “Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100°C”,.., 15, 4896-4915 (2003).

    2008-07-24,

    2008-11-20.

    the State Key Development Program for Basic Research of China (2008CB617502), the National Natural Science Foundation of China (20606025), and Program for Changjiang Scholars and Innovative Research Team in University of China (IRT0641).

    ** To whom correspondence should be addressed. E-mail: xuli620@eyou.com

    猜你喜歡
    高啟王宇衛(wèi)國(guó)
    基于ShuffleNet V2算法的三維視線估計(jì)
    A novel low-loss four-bit bandpass filter using RF MEMS switches
    許衛(wèi)國(guó)書(shū)法作品選
    我相信
    高啟與北郭詩(shī)社成員交游考
    Cavitation erosion in bloods*
    我的同桌
    高啟對(duì)李白詩(shī)歌藝術(shù)特點(diǎn)的繼承
    Evaluation on nitrogen isotopes analysis in high-C/N-ratio plants using elemental analyzer/isotope ratio mass spectrometry
    A Support Vector Machine Based on Bayesian Criterion
    99九九在线精品视频| 91国产中文字幕| 亚洲国产精品999| 热99久久久久精品小说推荐| 1024香蕉在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲图色成人| 国产又色又爽无遮挡免| 不卡视频在线观看欧美| 国产成人精品久久二区二区91 | 大码成人一级视频| 国产精品欧美亚洲77777| 免费观看无遮挡的男女| 热re99久久国产66热| 亚洲国产欧美在线一区| 国产精品 欧美亚洲| 在线观看美女被高潮喷水网站| 免费观看无遮挡的男女| 一本大道久久a久久精品| 超碰97精品在线观看| 蜜桃在线观看..| 永久免费av网站大全| av片东京热男人的天堂| 2021少妇久久久久久久久久久| 黄网站色视频无遮挡免费观看| 久热这里只有精品99| 成年美女黄网站色视频大全免费| 久久久国产一区二区| 春色校园在线视频观看| 极品少妇高潮喷水抽搐| 伦理电影大哥的女人| 男人操女人黄网站| 国产av国产精品国产| 热re99久久精品国产66热6| 国产又色又爽无遮挡免| 日本色播在线视频| 男男h啪啪无遮挡| 性色av一级| 国产不卡av网站在线观看| 成人毛片60女人毛片免费| 免费人妻精品一区二区三区视频| 午夜激情久久久久久久| 天天躁日日躁夜夜躁夜夜| av线在线观看网站| 国产免费福利视频在线观看| 免费av中文字幕在线| 97人妻天天添夜夜摸| 久久狼人影院| 丝袜人妻中文字幕| 久久97久久精品| 黄色视频在线播放观看不卡| a级毛片黄视频| 丝袜人妻中文字幕| 亚洲欧美精品自产自拍| 日本免费在线观看一区| 国产成人精品在线电影| 欧美老熟妇乱子伦牲交| 久久久国产精品麻豆| 伊人亚洲综合成人网| 免费在线观看黄色视频的| 亚洲欧洲日产国产| 久久 成人 亚洲| 女人被躁到高潮嗷嗷叫费观| 国产在线免费精品| 