• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Kinetics of Reactive Extraction of Nd from Nd2O3 with TBP-HNO3Complex in Supercritical Carbon Dioxide*

    2009-05-12 03:33:14ZHULiyang朱禮洋DUANWuhua段五華XUJingming徐景明andZHUYongjun朱永
    關(guān)鍵詞:五華

    ZHU Liyang (朱禮洋), DUAN Wuhua (段五華), XU Jingming (徐景明) andZHU Yongjun(朱永)

    ?

    Kinetics of Reactive Extraction of Nd from Nd2O3with TBP-HNO3Complex in Supercritical Carbon Dioxide*

    Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 102201, China

    The process based on supercritical fluid extraction for reprocessing of the spent nuclear fuel has some remarkable advantages over the plutonium-uranium extraction (PUREX) process. Especially, it can minimize the generation of secondary waste. Dynamic reactive extraction of neodymium oxide (Nd2O3) in supercritical carbon dioxide (SC-CO2) containing tri--butyl phosphate-nitric acid (TBP-HNO3) complex was investigated. Temperature showed a positive effect on the extraction efficiency, while pressure showed a negative effect when the unsaturated TBP-HNO3complex was employed for the dynamic reactive extraction of Nd2O3in SC-CO2. Both temperature and pressure effects indicated that the kinetic process of the reactive extraction was controlled by the chemical reaction. A kinetic model was proposed to describe the extraction process.

    supercritical carbon dioxide, kinetics, reactive extraction, TBP-HNO3complex, Nd2O3

    1 INTRODUCTION

    Reprocessing of the spent nuclear fuel is commercially carried out by the plutonium-uranium extraction (PUREX) process. In the PUREX process, the spent nuclear fuel is dissolved in nitric acid followed by co-extraction of uranium and plutonium from acid solution using the tri--butyl phosphate (TBP)/kerosene system. The fission products are left in the raffinate stream [1]. Therefore, considerable volume of the high level liquid waste (HLLW) is generated, leading to further treatment with high cost.

    Recently, supercritical fluid extraction (SFE) of lanthanides and actinides has been extensively studied for its potential application in reprocessing of the spent nuclear fuel because it can simplify the process and reduce the secondary liquid waste [2-11]. TBP-HNO3complex has been found to have high solubility in supercritical carbon dioxide (SC-CO2). It is capable of dissolving directly lanthanide and actinide oxides. This process integrates chemical reactions with SFE, which is free of any aqueous solution to dissolve metal oxides prior to extraction. Therefore, this process is named reactive extraction.

    There are extensive mathematical models proposed for SFE of natural products from the solid matrix, where the interactions between target compounds and the matrix are carefully considered [12-14]. Cui. [15] studied the kinetics of chelating extraction of heavy metal ions in SC-CO2. However, little is known about modeling supercritical fluid reactive extraction of metal oxides, especially lanthanide and actinide oxides, which is very important to explore the extraction mechanisms. In this study, Nd2O3as a typical lanthanide oxide in the spent nuclear fuel is selected to start our research on application of SFE in reprocessing of the spent nuclear fuel. The reactive extraction of Nd2O3is conducted using TBP-HNO3complex in SC-CO2. Effects of temperature and pressure are investigated. A kinetic model is proposed to describe the extraction process.

    2 EXPERIMENTAL

    2.1 Materials

    Tri--butyl phosphate (AR, >98%) and HNO3(AR, 15.5 mol·L-1) were provided by Beijing Chemical Plant, China. NaOH (AR) was obtained from Tianjin Unionlab Chemical Reagent Ltd., China. Ethylene diamine tetraacetic acid disodium salt (EDTA, 99.96%) was purchased from National Research Center for Certified Reference Materials, China. Carbon dioxide (99.995%) was purchased from Beijing Bei Temperature Gas Factory, China. Nd2O3powder was obtained from Sinopharm Chemical Reagent Co., Ltd, China, and sieved before use with standard sieve of 0.025-0.031 mm.

