• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Activity Coefficient Models to Describe Vapor-Liquid Equilibrium in Ternary Hydro-Alcoholic Solutions*

    2009-05-12 03:33:12ClaudioFandezandJosValderrama
    關(guān)鍵詞:滿堂關(guān)鍵問題毛病

    Claudio A. Faúndezand José O. Valderrama

    ?

    Activity Coefficient Models to Describe Vapor-Liquid Equilibrium in Ternary Hydro-Alcoholic Solutions*

    Claudio A. Faúndez1and José O. Valderrama2,3,**

    1Universidad de Concepción, Fac. de Cs. Físicas y Matemáticas, Casilla 160-C, Concepción, Chile2Universidad de La Serena, Fac. de Ingeniería, Casilla 554, La Serena, Chile3Centro de Información Tecnológica (CIT), Casilla 724, La Serena, Chile

    In this study, three semipredictive activity coefficient models: Wilson, non-random-two liquid model (NRTL), and universal quasi-chemical model (UNIQUAC), have been used for modeling vapor-liquid equilibrium properties of ternary mixtures that include substances found in alcoholic distillation processes of wine and musts. In particular, vapor-liquid equilibrium in ternary mixtures containing water?+?ethanol?+?congener has been modeled using parameters obtained from binary and ternary mixture data. The congeners are substances that although present in very low concentrations, of the order of part per million, are important enological parameters. The results given by these different models have been compared with literature data and conclusions about the accuracy of the models studied are drawn, recommending the best models for correlating and predicting phase equilibrium properties of this type of mixtures.

    wine distillation, activity coefficient models, vapor-liquid equilibrium

    1 Introduction

    To design and simulate alcoholic distillation processes, knowledge of the equilibrium conditions is of special importance. This is because the driving force that produces component separation is the difference between the actual concentration and the concentration at thermodynamic equilibrium. Therefore, knowledge of vapor-liquid equilibrium conditions (VLE) is necessary to design and optimize distillation processes. In wine and must distillation, the great amount of substances found in the mixture to be distilled and the very low concentration of several other components (different from ethanol and water), called congeners, makes it difficult to correlate and predict the concentration of the distilled product, considered to be the most important variable in the produced spirit[1, 2]. Several congener compounds form an essential part of the aroma of the distilled product and therefore their concentrations are important enological parameters [3]. These congener substances are usually present in concentrations of part per million, 10-6to 10-4mg·L-1[4, 5].

    As known, the phase equilibrium problem to be solved consists of the calculation of some variables of the set,,,(temperature, pressure, liquid-phase concentration, and vapor-phase concentration, respectively), when some of them are known. For a vapor- liquid mixture in thermodynamic equilibrium, the temperature and the pressure are the same in both phases, and the remaining variables are defined by the material balance and the “fundamental equation of phase equilibrium”. The application of this fundamental equation requires the use of thermodynamic models, which normally include binary interaction parameters.

    The operating pressure in most alcoholic distillation processes is of the order of the atmospheric pressure and most of the substances involved are highly polar. The classical thermodynamic models commonly used in the literature to treat these mixtures at low pressure require a great amount of binary parameters, which must be determined from binary experimental data [6]. Theoretically, once these binary parameters are known, one can predict the behavior of multicomponent mixtures using standard thermodynamic relations and thermodynamics models.

    Binary mixtures containing water?+?congeners and ethanol?+?congeners have been studied in literature [7-10] and values of the binary parameters have been provided for several models. However, the use of binary parameters to treat mixtures with more than two components in wine distillation process has not been thoroughly analyzed. The authors have analyzed selected ternary mixtures water?+?congener?+?congener and ethanol?+?congener?+?congener [11], however, the strong interaction between ethanol and water in ternary mixtures was not analyzed. This article considers the study of twelve ternary mixtures containing water+?ethanol?+?congener. The twelve congeners are: acetaldehyde, ethyl acetate, furfural, methanol, 3-methyl-1-butanol, 2-methyl-1-propanol, 1-pentanol, 1-propanol, 2-propanol, methyl acetate, 1-butanol, and butyl acetate. The first 8 congeners mentioned are considered as legal compounds by the Chilean legislation for the production of a spirit called “Pisco” and are controlled by the Chilean Health Ministry. As stated above, in wine distillation process, the congeners are present in low concentrations and modeling studies should consider this aspect. However, the limited experimental data available in open literature place an additional difficulty to more accurately correlate these mixtures in the congener infinite dilution region. Therefore in these cases where data is not available in the low concentration range for the congeners, we rely on the extrapolation capabilities of the models used.

    The fundamental equations of phase equilibrium are described as follows.

    Equality of fugacities of each component in the mixture in both phases:

    The fugacity is related to the temperature, the pressure, the volume, and the concentration through a standard thermodynamic relation [12]. If the fugacity coefficient is used in both phases, the method of solution of the phase equilibrium problem is known as “the equation of state method”. If the fugacity coefficient is used for the vapor phase and the activity coefficient is used for the liquid phase, the equilibrium problem is known as “the gamma-phi method”. If the equation of state method is used, an equation of state and a set of mixing rules are needed, to express the fugacity coefficient as a function of the temperature, the pressure, and the concentration. Modern equation of state methods include an excess Gibbs free energy model (E) in the mixing rules of the equation of state, giving origin to the so-called “equation of state?+Emodel” [13].