最近最新中文字幕免费大全7| 丰满少妇做爰视频| h视频一区二区三区| 纵有疾风起免费观看全集完整版| 亚洲av日韩在线播放| √禁漫天堂资源中文www| 亚洲欧美一区二区三区久久| videos熟女内射| 99精国产麻豆久久婷婷| av又黄又爽大尺度在线免费看| 一本大道久久a久久精品| 一级爰片在线观看| 中文天堂在线官网| 久久综合国产亚洲精品| 黄网站色视频无遮挡免费观看| 高清视频免费观看一区二区| 观看av在线不卡| 啦啦啦在线免费观看视频4| 蜜桃国产av成人99| 亚洲经典国产精华液单| 亚洲国产欧美在线一区| 精品国产超薄肉色丝袜足j| 国产成人一区二区在线| 日本wwww免费看| av卡一久久| 亚洲伊人色综图| 国产在线视频一区二区| 成人国产麻豆网| 国产成人免费无遮挡视频| 亚洲伊人色综图| 国产av精品麻豆| 国产一区亚洲一区在线观看| 麻豆乱淫一区二区| 高清视频免费观看一区二区| 最黄视频免费看| 99久久综合免费| 国产亚洲av片在线观看秒播厂| 在线天堂最新版资源| 桃花免费在线播放| 亚洲欧美一区二区三区国产| 美女高潮到喷水免费观看| 搡女人真爽免费视频火全软件| 国产免费一区二区三区四区乱码| 久久久精品免费免费高清| 亚洲精品视频女| 两个人看的免费小视频| 十八禁高潮呻吟视频| 你懂的网址亚洲精品在线观看| 可以免费在线观看a视频的电影网站 | 99热网站在线观看| 美女国产高潮福利片在线看| 99re6热这里在线精品视频| 婷婷色综合大香蕉| 免费日韩欧美在线观看| 亚洲视频免费观看视频| 久久久精品国产亚洲av高清涩受| 天天躁日日躁夜夜躁夜夜| 亚洲三级黄色毛片| 亚洲熟女精品中文字幕| 少妇人妻 视频| 亚洲精品av麻豆狂野| 精品亚洲成a人片在线观看| 中文字幕人妻丝袜制服| 国产精品欧美亚洲77777| 久久久久久免费高清国产稀缺| 岛国毛片在线播放| 中文精品一卡2卡3卡4更新| 下体分泌物呈黄色| 黄色配什么色好看| 欧美日韩亚洲国产一区二区在线观看 | 免费观看a级毛片全部| 久久韩国三级中文字幕| 日韩一区二区视频免费看| 亚洲激情五月婷婷啪啪| 91精品国产国语对白视频| 涩涩av久久男人的天堂| 视频在线观看一区二区三区| av卡一久久| 日韩视频在线欧美| 国产精品偷伦视频观看了| 91精品伊人久久大香线蕉| 国产精品久久久av美女十八| 亚洲精品久久久久久婷婷小说| 日本av手机在线免费观看| 国产乱人偷精品视频| 久久99一区二区三区| 国产视频首页在线观看| 久久精品国产a三级三级三级| 成年美女黄网站色视频大全免费| 久久人人爽av亚洲精品天堂| 欧美av亚洲av综合av国产av | 国产亚洲最大av| 丝袜在线中文字幕| 最近最新中文字幕大全免费视频 | 国产精品免费大片| 久久久久久人妻| 制服丝袜香蕉在线| 亚洲精品av麻豆狂野| 精品人妻一区二区三区麻豆| 亚洲av中文av极速乱| 啦啦啦视频在线资源免费观看| videos熟女内射| 91午夜精品亚洲一区二区三区| 人人妻人人添人人爽欧美一区卜| 天天躁狠狠躁夜夜躁狠狠躁| 2022亚洲国产成人精品| 人妻人人澡人人爽人人| 18+在线观看网站| 精品国产乱码久久久久久小说| 免费在线观看视频国产中文字幕亚洲 | 极品人妻少妇av视频| 老司机影院成人| 欧美黄色片欧美黄色片| 成年女人毛片免费观看观看9 | 制服人妻中文乱码| 欧美 亚洲 国产 日韩一| 天堂俺去俺来也www色官网| 在线观看人妻少妇| 久久久久国产网址| 制服诱惑二区| 美女xxoo啪啪120秒动态图| 一级毛片我不卡| 国产精品久久久久久精品电影小说| 婷婷色av中文字幕| av视频免费观看在线观看| 成年美女黄网站色视频大全免费| 国产成人91sexporn| av卡一久久| 男人舔女人的私密视频| 欧美激情极品国产一区二区三区| 免费观看a级毛片全部| 久久久久久久精品精品| 久久久久国产精品人妻一区二区| 秋霞伦理黄片| 纵有疾风起免费观看全集完整版| 日本猛色少妇xxxxx猛交久久| 曰老女人黄片| 日韩视频在线欧美| 精品福利永久在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 美国免费a级毛片| 18禁观看日本| 国产精品二区激情视频| 久久久国产一区二区| 欧美亚洲日本最大视频资源| 男的添女的下面高潮视频| 久久 成人 亚洲| 久久精品aⅴ一区二区三区四区 | 晚上一个人看的免费电影| av.