    TBP-HNO3complex was prepared by vigorously mixing TBP with equal volume of 15.5 mol·L-1HNO3, followed by centrifugation for 0.5 h. The concentration of HNO3in TBP-HNO3complex was determined by acid-base titration using 0.1 mol·L-1NaOH. The content of water was measured by a 787 KF Titrino instrument (Metrohm Ltd., Switzerland). The density of the complex was calculated by weighing a known volume of complex with Mettler AE 200 balance (Mettler Toledo, Switzerland). The concentration of TBP in TBP-HNO3complex could be calculated by combining the density of complex with the content of H2O and HNO3in the complex [16, 17]. The complex in this study had a formula of TBP(HNO3)1.63(H2O)0.53. Since TBP in the complex was saturated with HNO3and H2O, excess water droplets would form and separate from the supercritical fluid phase during the extraction process. If the metal ion is distributed into the water droplets, effective extraction is not achieved [18]. Thus, another kind of TBP-HNO3complex was prepared by diluting the TBP(HNO3)1.63(H2O)0.53complex with equal volume of anhydrate TBP and used in the experiments. Accordingly, its formula was determined to be TBP(HNO3)0.79(H2O)0.26, which could be called an unsaturated complex wherein the concentration of H+was 2.52 mol·L-1and the content of water was 1.48% (by mass).

    2.2 Procedure

    A schematic diagram of the apparatus (SFT-100, Supercritical Fluid Technologies, Inc. USA) for the SFE experiments is shown in Fig. 1. The main part of the apparatus consists of a 50-ml stainless steel reaction vessel, which is settled in a thermostatic air bath that can control the temperature within ±0.1 K. A plunger pump is used to flow CO2. It is coupled with a pressure control plane, which can display and control both the flow rate of CO2and the pressure of the system.

    Figure 1 Schematic diagram of the apparatus for SFE

    1—CO2cylinder; 2—plunger pump; 3—TBP-HNO3complex container; 4—syringe pump; 5—pre-heating coil; 6—inlet valve; 7—thermostatic air bath; 8—reaction vessel; 9—static/dynamic valve; 10—back pressure restrictor; 11—collection vessel; 12—tail gas filter

    Figure 2 Effect of pressure on the extraction efficiency at 323.15 K

    flow rate of CO2/ml·min-1: ■?2.51±0.28;●?2.56±0.23;▲?2.61±0.20;▼?2.58±0.28pressure/MPa: ■?15; ●?21; ▲?25; ▼?30

    The thermostatic air bath was first heated to the desired temperature. The reaction vessel was sealed after 0.5 g Nd2O3powder was charged into it. The liquid CO2was subsequently purged into the system. The restrictor valve was closed for pressurizing CO2with the plunge pump. When the pressure of the system reached the desired pressure, the restrictor valve was opened carefully to let CO2flow through the system. The flow rate of the liquid CO2at the outlet of the plunger pump was about 2.50 ml·min-1. It was difficult to keep the pressure and the flow rate of CO2constant in the flow SFE process, so the pressure was kept constant throughout the experiments in the present work, while slight fluctuation of the flow rate of liquid CO2was observed, which was also reported by Tomioka [19]. Then, TBP-HNO3complex was supplied into the system by the syringe pump at a constant rate of 0.5 ml·min-1, and mixed with CO2flow at the mixing joint of the system. In the reaction vessel, TBP-HNO3complex in SC-CO2reacted with Nd2O3. As a result, the soluble Nd-TBP complex was formed in SC-CO2, carried out of the reaction vessel by SC-CO2. At last, the soluble Nd-TBP complex was retained in the collection vessel filled with the hydrogenating kerosene when SC-CO2was gasified under the atmospheric pressure by opening the back pressure restrictor. The collection vessel was replaced at a designed time interval for the study of dynamic extraction.

    The quantity of Nd collected was determined by the complexometric titration method with the EDTA solution. The residual Nd2O3in the reaction vessel after being dissolved in 1 mol·L-1nitric acid was determined by ICP-AES (IRIS. Adr, Thermo Jarrell Ash, USA). Consequently the mass balance could be estimated.

    The extraction efficiency () is defined as follows:

    3 RESULTS AND DISCUSSION

    3.1 Effect of pressure on the extraction efficiency

    The effect of pressure on the reactive extraction of Nd2O3in SC-CO2was investigated by fixing the temperature at 323.15 K and varying pressure from 15 to 30 MPa. The extraction curve is shown in Fig. 2 by plotting the extraction efficiency () against the extraction time (). The extraction efficiency increased exponentially with the extraction time. The extraction process nearly finished after 180 min of dynamic extraction because Nd2O3in the reaction vessel was completely reacted and extracted by TBP-HNO3complex in SC-CO2under different pressure. The extraction efficiency could reach 96% for all the cases. Pressure usually has positive effect in the SFE processes, namely the extraction efficiency increases with pressure [20], because the higher the pressure is, the higher the solubility of the solute in SC-CO2is. In contrast, pressure showed a negative effect on the reactive extraction of Nd2O3, namely the extraction efficiency declined with pressure. A similar effect of pressure was also observed when U3O8was dissolved and extracted using SC-CO2containing TBP-HNO3complex [19]. It is possible that increase of pressure in those reactive extraction systems reduces the reactivity of TBP-HNO3complex.