    Most models available in literature for the activity coefficient are of the correlating type (Van Laar, Margules, Redlich-Kister, NRTL, UNIQUAC, and Wilson), indicating that experimental data are needed to calculate certain empirical parameters; although some predictive models are also available [universal functional activity coefficient model (UNIFAC), analytical solution of groups (ASOG)]. An interesting model to explore for predicting VLE in mixtures of interest in wine distillation is the predictive Soave- Redlich-Kwong (PSRK) of the group “equation of state?+Emodel”, proposed by Holderbaum and Gmehling [15]. This predictive model has been used in several applications including mixtures containing ethanol, water, and congeners [16]. However, to the best of the authors’s knowledge, no systematic study on ternary mixtures, as the one presented here, has been published.

    In the study detailed in this article, ternary mixtures congener?+?ethanol?+?water were considered. Three activity coefficient models, Wilson, non-random-two liquid model (NRTL), and universal quasi-chemical model (UNIQUAC), are analyzed and the result compared with experimental data available in literature. Two approaches are considered: i) ternary data are predicted using parameters obtained from binary VLE data only; and ii) ternary data are correlated using the ternary VLE data. In both cases, it is assumed in the modeling that the model parameters are independent on concentration and temperature. The first approach makes use of the so-called pair wise additivity concept. This indicates that the pair interactions coefficients do not depend on the presence of other components in the mixture, therefore, interaction between molecules 1 and 2, for instance, are the same in a ternary or multicomponent mixture in which the components 1 and 2 are present. The second approach represents a simple correlation procedure in which the binary interaction parameters,Afor Wilson,Bandαfor NRTL, andUfor UNIQUAC, are calculated using ternary VLE data.

    2 Model Description

    The main equations for the three models studied (Wilson, NRTL, and UNIQUAC) and the meaning of the different variables and parameters are described in the following.

    2.1 Wilson model

    Wilson (1964) [18] presented the following expression for the liquid phase activity coefficients:

    The details of the Wilson model are given below.

    whereV, liquid molar volume of component;,empirical energy term;x, mole fraction of component.

    UNIQUAC model

    2.2 NRTL model

    The NRTL model for the activity coefficient at a given absolute temperaturein Kelvin has the following form [19]:

    The termsB,B, andrepresent adjustable parameters usually calculated from the experimental vapor- liquid equilibrium data.

    2.3 UNIQUAC model

    The Universal Quasi-Chemical theory, from which the UNIQUAC model is derived, can be expressed in terms of the activity coefficients as Ref. [20]:

    3 Ternary mixtures

    Twelve ternary ethanol?+?water?+?congener mixtures were considered for the study. The congeners included in these mixtures are acetaldehyde, ethyl acetate, furfural, methanol, 3-methyl-1-butanol, 2-methyl-1-propanol, 1-pentanol, 1-propanol, 2-propanol, methyl acetate, 1-butanol, and butyl acetate.

    Table 1 shows some pure component properties for all the substances involved in this study. In the table,Wis the molecular weight,bis the normal boiling temperature,cis the critical temperature,cis the critical pressure,cis the critical volume, andis the acentric factor. The data were obtained from Refs. [21, 22].

    教學(xué)中要以緊扣教學(xué)重點為基礎(chǔ),精選關(guān)鍵問題,改變重點不突出、滿堂問的毛病,調(diào)動學(xué)生學(xué)習(xí)的積極性,以讀為主,有足夠思考的空間,進(jìn)行創(chuàng)造性學(xué)習(xí)。一堂課的教學(xué)不能離開主線、重點,否則支離破碎,達(dá)不到效果,教學(xué)目標(biāo)難以達(dá)成。

    Table 2 provides some details on the experimental data used in the study. In this table, Δis the temperature range (in K) in the data set, Δxis the liquid mole fraction range for the component “”, and Δyis the vapor mole fraction range for the component “”. The experimental data used in the study were obtained from Refs. [6, 22-24], as detailed in Table 2.

    Although values of the interaction parameters in the Wilson, NRTL, and UNIQUAC models [Eq. (4) for Wilson, Eq. (7) for NRTL, and Eq. (5) for UNIQUAC], are given in literature for most binary pairs, in this study, these parameters were obtained from available experimental binary and ternary VLE data. This was done because the range of temperature and pressure for the data presented in the literature are not necessarily the same as for the data used in this study. This is the recommended way to analyze these types of systems if better results are desired [7]. The new binary and ternary mixture parameters are shown in Table 3 for the three models.

    Table 1 Some properties for the substances involved in this study

    According to the Phase Rule for a three-component mixture, three variables must be set to calculate the rest[12]. Here, pressure () and concentration of water in both phases (3and3) are given, while the temperature () and concentration of the other components (1,1,2and2) are calculated, thereby determining the optimum binary parameters .

    4 Results and Discussion

    In these tables, the deviations for water concentration3are not shown since the water concentrations in both phases are the data given in the bubble temperature calculations. Since for wine distillation, the congener concentration is of more interest, the results and discussion refer to this variable. The temperature is generally well predicted by all models; however, it is better when the model parameters (given in Table 3) are obtained from ternary data. Table 4, also shows the deviations calculated using the activity coefficient models Wilson, NRTL, and UNIQUAC with parameter obtained from VLE binary and ternary data.