在线天堂| 国产一区二区 视频在线| 涩涩av久久男人的天堂| 国产极品粉嫩免费观看在线| 一级黄片播放器| 黑丝袜美女国产一区| www.熟女人妻精品国产| 高清在线视频一区二区三区| 国产精品一国产av| 亚洲欧美一区二区三区国产| 久久久久久久久久人人人人人人| 人人澡人人妻人| 极品少妇高潮喷水抽搐| 波多野结衣一区麻豆| 亚洲一区中文字幕在线| 五月开心婷婷网| www.熟女人妻精品国产| 国产亚洲av片在线观看秒播厂| 久久精品亚洲av国产电影网| 99久久综合免费| 国产精品不卡视频一区二区| 午夜激情久久久久久久| 国产亚洲精品第一综合不卡| 哪个播放器可以免费观看大片| 国产精品久久久久成人av| 少妇被粗大的猛进出69影院| 亚洲综合色网址| 国产成人欧美| 天天躁夜夜躁狠狠久久av| 美女福利国产在线| 亚洲成av片中文字幕在线观看 | 久久人人97超碰香蕉20202| 伊人亚洲综合成人网| 啦啦啦视频在线资源免费观看| 考比视频在线观看| 久久久久视频综合| 久久久久久久大尺度免费视频| 国产成人精品久久二区二区91 | 亚洲四区av| 成年人免费黄色播放视频| 2018国产大陆天天弄谢| 亚洲精品一区蜜桃| 日韩伦理黄色片| 国产黄色视频一区二区在线观看| 叶爱在线成人免费视频播放| 国产成人午夜福利电影在线观看| 99久久中文字幕三级久久日本| 久久精品久久久久久久性| 亚洲欧美一区二区三区黑人 | 叶爱在线成人免费视频播放| 啦啦啦在线免费观看视频4| 欧美精品高潮呻吟av久久| 26uuu在线亚洲综合色| 水蜜桃什么品种好| 久久亚洲国产成人精品v| 国产精品偷伦视频观看了| 精品少妇久久久久久888优播| 日韩中文字幕欧美一区二区 | 精品少妇内射三级| 狠狠精品人妻久久久久久综合| 尾随美女入室| 亚洲av欧美aⅴ国产| 免费av中文字幕在线| 777久久人妻少妇嫩草av网站| 日韩一区二区视频免费看| 日韩av不卡免费在线播放| 精品一区在线观看国产| 一二三四在线观看免费中文在| 一级爰片在线观看| 老鸭窝网址在线观看| 黑人猛操日本美女一级片| 少妇 在线观看| 国产午夜精品一二区理论片| 亚洲精品视频女| 亚洲av电影在线观看一区二区三区| 青春草国产在线视频| 久久av网站| 国产熟女午夜一区二区三区| 免费观看性生交大片5| 亚洲精品日本国产第一区| 亚洲伊人色综图| 日本-黄色视频高清免费观看| 爱豆传媒免费全集在线观看| 丝袜在线中文字幕| 欧美精品一区二区免费开放| 久久人人爽人人片av| 国产av码专区亚洲av| 美女xxoo啪啪120秒动态图| 日本欧美视频一区| 最近最新中文字幕免费大全7| 欧美 日韩 精品 国产| 人成视频在线观看免费观看| 国产精品久久久久久av不卡| 国产在线视频一区二区| 免费观看性生交大片5| 免费看不卡的av| 日韩三级伦理在线观看| 国产亚洲精品第一综合不卡| 国产97色在线日韩免费| 晚上一个人看的免费电影| 国产精品国产三级专区第一集| 久久久久网色| 久久久久久久久久人人人人人人| 我的亚洲天堂| 美女中出高潮动态图| 一级毛片 在线播放| 久热久热在线精品观看| 亚洲av中文av极速乱| 欧美人与性动交α欧美软件| 成人亚洲欧美一区二区av| 搡老乐熟女国产| 国产又爽黄色视频| 国产成人91sexporn| 丰满饥渴人妻一区二区三| 国产女主播在线喷水免费视频网站| 国产在视频线精品| 九草在线视频观看| xxxhd国产人妻xxx| 熟女av电影| 