    3.2 Effect of temperature on the extraction efficiency

    The effect of temperature on the extraction efficiency was examined by fixing pressure at 21 MPaand varying temperature in the range of 313.15-333.15 K. The extraction curve is shown in Fig. 3. The temperature shows a different effect on the extraction efficiency from the pressure, namely, the higher the temperature is, the higher the extraction efficiency is. The temperature effect may attribute to the influence of temperature on the chemical reaction rate of TBP-HNO3complex with Nd2O3. The reaction rate generally increases with temperature.

    Figure 3 Effect of temperature on the extraction efficiency at 21 MPa

    flow rate of CO2/ml·min-1:■?2.77±0.53;●?2.56±0.23; ▲?2.51±0.15temperature/K:■?313.15;●?323.15;▲?333.15

    4 PROCESS KINETICS

    Both effects of temperature and pressure suggest that the process kinetics is controlled by chemical reaction before 120 min. The kinetics process is composed of the following steps (see Fig. 4).

    Figure 4 Schematic diagram of the kinetic process

    (1) A stagnant film is formed by TBP-HNO3complex near Nd2O3particle surface [21, 22].

    (2) TBP-HNO3complex diffuses to the stagnant film from SC-CO2phase in a convective-diffusion way. Subsequently, TBP-HNO3complex penetrates the stagnant film, followed by reaching the particle surface.

    (3) TBP-HNO3complex reacts with Nd2O3at the surface of the Nd2O3particle, forming the Nd-TBP complex. It was reported that 1︰4 complex was formed when neodymium nitrate complexes with TBP in SC-CO2[23]. Therefore the reaction can be described as follows:

    A united reaction equation is obtained for simplification:

    (4) The Nd(NO3)3(TBP)4product diffuses out of the stagnant film to SC-CO2phase, and is transported out of the reaction vessel by convective flow.

    With a small quantity of the Nd2O3sample loaded in the reaction vessel, some assumptions can be made: 1) The Nd2O3particle exhibits a spherical shape. 2) SC-CO2is a well-mixed flow and well distributed in every cross-section of the reaction vessel. 3) Temperature and pressure are uniformly distributed in the reaction vessel. Thereby, the reaction and mass transport should be carried out under isothermal conditions. 4) Both the stagnant film resistance and the convective mass transfer resistance may be neglected. Taken these assumptions together with the reaction taking place at particle surface, the conservation equation can be written as follows [15]:

    In addition, the diffusivity of SC-CO2is excellent, so that the radial distribution of concentration on particle surface may be neglected, provided that the size of the Nd2O3particle is small. The first term on the right hand side of Eq. (4) is zero. Thus Eq. (4) is further reduced to:

    The extraction efficiencycan be expressed as (8):

    so Eq. (7) is reduced to:

    The experimental results under various temperature and pressure are fitted using Eq. (9). The results are listed in Table 1. The linear correlation coefficients (value) are all above 96%. The probabilities of completely nonlinear (value) are less than 0.05 when the confidence level is 95% for all the case.

    Table 1 Exponential fitting result for the dynamic reactive extraction of Nd2O3 into SC-CO2

    Figure 5 Exponential fitting for the reactive extraction

    The effect of temperature on the reaction can be represented by the Arrhenius equation:

    The apparent activation energyais calculated to be (16.47±3.02) kJ·mol-1by plotting ln′ against 1/as shown in Fig. 6.

    Figure 6 Arrhenius plots for the reactive extraction of Nd2O3at 21 Mpa

    5 CONCLUSIONS

    Quantitative extraction of Nd2O3by SC-CO2containing TBP-HNO3complex was achieved. The extraction efficiency increased with temperature in the range of 313.15-333.15 K and decreased with pressure in the range of 15-30 MPa. The reactive extraction process was controlled by chemical reaction, and the kinetic process could be well described by a simple mathematic model. The reaction could be represented by a pseudo-first-order reaction, and the apparent reaction rate constants of the reaction of TBP-HNO3complex with Nd2O3under various pressures and temperatures were obtained. The apparent activation energy of the present system was calculated to be (16.47±3.02) kJ·mol-1based on the experimental data in the range of 313.15-333.15 K at 21 MPa.