    Table 2 Temperature and mole fraction ranges for the experimental data employed in the analysis

    Table 3 Parameters (Aij, Bij, Uij and αij) for the models Wilson, NRTL and UNIQUAC calculated from experimental binary (bin) and ternary (ter) VLE data

    Table 4 Minimum, maximum, and average deviations for the vapor phase mole fraction of components (1) and (2) for the ternary system: congener (1)?+?ethanol (2)?+?water (3), using binary and ternary parameters with the models Wilson,NRTL and UNIQUAC

    Table 4 (Continued)

    As observed in the Table, the Wilson model with parameters obtained from VLE data of binary systems, predicts concentration (1) with relative and absolute deviations below 30% for only seven of the twelve systems analyzed. The highest absolute deviations, between 39% and 85%, are found for the mixtures acetaldehyde (1)?+?ethanol (2)?+?water (3), furfural (1)?+?ethanol (2)?+?water (3), 3-methyl-1-butanol (1)?+?ethanol (2)?+?water (3), 2-methyl-1-propanol (1)?+?ethanol (2)?+?water (3) and 1-pentanol (1)?+?ethanol (2)?+?water (3). These models provide lower deviations for the ethanol concentration in the gas phase (below 14%).

    When the Wilson model is used with parameters obtained from VLE data of ternary systems, the concentration values1present relative and absolute deviations below 30% for ten of the twelve systems analyzed. The highest absolute deviations, between 44% and 57%, are found for the mixtures 3-methyl-1- butanol (1)?+?ethanol (2)?+?water (3) and 1-pentanol (1)?+?ethanol (2)?+?water (3). Wilson model gives lower deviations for the ethanol concentration in the gas phase (below 7%).

    The NRTL model used with parameters obtained from VLE data of binary systems, predicts the concentration1with relative and absolute deviations below 30% for eight of the twelve systems analyzed. The highest absolute deviations, between 45% and 76%, are found for the mixtures acetaldehyde (1)?+?ethanol (2)?+?water (3), 3-methyl-1-butanol (1)?+?ethanol (2)?+?water (3), 2-methyl-1-propanol (1)?+?ethanol (2)?+?water (3) and 1-pentanol (1)?+?ethanol (2)?+?water (3). When NRTL model is used with parameters obtained from VLE data of ternary systems, it predicts concentration1with relative and absolute deviations below 30% for eleven of the twelve systems analyzed. The high absolute deviation, of 45% is found for the mixtures 1-pentanol (1)?+?ethanol (2)?+?water (3).

    The UNIQUAC model used with parameters obtained from VLE data of binary systems, predicts the concentration1with relative and absolute deviations below 30% for seven of the twelve systems analyzed. The highest absolute deviations, between 34% and 70%, are found for the mixtures acetaldehyde (1)?+?ethanol (2)?+?water (3), furfural (1)?+?ethanol (2)?+?water (3), 3-methyl-1-butanol (1)?+?ethanol (2)?+?water (3), 2-methyl-1-propanol (1)?+?ethanol (2)?+?water (3) and 1-pentanol (1)?+?ethanol (2)?+?water (3).

    Now, if we use the UNIQUAC model with parameters obtained from VLE data of ternary systems, this model predicts the concentration1with relative and absolute deviations below 30% for eleven of the twelve systems analyzed. For the mixture 1-pentanol (1)?+?ethanol (2)?+?water (3), the high absolute deviation (38%) is found. In all the cases analyzed and discussed above, the ethanol concentration in the gas phase is obtained with relative low deviations (below 15% for the predictive models and below 7% for the correlating models).

    As seen in Table 4, Wilson, NRTL, and UNIQUAC models give better results when the parameters obtained from experimental data of ternary systems are used, as expected. Although, theoretically, the use of parameters obtained from binary mixture data can be used to predict VLE in ternary mixtures containing the binary mixture substances, however, this is not true in practice. This fact indicates the inaccuracy of the approach and the limitations of the model to capture these inaccuracies. For example, in the system acetaldehyde (1)?+?ethanol (2)?+?water (3), prediction of concentration1is considerably improved when the three models are used with parameters obtained from ternary data. This is also true for the prediction of concentration of ethanol in the gas phase2in which deviations are lower. Similarly, better results of2are obtained for the system 1-butanol (1)?+?ethanol (2)?+?water (3). On the whole, the NRTL and the UNIQUAC models give similar deviations.

    In Figs. 2 and 3, the results obtained with parameters calculated from ternary data are shown, for the three models. Fig. 2 shows the individual relative deviations of the predicted congener concentration in the gas phase1in the mixture 3-methyl-1-butanol (1)?+?ethanol (2)?+?water (3). Experimental data are taken from Hausen [23] and the calculated values are obtained from the models NRTL, UNIQUAC, and Wilson. As observed in the figure, to lower concentrations of1, the Wilson model gives higher individual relative deviations. The three models did not satisfactorily reproduce the highest concentration of1. In this case, individual relative deviations are about 90%. For this system, the models NRTL and UNIQUAC give similar deviations.

    Figure 2 Individual relative deviations of the predicted congener concentration in the gas phase (1) in the mixture 3-methyl-1-butanol (1)?+?ethanol (2)?+?water (3)

    ●?NRTL;△?UNIQUAC; ?+??Wilson

    Figure 3 Individual relative deviations of the predicted congener concentration in the gas phase (1) in the mixture methyl acetate (1)?+?ethanol (2)?+?water (3)

    ●?NRTL;△?UNIQUAC; ?+??Wilson

    Although one model gives better results for some particular cases, it is not possible to generalize the results and select one of the models used as the best one for this type of complex mixtures that appear in wine distillation processes. If better results are desired, further studies are needed with data restricted to narrower ranges of temperature, pressure, and concentration. Also, more complex models, hopefully specific for hydro-alcoholic mixtures, should be used.

    It should be finally mentioned that although there are numerous data on compositions of wine distillates [25-27], the information provided is not given in the required form for the type of modeling needed in alcoholic distillation processes. In the Dechema Database [6], the only multicomponent mixture ethanol?+?water?+?congeners is the five-component mixture water?+?ethanol?+?methyl acetate?+?ethyl acetate?+-propanol. This mixture includes congeners of interest in other distillation processes but not in the production of “Pisco”.