久久ye,这里只有精品| 国产亚洲av片在线观看秒播厂| 99香蕉大伊视频| 国产日韩欧美视频二区| 18在线观看网站| 在线 av 中文字幕| 制服丝袜香蕉在线| 9热在线视频观看99| 天堂中文最新版在线下载| av卡一久久| 欧美激情极品国产一区二区三区| 91精品国产国语对白视频| 亚洲精品美女久久久久99蜜臀 | 精品一区二区免费观看| 精品99又大又爽又粗少妇毛片| 久久99蜜桃精品久久| 九色亚洲精品在线播放| 久久免费观看电影| 中文乱码字字幕精品一区二区三区| 免费高清在线观看日韩| av国产久精品久网站免费入址| 90打野战视频偷拍视频| 黄色怎么调成土黄色| 秋霞伦理黄片| www.熟女人妻精品国产| 亚洲视频免费观看视频| 国产片内射在线| 波多野结衣av一区二区av| 国产成人免费观看mmmm| av线在线观看网站| 国产麻豆69| 久久久久久人人人人人| 国产欧美日韩综合在线一区二区| 久热久热在线精品观看| 看非洲黑人一级黄片| 亚洲国产成人一精品久久久| 看非洲黑人一级黄片| 免费看av在线观看网站| 一区二区三区精品91| 最近的中文字幕免费完整| 亚洲欧美精品自产自拍| 日本欧美国产在线视频| 在线看a的网站| 日本欧美国产在线视频| 男女免费视频国产| 成年人午夜在线观看视频| 亚洲精品aⅴ在线观看| 国产精品久久久久成人av| 精品国产一区二区三区久久久樱花| 精品少妇内射三级| 肉色欧美久久久久久久蜜桃| 丰满少妇做爰视频| 肉色欧美久久久久久久蜜桃| 国产精品久久久久久精品电影小说| 久久人妻熟女aⅴ| 我要看黄色一级片免费的| 午夜福利在线观看免费完整高清在| 久久精品国产综合久久久| 国产白丝娇喘喷水9色精品| 黄色毛片三级朝国网站| 免费高清在线观看日韩| 欧美日韩国产mv在线观看视频| 成人亚洲欧美一区二区av| 午夜91福利影院| 女性生殖器流出的白浆| 亚洲国产欧美网| 夫妻性生交免费视频一级片| 一本大道久久a久久精品| 精品国产露脸久久av麻豆| av电影中文网址| 中文字幕人妻丝袜制服| 午夜福利影视在线免费观看| 精品国产一区二区三区久久久樱花| 亚洲综合精品二区| 男女下面插进去视频免费观看| 不卡av一区二区三区| 久久精品国产亚洲av高清一级| 亚洲国产色片| 国产精品 国内视频| 少妇 在线观看| 成人手机av| 啦啦啦啦在线视频资源| 国产熟女午夜一区二区三区| 日日啪夜夜爽| 成人国产av品久久久| 人妻一区二区av| 中文字幕最新亚洲高清| 午夜免费男女啪啪视频观看| 色视频在线一区二区三区| 美女高潮到喷水免费观看| 久久国产亚洲av麻豆专区| 精品酒店卫生间| 亚洲国产欧美网| 老司机影院毛片| 久久午夜福利片| 一级毛片黄色毛片免费观看视频| 中文乱码字字幕精品一区二区三区| 高清视频免费观看一区二区| 国产成人a∨麻豆精品| 亚洲人成77777在线视频| 久久精品国产综合久久久| 中文字幕人妻丝袜制服| 最近的中文字幕免费完整| 亚洲av国产av综合av卡| 国产精品久久久久久久久免| 成人国产麻豆网| 久久精品国产亚洲av天美| 女人精品久久久久毛片| 日韩欧美一区视频在线观看| 男女高潮啪啪啪动态图| 久久精品亚洲av国产电影网| 日本vs欧美在线观看视频| 最近2019中文字幕mv第一页| 精品酒店卫生间| 久久ye,这里只有精品| 丝袜喷水一区| 一区在线观看完整版| 黄色视频在线播放观看不卡| 亚洲成色77777| 精品第一国产精品| 免费黄频网站在线观看国产| 男人操女人黄网站| 下体分泌物呈黄色| 国产精品av久久久久免费| 久久久久久久精品精品| 久热这里只有精品99| 精品一区二区三区四区五区乱码 | 永久免费av网站大全| 我要看黄色一级片免费的| 久久久久国产网址| 美女视频免费永久观看网站| 我的亚洲天堂| 亚洲精品久久成人aⅴ小说| 国产精品免费大片| 美女视频免费永久观看网站| 欧美精品一区二区大全| 嫩草影院入口| 国产探花极品一区二区| 多毛熟女@视频| 