    NOMENCLATURE

    pre-exponential factor, min-1

    ANd2O3remained in the reaction vessel, mol

    A,0Nd2O3loaded in the reaction vessel, mol

    collectedNd2O3collected in the collection vessel, mol

    sconcentration of TBP-HNO3complex, mol·L-1

    ′ effective diffusion coefficient, m2·min-1

    extraction efficiency, %

    aapparent activation energy, kJ·mol-1

    ′ apparent reaction rate constant, min-1

    number of experimental data points

    probability (thatis zero)

    pressure, MPa

    Aformation reaction rate, mol·min-1

    linear correlation coefficient

    pparticle size, m

    temperature, K

    time, min

    2standard deviation

    1 Jiang, S.J., Ren, F.Y., Reprocessing Engineering of Nuclear Fuel, Nuclear Energy Press, Beijing, China, 8-19 (1995). (in Chinese)

    2 Laintz, K.E., Wai, C.M., Yonker, C.R., Smith, R.D., “Extraction of metal ions from liquid and solid materials by supercritical carbon dioxide”,.., 64 (22), 2875-2878 (1992).

    3 Lin, Y.H., Brauer, R.D., Laintz, K.E., Wai, C.M., “Supercritical fluid extraction of lanthanides and actinides from solid materials with a fluorinated β-diketone”,.., 65 (18), 2549-2551 (1993).

    4 Tomioka, O., Enokida, Y., Yamamoto, I., “Solvent extraction of lanthanides from their oxides with TBP in supercritical carbon dioxide”,...., 35 (7), 515-516 (1998).

    5 Tomioka, O., Enokida, Y., Yamamoto, I., “Selective recovery of neodymium from oxides by direct extraction method with supercritical CO2containing TBP-HNO3complex”,..., 37 (5), 1153-1162 (2002).

    6 Trofimov, T.I., Samsonov, M.D., Kulyako, Y.M., Myasoedov, B.F., “ Dissolution and extraction of actinide oxides in supercritical carbon dioxide containing the complex of tri--butylphosphate with nitric acid”,.., 7 (12), 1209-1213 (2004).

    7 Shimada, T., Ogumo, S., Sawada, K., Enokida, Y., Yamamoto, I., “Selective extraction of uranium from a mixture of metal or metal oxides by a tri--butylphosphate complex with HNO3and H2O in supercritical CO2”,.., 22 (11), 1387-1391 (2006).

    8 Duan, W.H., Jing, S., Zhu, Y.J., Chen, J., “Research progress on supercritical fluid chelating extraction of lanthanides and actinides”,..., 41 (4), 429-437 (2007). (in Chinese)

    9 Wai, C.M., “Supercritical fluid extraction of radionuclides: A green technology for nuclear waste management”, In: A.C.S. symposium series 943, American Chemical Society, Washington, DC, 161-170 (2006).

    10 Wai, C.M., “Reprocessing spent nuclear fuel with supercritical carbon dioxide”, In: A.C.S. symposium series 933, American Chemical Society, Washington, DC, 57-70 (2006).

    11 Enokida, Y., Sawada, K., Shimada, T., Yamamoto, I., “An option making for nuclear fuel reprocessing by using supercritical carbon dioxide”, In: Proceedings of Global 2007 Conference on Advanced Nuclear Fuel Cycles and Systems, Boise, Idaho, Sept. 9-13, 1029-1032 (2007).

    12 Yin, J.Z., Liu, Y., “Kinetics analysis of supercritical fluid extraction for natural products”,...., 22 (2), 216-222 (2008). (in Chinese)

    13 Ruetsch, L., Daghero, J., Mattea, M., “Supercritical extraction of solid matrices model formulation and experiments”,...., 33 (2), 103-107 (2003).

    14 Vargas, R.M.F., Cassel, E., Gomes, G.M.F., Longhi, L.G.S., Atti-Serafini, L., Atti-Santos, A.C., “Supercritical extraction of carqueja essential oil: Experiments and modeling”,...., 23 (3), 375-382 (2006).

    15 Cui, H.Y., Wang, T., Guan, Y.F., Shen, Z.Y., “Kinetics of chelating extraction of heavy metals by supercritical CO2”,...., 52 (9), 829-833 (2001). (in Chinese)

    16 Enokida, Y., Tomioka, O., Lee, S.C., Rustenholtz, A., Wai, C.M., “Characterization of a tri--butyl phosphate-nitric acid complex: A CO2-soluble extractant for dissolution of uranium dioxide”,...., 42 (21), 5037-5041 (2003).

    17 Duan, W.H., Zhu, L.Y., Jing, S., Zhu, Y.J., Chen, J., “Study on properties of TBP-HNO3complex used for direct dissolution of lanthanide and actinide oxides in supercritical fluid CO2”,..., 25 (3), 319-322 (2007).

    18 Shimizu, R., Sawada, K., Enokida, Y., Yamamoto, I., “Supercritical fluid extraction of rare earth elements from luminescent material in waste fluorescent lamps”,.., 33 (3), 235-241 (2005).