    5 Conclusions

    Vapor-liquid equilibrium in ternary mixtures containing water?+?ethanol?+?congener has been modeled using parameters obtained from binary and ternary mixture data. The study allows to obtain two main conclusions: i) as expected, the predictions of the concentrations of1and2with parameters obtained from ternary systems, give better results than those determined with parameters obtained from binary data; and ii) the NRTL and UNIQUAC models give better overall results for the systems studied.

    AcknowledgEments

    ,,,.

    Nomenclature

    AWilson parameter

    BNRTL parameter

    Eexcess Gibbs free energy

    pressure

    q van der Waals area parameter

    ideal gas constant

    r van der Waals volume parameter

    temperature

    ccritical temperature

    UUNIQUAC parameter

    volume

    xexperimental mole fraction of congener in the liquid phase (component)

    ymole fraction of congener in the vapor phase (component)

    expexperimental mole fraction of a congener in the vapor phase

    NRTL parameter

    activity coefficient

    Δ interval (for temperature, pressure, and mole fraction)

    percent deviation

    acentric factor

    Superscripts

    cal calculated

    exp experimental

    Subscripts

    ,components

    1 Hikari, A., Kubo, R., “Behavior of various impurities in simple distillation of aqueous solutions of ethanol”,..., 8, 294-299 (1975).

    2 Lillo, M.P.I., Latrille, E., Casaubon, G., Agosin, E., Bordeu, E., Martin, N., “Comparison between odour and aroma profiles of Chilean Pisco spirit”,, 16, 59-70 (2005).

    3 Lora, J., Iborra, M.I., Perez, R., Carbonell, I., “Simulación del proceso de destilación para la concentración de aromas del vino”,....., 32, 621-633 (1992).

    4 Herraiz, M., Reglero, G., Herraiz, T., Loyola, E., “Analysis of wine distillates made from muscat grapes (Pisco) by multidimensional gas chromatography and mass spectrometry”,..., 38, 1540-1543 (1990).

    5 Osorio, D., Perez-Correa, R., Belancic, A., Agosin, E., “Rigorous dynamic modeling and simulation of wine distillations”,.,15, 515-521 (2004).

    6 Gmehling, J., Onken, U., Arlt, W., Vapor-Liquid Equilibrium Data Collection, DECHEMA, Verlag?+?Druckerei Friedrich Bischoff, Frankfurt (1982).

    7 Valderrama, J.O., Pizarro, C., Rojas, R., “Equilibrio líquido-vapor en mezclas complejas para la simulación de procesos de destilación de mostos y vinos”,, 39, 151-156 (2001).

    8 Faúndez, C.A., Valderrama, J.O., “Phase equilibrium modeling in binary mixtures found in wine and must distillation”,., 65, 577-583 (2004).

    9 Faúndez, C.A., Alvarez, V.H., Valderrama, J.O., “Phase equilibrium in binary aqueous mixtures of interest in alcoholic distillation using a modified PSRK equation of state”,..., 25, 230-236 (2004).

    10 Alvarez, V.H., Faúndez, C.A., Valderrama, J.O., “Vapor-liquid equilibrium in binary aqueous mixtures using a modified Regular Solution model”,...., 83, 485-492 (2005).

    11 Faúndez, C.A., Valderrama, J.O., “Ecuaciones de Estado vs modelos de coeficientes de actividad para describir el equilibrio líquido-vapor en mezclas ternarias de interés en destilación alcohólica”,, 352, 141-146 (2004).

    12 Walas, S.M., Phase Equilibria in Chemical Engineering, Butterworth Pub., Storeham (1985).

    13 Valderrama, J.O., “The state of the cubic equation of state”,...., 42, 1603-1618 (2003).

    14 Orbey, H., Sandler, S.I., Modeling Vapor-Liquid Equilibria: Cubic Equations of State and Their Mixing Rules, Cambridge University Press, USA (1998).

    15 Holderbaun, T., Gmehling, J., “PSRK: A group contribution equation of state based on UNIFAC”,., 70, 251-256 (1991).

    16 Faúndez, C.A., Alvarez, V.H., Valderrama, J.O., “Predictive models to describe VLE in ternary mixtures water?+?ethanol?+?congener for wine distillation”,, 450, 110-117 (2006).

    17 Soave, G., “Equilibrium constants from a modified Redlich-Kwong equation of state”,..., 27, 1197-1203 (1972).

    18 Wilson, G.M., “Vapour-liquid equilibrium. XI. A new expression for the excess free energy of mixing”,...., 86, 127-139 (1964).

    19 Prausnitz, J.M., Lichtenthaler, R.N., Gomes de Azevedo, E., Molecular Thermodynamics of Fluid-Phase Equilibria, Prentice Hall International Series, New Jersey, USA (1999).

    20 Abrams, D.S., Prausnitz, J.M., “Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems”,., 21, 116-128 (1975).

    21 Daubert, T.E., Danner, R.P., Sibul, H.M., Stebbins, C.C., Physical and Thermodynamic Properties of Pure Chemicals: Data compilation, Taylor&Francis, London, UK (1996).

    22 Chu, J.C., Getty, R.J., Brennecke, L.F., Paul, R., Distillation Equilibrium Data, Reinhold Publishing Corporation, New York, USA (1950).

    23 Hausen, H., Numerical Data and Functional Relationships in Science and Technology, Volume 3, Thermodynamic Equilibria of Boiling Mixtures, Springer, Berlin-Germany (1975).