晚上一个人看的免费电影| 国产精品国产三级专区第一集| 亚洲四区av| av有码第一页| 人人妻人人添人人爽欧美一区卜| 免费少妇av软件| 美女主播在线视频| 国产黄色视频一区二区在线观看| 欧美+日韩+精品| 国产激情久久老熟女| av在线app专区| 99香蕉大伊视频| 亚洲三区欧美一区| 人成视频在线观看免费观看| 午夜老司机福利剧场| 成年人免费黄色播放视频| 国产视频首页在线观看| 国产一区有黄有色的免费视频| 国产一区二区在线观看av| 飞空精品影院首页| av在线观看视频网站免费| 久久久久网色| 国产有黄有色有爽视频| 久久国产亚洲av麻豆专区| 成人免费观看视频高清| 黄片播放在线免费| 久久亚洲国产成人精品v| 亚洲内射少妇av| 久久久a久久爽久久v久久| 色吧在线观看| 国产亚洲精品第一综合不卡| 免费观看a级毛片全部| 伊人久久大香线蕉亚洲五| 日韩大片免费观看网站| 国产av一区二区精品久久| 天美传媒精品一区二区| 亚洲中文av在线| 高清欧美精品videossex| 只有这里有精品99| www.自偷自拍.com| 美女国产视频在线观看| 另类亚洲欧美激情| 黄色毛片三级朝国网站| 日本-黄色视频高清免费观看| 国产精品免费视频内射| 99热国产这里只有精品6| 在线观看人妻少妇| 男女国产视频网站| 亚洲中文av在线| 国产 精品1| 日本av免费视频播放| 亚洲精品一区蜜桃| 男女国产视频网站| 色网站视频免费| 色婷婷久久久亚洲欧美| 亚洲色图 男人天堂 中文字幕| 丁香六月天网| 亚洲欧洲精品一区二区精品久久久 | 97精品久久久久久久久久精品| av福利片在线| 精品一区二区三卡| 色视频在线一区二区三区| 香蕉丝袜av| 啦啦啦啦在线视频资源| 色吧在线观看| 国产毛片在线视频| 婷婷色综合www| 亚洲精品,欧美精品| 韩国精品一区二区三区| 国产视频首页在线观看| 久久精品人人爽人人爽视色| 人妻少妇偷人精品九色| 久久这里只有精品19| 亚洲第一av免费看| 日本爱情动作片www.在线观看| 亚洲欧美一区二区三区黑人 | 99热网站在线观看| 久久久欧美国产精品| 91精品国产国语对白视频| 亚洲av欧美aⅴ国产| 国产欧美日韩一区二区三区在线| 日韩三级伦理在线观看| 91精品三级在线观看| 亚洲精品日本国产第一区| 黄片无遮挡物在线观看| 男女午夜视频在线观看| 成人漫画全彩无遮挡| 99国产综合亚洲精品| 久久精品久久久久久久性| 亚洲综合色惰| 国产精品二区激情视频| 日本欧美国产在线视频| 日本色播在线视频| 巨乳人妻的诱惑在线观看| 日本爱情动作片www.在线观看| 午夜福利网站1000一区二区三区| 丝袜在线中文字幕| 高清av免费在线| 国产免费现黄频在线看| 少妇 在线观看| 国产欧美日韩综合在线一区二区| 亚洲美女搞黄在线观看| 桃花免费在线播放| 亚洲欧美成人精品一区二区| 男男h啪啪无遮挡| 寂寞人妻少妇视频99o| a级毛片黄视频| 18在线观看网站| 91成人精品电影| xxxhd国产人妻xxx| 男女免费视频国产| 丝袜在线中文字幕| 久久久精品94久久精品| 黑丝袜美女国产一区| 建设人人有责人人尽责人人享有的| 日韩大片免费观看网站| 亚洲男人天堂网一区| 日本欧美国产在线视频| 99香蕉大伊视频| 亚洲精品一区蜜桃| 国产精品 欧美亚洲| 成人午夜精彩视频在线观看| 欧美少妇被猛烈插入视频| 久久青草综合色| 免费少妇av软件| 国产高清国产精品国产三级| 国产精品国产av在线观看| 日日摸夜夜添夜夜爱| 欧美成人午夜精品| 欧美亚洲 丝袜 人妻 在线| 最近的中文字幕免费完整| 欧美精品一区二区免费开放| 国产一级毛片在线| 国产97色在线日韩免费| 精品人妻在线不人妻| 国产亚洲欧美精品永久| 亚洲国产看品久久| 国产一区二区三区av在线| 欧美成人午夜精品| 国产精品无大码| 亚洲国产欧美日韩在线播放| 日本vs欧美在线观看视频| 男女午夜视频在线观看| 欧美精品国产亚洲|