    24 Fernández, M.J., Gomis, V., Loras, S., Ruiz, F., “Isobaric vapor-liquid equilibria for the system 1-pentanol?+?ethanol?+?water at 101.3 kPa”,...., 46, 665-667 (2001).

    25 Conner, J.M., Paterson, A., Piggott, J.R., “Interactions between ethyl esters and aroma compounds in model spirit solutions”,..., 42, 2231-2234 (1994).

    26 Conner, J.M., Paterson, A., Piggott, J.R., “Release of distillate flavour compounds in Scotch malt whisky”,..., 79, 1015-1020 (1999).

    27 Conner, J.M., Birkmyre, L., Paterson, A., Piggott, J.R., “Headspace concentrations of ethyl esters at different alcoholic strengths”,..., 77, 121-126 (1998).

    2008-08-26,

    2009-01-04.

    the Direction of Research of the University of La Serena-Chile (220-2-05 and 220-2-21), and the National Council for Scientific and Technological Research, CONICYT (FONDECYT 3020020).

    ** To whom correspondence should be addressed. E-mail: jvalderr@userena.cl

    猜你喜歡
    滿堂關(guān)鍵問題毛病
    肝不好,脾胃就鬧毛病
    防治水霉病的幾點關(guān)鍵問題
    幸福滿堂
    幸福滿堂
    燃燒吧!小羽宙
    關(guān)于滿堂支架受力驗算的探討
    江西建材(2018年1期)2018-04-04 05:26:30
    沒毛病
    毛病
    NFV技術(shù)及其引入VoLTE IMS中的關(guān)鍵問題研究
    解決好改革關(guān)鍵問題
    国产国拍精品亚洲av在线观看| 成年人午夜在线观看视频 | 老师上课跳d突然被开到最大视频| 亚洲精品日韩在线中文字幕| 免费无遮挡裸体视频| 国产精品久久久久久久电影| 免费av观看视频| 国产午夜精品论理片| 人妻一区二区av| 国内少妇人妻偷人精品xxx网站| 一级毛片 在线播放| 91久久精品国产一区二区三区| av国产久精品久网站免费入址| 99久国产av精品| 日韩成人伦理影院| 久久国产乱子免费精品| 午夜亚洲福利在线播放| 成人二区视频| 国产精品99久久久久久久久| 婷婷色综合大香蕉| 亚洲aⅴ乱码一区二区在线播放| 亚洲一区高清亚洲精品| 午夜免费男女啪啪视频观看| 久久热精品热| 99久久精品热视频| 成年女人看的毛片在线观看| www.av在线官网国产| 日本一本二区三区精品| 国产成人aa在线观看| 亚洲最大成人手机在线| 久久精品久久精品一区二区三区| 亚洲av一区综合| 美女内射精品一级片tv| 老女人水多毛片| 国产黄片美女视频| 神马国产精品三级电影在线观看| 免费播放大片免费观看视频在线观看| 婷婷色麻豆天堂久久| 国产精品不卡视频一区二区| 亚洲人成网站高清观看| 大片免费播放器 马上看| 亚洲综合色惰| 精品久久国产蜜桃| 亚洲av电影在线观看一区二区三区 | 国产日韩欧美在线精品| 美女黄网站色视频| 久久精品综合一区二区三区| 色播亚洲综合网| 一夜夜www| 精品久久久久久久末码| 美女内射精品一级片tv| 简卡轻食公司| 嘟嘟电影网在线观看| 午夜免费观看性视频| h日本视频在线播放| 精品酒店卫生间| 欧美+日韩+精品| 网址你懂的国产日韩在线| 肉色欧美久久久久久久蜜桃 | 淫秽高清视频在线观看| 深爱激情五月婷婷| 亚洲精品影视一区二区三区av| 亚洲婷婷狠狠爱综合网| 亚洲av免费高清在线观看| 最近手机中文字幕大全| 男人舔奶头视频| av网站免费在线观看视频 | 日本与韩国留学比较| 九九久久精品国产亚洲av麻豆| 亚洲精品乱久久久久久| 一级毛片 在线播放| 午夜激情久久久久久久| 国产国拍精品亚洲av在线观看| 一级毛片久久久久久久久女| av在线天堂中文字幕| 成人无遮挡网站| 一本久久精品| av女优亚洲男人天堂| 国产精品久久视频播放| 日韩欧美精品v在线| 亚洲成人中文字幕在线播放| 国产伦精品一区二区三区视频9| 舔av片在线| 亚洲国产色片| 精品99又大又爽又粗少妇毛片| 亚洲三级黄色毛片| 一个人看视频在线观看www免费| 人妻一区二区av| 精品人妻熟女av久视频| 日韩 亚洲 欧美在线| 亚洲国产色片| 99热6这里只有精品| 午夜精品国产一区二区电影 | 亚洲国产av新网站| 高清av免费在线| 噜噜噜噜噜久久久久久91| 美女内射精品一级片tv| 一级毛片我不卡| 少妇的逼好多水| 一级毛片我不卡| 亚洲精品成人av观看孕妇| 午夜福利在线观看吧| 亚洲真实伦在线观看| 婷婷色麻豆天堂久久| 男人舔奶头视频| 91av网一区二区| 最近最新中文字幕免费大全7| 日韩强制内射视频| 国产综合精华液| 亚洲欧美清纯卡通| 亚洲成人久久爱视频| 性插视频无遮挡在线免费观看| 99久久精品热视频| 久久精品久久精品一区二区三区| 久久久久网色| 亚洲国产最新在线播放| 丰满人妻一区二区三区视频av| 91av网一区二区| 亚洲熟女精品中文字幕| av免费在线看不卡| 精品久久久久久电影网| 国产精品人妻久久久影院| 啦啦啦中文免费视频观看日本| 午夜免费激情av| 麻豆精品久久久久久蜜桃| 午夜激情福利司机影院| 综合色丁香网| 国产精品熟女久久久久浪| 亚洲美女搞黄在线观看| 国产激情偷乱视频一区二区| 六月丁香七月| 欧美成人一区二区免费高清观看| 六月丁香七月| 亚洲最大成人手机在线| 国产麻豆成人av免费视频| 免费看av在线观看网站| 久久精品国产亚洲av天美| 午夜视频国产福利| 精品国产露脸久久av麻豆 | 国产高清三级在线| 可以在线观看毛片的网站| 一级毛片黄色毛片免费观看视频| 男女下面进入的视频免费午夜| 综合色av麻豆| 免费看美女性在线毛片视频| av女优亚洲男人天堂| 99热这里只有是精品50| 亚洲成色77777| 久久国产乱子免费精品| 欧美一区二区亚洲| 久99久视频精品免费| 国产色婷婷99| 成年女人看的毛片在线观看| 日韩伦理黄色片| 卡戴珊不雅视频在线播放| 中文字幕亚洲精品专区| 亚洲性久久影院| 亚洲精品,欧美精品| 午夜老司机福利剧场| 国产精品一区www在线观看| 国产 一区 欧美 日韩| www.av在线官网国产| 亚洲熟女精品中文字幕| 天堂√8在线中文| 亚洲成人久久爱视频| 国产激情偷乱视频一区二区| 日本黄大片高清| 菩萨蛮人人尽说江南好唐韦庄| 69人妻影院| 国产69精品久久久久777片| 精品99又大又爽又粗少妇毛片| 一级毛片aaaaaa免费看小| 一个人看的www免费观看视频| 久久精品国产自在天天线| 久久综合国产亚洲精品| 免费观看的影片在线观看| 特大巨黑吊av在线直播| 中文字幕制服av| 十八禁网站网址无遮挡 | 搞女人的毛片| 欧美+日韩+精品| 免费高清在线观看视频在线观看| 亚洲欧洲国产日韩| 一级毛片久久久久久久久女| 欧美激情在线99| 日本欧美国产在线视频| av黄色大香蕉| 99视频精品全部免费 在线| 国产精品无大码| 天堂√8在线中文| 春色校园在线视频观看| 欧美丝袜亚洲另类| 亚洲在线观看片| 免费观看在线日韩| 日韩伦理黄色片| 青春草亚洲视频在线观看| 欧美zozozo另类| 两个人视频免费观看高清| 99热6这里只有精品| 国产精品不卡视频一区二区| 国内精品一区二区在线观看| 久久久久久久国产电影| 青春草视频在线免费观看| 高清在线视频一区二区三区| 成人美女网站在线观看视频| 99久久九九国产精品国产免费| 午夜福利高清视频| 亚洲国产精品专区欧美| 亚洲真实伦在线观看| 国产亚洲91精品色在线| 视频中文字幕在线观看| 精品欧美国产一区二区三| 午夜福利成人在线免费观看| 免费看不卡的av| 久久亚洲国产成人精品v| 免费无遮挡裸体视频| 成人鲁丝片一二三区免费| 欧美zozozo另类| 国产精品蜜桃在线观看| 九草在线视频观看| 国内少妇人妻偷人精品xxx网站| 天堂av国产一区二区熟女人妻| 九草在线视频观看| 免费观看av网站的网址| 欧美bdsm另类| 国产成人福利小说| 一区二区三区免费毛片| 欧美成人精品欧美一级黄| 不卡视频在线观看欧美| 日本wwww免费看| 午夜精品在线福利| 免费黄频网站在线观看国产| 成人亚洲精品一区在线观看 | 能在线免费观看的黄片| 中文字幕人妻熟人妻熟丝袜美| 日本-黄色视频高清免费观看| 一边亲一边摸免费视频| 成年人午夜在线观看视频 | 亚洲第一区二区三区不卡| 国产色婷婷99| 成人亚洲精品一区在线观看 | 欧美激情在线99| 久久久久性生活片| 亚洲不卡免费看| 人妻一区二区av| 亚洲精品久久久久久婷婷小说| 日韩强制内射视频| 午夜激情福利司机影院| 成人午夜精彩视频在线观看| 国产黄片美女视频| 久久精品久久久久久噜噜老黄| 嫩草影院入口| av黄色大香蕉| av在线蜜桃| 亚洲一级一片aⅴ在线观看| 男女视频在线观看网站免费| 久久精品国产鲁丝片午夜精品| 欧美变态另类bdsm刘玥| 成人亚洲精品av一区二区| 欧美激情久久久久久爽电影| 婷婷六月久久综合丁香| 精品一区在线观看国产| 午夜福利视频精品| 国产在线一区二区三区精| 色网站视频免费| 久久久久精品久久久久真实原创| 久久久久久九九精品二区国产| 亚洲国产精品sss在线观看| 国产亚洲最大av| 在线免费十八禁| 18+在线观看网站| 成年女人在线观看亚洲视频 | 亚洲精品国产av成人精品| 麻豆av噜噜一区二区三区| 免费黄频网站在线观看国产| 99视频精品全部免费 在线| 99热网站在线观看| 偷拍熟女少妇极品色| 久久久久久久大尺度免费视频| 色综合色国产| 亚洲真实伦在线观看| 久久久精品欧美日韩精品| 精品欧美国产一区二区三| 免费观看性生交大片5| 精品99又大又爽又粗少妇毛片| 搞女人的毛片| 97人妻精品一区二区三区麻豆| 免费观看性生交大片5| 亚洲精品中文字幕在线视频 | 国产一区二区亚洲精品在线观看| 性色avwww在线观看| 日本一本二区三区精品| 纵有疾风起免费观看全集完整版 | 午夜激情欧美在线| 伦理电影大哥的女人| 99热网站在线观看| 国产免费视频播放在线视频 | 成年版毛片免费区| .国产精品久久| 女人被狂操c到高潮| 内射极品少妇av片p| av播播在线观看一区| 丰满乱子伦码专区| 国产乱来视频区| 中国美白少妇内射xxxbb| 爱豆传媒免费全集在线观看| 免费观看av网站的网址| 亚洲国产精品专区欧美| 一夜夜www| 搡女人真爽免费视频火全软件| av.在线天堂| 国产亚洲5aaaaa淫片| 我要看日韩黄色一级片| 日韩一区二区三区影片| 亚洲国产日韩欧美精品在线观看| 91aial.com中文字幕在线观看| 日日干狠狠操夜夜爽| 伊人久久国产一区二区| 亚洲经典国产精华液单| 亚洲美女视频黄频| 午夜福利在线观看吧| 亚州av有码| 国内精品宾馆在线| 欧美97在线视频| 两个人的视频大全免费| 欧美一区二区亚洲| 婷婷色av中文字幕| 高清午夜精品一区二区三区| 国产男人的电影天堂91| 亚洲国产最新在线播放| 成年女人在线观看亚洲视频 | 午夜视频国产福利| 91aial.com中文字幕在线观看| 国产精品久久久久久精品电影小说 | h日本视频在线播放| 熟妇人妻久久中文字幕3abv| 久久久久精品久久久久真实原创| 午夜免费激情av| 欧美极品一区二区三区四区| 熟女电影av网| 亚洲av福利一区| 亚洲精品成人av观看孕妇| 3wmmmm亚洲av在线观看| 99久国产av精品| 国产日韩欧美在线精品| 99久久九九国产精品国产免费| 免费大片黄手机在线观看| 亚洲成人精品中文字幕电影| 午夜亚洲福利在线播放| 国产乱人偷精品视频| 肉色欧美久久久久久久蜜桃 | 午夜免费观看性视频| 欧美激情国产日韩精品一区| 男的添女的下面高潮视频| 黑人高潮一二区| 一级二级三级毛片免费看| 哪个播放器可以免费观看大片| 精品不卡国产一区二区三区| 色综合亚洲欧美另类图片| 亚洲av成人av| 亚洲av免费高清在线观看| av在线亚洲专区| 国产一区二区在线观看日韩| 亚洲国产精品成人久久小说| 免费看不卡的av| 黄片wwwwww| 欧美成人一区二区免费高清观看| 亚洲av成人精品一区久久| 免费看光身美女| 99久久中文字幕三级久久日本| 禁无遮挡网站| 精品久久久久久久人妻蜜臀av| 美女主播在线视频| 日本免费a在线| 男人和女人高潮做爰伦理| 亚洲精品一二三| 国产精品无大码| 一区二区三区免费毛片| 午夜精品在线福利| 九九爱精品视频在线观看| 免费看光身美女| 大话2 男鬼变身卡| 天堂√8在线中文| 久久午夜福利片| av卡一久久| 国产乱来视频区| 久久这里有精品视频免费| 国产高清不卡午夜福利| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av成人av| 高清欧美精品videossex| 色尼玛亚洲综合影院| 欧美日本视频| 汤姆久久久久久久影院中文字幕 | av在线观看视频网站免费| 天堂中文最新版在线下载 | 免费在线观看成人毛片| 久久久久久久久久久丰满| 久久人人爽人人片av| 亚洲欧美日韩卡通动漫| 午夜福利视频1000在线观看| 国产精品熟女久久久久浪| 久久久精品欧美日韩精品| 丰满乱子伦码专区| 高清午夜精品一区二区三区| 2021天堂中文幕一二区在线观| 五月伊人婷婷丁香| 热99在线观看视频| 1000部很黄的大片| 日韩伦理黄色片| 免费高清在线观看视频在线观看| 欧美最新免费一区二区三区| 寂寞人妻少妇视频99o| 26uuu在线亚洲综合色| 国产 亚洲一区二区三区 | 天天躁夜夜躁狠狠久久av| 国产精品av视频在线免费观看| 亚洲真实伦在线观看| 免费不卡的大黄色大毛片视频在线观看 | 波多野结衣巨乳人妻| 全区人妻精品视频| 国产亚洲91精品色在线| 亚洲国产色片| 赤兔流量卡办理| 精品人妻偷拍中文字幕| 日韩强制内射视频| 免费在线观看成人毛片| 国产精品99久久久久久久久| av国产免费在线观看| 综合色av麻豆| 国产一区二区在线观看日韩| 一级毛片我不卡| 亚洲国产精品国产精品| 免费观看在线日韩| 久久久精品94久久精品| 美女高潮的动态| 色5月婷婷丁香| 国产不卡一卡二| 午夜福利在线观看吧| 色视频www国产| 国产在线男女| 日本色播在线视频| 精品99又大又爽又粗少妇毛片| 日韩精品有码人妻一区| 日本一本二区三区精品| 男女国产视频网站| 精品少妇黑人巨大在线播放| 嫩草影院入口| 欧美日韩一区二区视频在线观看视频在线 | 青春草亚洲视频在线观看| 国产成人一区二区在线| 免费观看无遮挡的男女| 国产av码专区亚洲av| 男人爽女人下面视频在线观看| 国产乱人视频| 国产精品国产三级国产专区5o| 午夜福利网站1000一区二区三区| 青春草国产在线视频| 亚洲国产精品sss在线观看| 18禁动态无遮挡网站| www.色视频.com| 国产在视频线在精品| 精品午夜福利在线看| 中文字幕av在线有码专区| 亚洲av电影在线观看一区二区三区 | 亚洲色图av天堂| 少妇猛男粗大的猛烈进出视频 | 亚洲欧洲国产日韩| 午夜久久久久精精品| 国产亚洲91精品色在线| 色5月婷婷丁香| 在线观看免费高清a一片| 网址你懂的国产日韩在线| 777米奇影视久久| 啦啦啦韩国在线观看视频| 91久久精品国产一区二区三区| 色5月婷婷丁香| 少妇猛男粗大的猛烈进出视频 | 亚洲熟妇中文字幕五十中出| 国产亚洲精品av在线| 一夜夜www| av福利片在线观看| 老司机影院成人| 网址你懂的国产日韩在线| 毛片女人毛片| 日韩av在线免费看完整版不卡| 超碰97精品在线观看| 男人舔女人下体高潮全视频| 99热这里只有是精品50| 麻豆国产97在线/欧美| 中国美白少妇内射xxxbb| 69av精品久久久久久| 最近中文字幕2019免费版| 午夜爱爱视频在线播放| 久久国产乱子免费精品| 亚洲av不卡在线观看| 免费电影在线观看免费观看| 日韩欧美一区视频在线观看 | 最新中文字幕久久久久| 欧美成人一区二区免费高清观看| 国产精品久久久久久精品电影小说 | 久久久久久久久久久丰满| 黄片无遮挡物在线观看| 老司机影院成人| 国产高清不卡午夜福利| 国产精品爽爽va在线观看网站| 亚洲av在线观看美女高潮| 2021天堂中文幕一二区在线观| 麻豆成人午夜福利视频| 久久鲁丝午夜福利片| av一本久久久久| 色尼玛亚洲综合影院| 中文天堂在线官网| 18禁裸乳无遮挡免费网站照片| 丝袜喷水一区| 日本午夜av视频| 麻豆精品久久久久久蜜桃| 午夜福利在线观看免费完整高清在| 久久6这里有精品| 国产精品蜜桃在线观看| 欧美性猛交╳xxx乱大交人| 亚洲国产成人一精品久久久| 三级国产精品欧美在线观看| 亚洲婷婷狠狠爱综合网| 亚洲人成网站在线播| 插逼视频在线观看| 精品久久国产蜜桃| 又爽又黄a免费视频| 日韩视频在线欧美| 免费高清在线观看视频在线观看| 午夜老司机福利剧场| 熟妇人妻久久中文字幕3abv| 99久久中文字幕三级久久日本| 亚洲成人一二三区av| 身体一侧抽搐| 少妇猛男粗大的猛烈进出视频 | 国产v大片淫在线免费观看| 欧美精品一区二区大全| 久久6这里有精品| 日韩一区二区视频免费看| 国产一区二区在线观看日韩| 亚洲国产最新在线播放| 国产伦在线观看视频一区| 亚洲精品色激情综合| 国产v大片淫在线免费观看| 最近中文字幕2019免费版| 亚洲熟妇中文字幕五十中出| 国产v大片淫在线免费观看| 99视频精品全部免费 在线| 五月玫瑰六月丁香| 国产视频内射| 亚洲经典国产精华液单| 亚洲内射少妇av| 99热这里只有精品一区| 国产午夜精品一二区理论片| 精品久久久久久久久亚洲| 亚洲精品国产av成人精品| 欧美+日韩+精品| 久久人人爽人人爽人人片va| 国产在视频线在精品| 国产精品av视频在线免费观看| 午夜精品国产一区二区电影 | 亚洲,欧美,日韩| 欧美性感艳星| 丝袜喷水一区| 色吧在线观看| 天堂影院成人在线观看| 草草在线视频免费看| 久久久久久久国产电影| 天天躁夜夜躁狠狠久久av| 水蜜桃什么品种好| 边亲边吃奶的免费视频| 好男人在线观看高清免费视频| 赤兔流量卡办理| 久久久久久久午夜电影| 一级爰片在线观看| 五月伊人婷婷丁香| 国产精品嫩草影院av在线观看| 国产成人精品福利久久| 国产黄色视频一区二区在线观看| 菩萨蛮人人尽说江南好唐韦庄| 精品一区二区三卡| 男女视频在线观看网站免费| 国产精品一区二区在线观看99 | 黄色日韩在线| 韩国av在线不卡| 免费不卡的大黄色大毛片视频在线观看 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 少妇高潮的动态图| 亚洲婷婷狠狠爱综合网| 91aial.com中文字幕在线观看| 啦啦啦韩国在线观看视频| 国产精品久久视频播放| 亚洲欧美精品专区久久| 99久久人妻综合| 欧美一区二区亚洲| 日韩欧美 国产精品| 久久久久久久大尺度免费视频| 亚洲精品国产成人久久av| 欧美三级亚洲精品| 国产精品蜜桃在线观看| 国产精品爽爽va在线观看网站| 日本-黄色视频高清免费观看| 国产精品蜜桃在线观看| 久久久久久国产a免费观看| 免费无遮挡裸体视频| 麻豆精品久久久久久蜜桃| 久久久国产一区二区| 免费无遮挡裸体视频| 色视频www国产| 亚洲欧洲日产国产| 欧美日韩综合久久久久久| 国产精品蜜桃在线观看| 搡老乐熟女国产| 寂寞人妻少妇视频99o|