    19 Tomioka, O., Meguro, Y., Enokida. Y., Yamamoto, I., Yoshida, Z., “Dissolution behavior of uranium oxides with supercritical CO2using HNO3-TBP complex as a reactant”,...., 38 (12), 1097-1102 (2001).

    20 Kumoro, A.C., Hasan, M., “Supercritical carbon dioxide extraction of andrographolide from andrographis paniculata: Effect of the solvent flow rate, pressure, and temperature”,...., 15 (6), 877-883 (2007).

    21 Liao, C.H., Huang, Z.R., Gu, G.L., “Mass transfer model for supercritical CO2extraction of solid raw material”,., 21 (7), 502-506 (2004). (in Chinese)

    22 Goto, M., Roy, B.C., Kodama, A., Hirose, T., “Modeling supercritical fluid extraction process involving solute-solid interaction”,...., 31 (2), 171-177 (1998).

    23 Fox, R.V., Ball, R.D., Harrington, P.D.B., Rollins, H.W., Jolley, J.J., Wai, C.M., “Praseodymium nitrate and neodymium nitrate complexation with organophosphorus reagents in supercritical carbon dioxide solvent”,.., 31 (3), 273-286 (2004).

    2008-08-26,

    2009-01-19.

    the National Natural Science Foundation of China (20506014).

    ** To whom correspondence should be addressed. E-mail: dwh203@mail.tsinghua.edu.cn

    猜你喜歡
    五華
    試析粵東五華提線木偶的造型與演出形態(tài)
    ——以五華提線木偶傳習(xí)所為例
    五華獅雄山遺址的考古收獲及其性質(zhì)——與《五華獅雄山》考古報(bào)告作者的商榷
    廣州文博(2020年0期)2020-06-09 05:13:54
    憶孔明
    青年生活(2019年35期)2019-09-10 00:25:43
    中央蘇區(qū)(五華)歷史博物館奠基動(dòng)工
    源流(2018年6期)2018-12-03 02:02:14
    從《五華燕堂李氏族譜》中看名字的選字特點(diǎn)
    五華紅木文化產(chǎn)業(yè)園開業(yè)
    五華掠影
    源流(2014年1期)2014-01-08 22:27:44
    五華石雕精品水寨大橋
    源流(2014年1期)2014-01-08 08:37:33
    隸屬于原中央蘇區(qū)的五華
    源流(2014年1期)2014-01-08 08:30:15
    五華蘇區(qū)革命史略
    源流(2014年1期)2014-01-08 04:01:05
    91麻豆精品激情在线观看国产| 丝袜美腿诱惑在线| a级毛片a级免费在线| 18美女黄网站色大片免费观看| 精品无人区乱码1区二区| 日本在线视频免费播放| 欧美绝顶高潮抽搐喷水| 国产精品综合久久久久久久免费| 亚洲精品粉嫩美女一区| 久久精品91无色码中文字幕| 91大片在线观看| 午夜激情av网站| 村上凉子中文字幕在线| 一个人免费在线观看电影 | 国产日本99.免费观看| 久久久精品大字幕| 在线观看免费视频日本深夜| 精品国产美女av久久久久小说| 亚洲aⅴ乱码一区二区在线播放 | 深夜精品福利| 制服诱惑二区| 国产av麻豆久久久久久久| 国产一区二区三区视频了| 18禁国产床啪视频网站| 亚洲成av人片免费观看| 91老司机精品| 国内少妇人妻偷人精品xxx网站 | 亚洲欧美激情综合另类| 国产伦一二天堂av在线观看| 一级a爱片免费观看的视频| 成在线人永久免费视频| www国产在线视频色| 欧美日韩国产亚洲二区| 一级a爱片免费观看的视频| 香蕉丝袜av| 无人区码免费观看不卡| 成人永久免费在线观看视频| 2021天堂中文幕一二区在线观| 亚洲无线在线观看| 欧美中文日本在线观看视频| 久久久久久久久中文| 12—13女人毛片做爰片一| 长腿黑丝高跟| 精品无人区乱码1区二区| 国产成人精品久久二区二区免费| 久久国产乱子伦精品免费另类| 最近视频中文字幕2019在线8| 精品欧美国产一区二区三| xxx96com| 日韩国内少妇激情av| 久久久久国产精品人妻aⅴ院| 国产成人精品无人区| 成人三级黄色视频| 男人舔女人下体高潮全视频| 国产精品,欧美在线| 亚洲中文av在线| 91成年电影在线观看| 亚洲av第一区精品v没综合| 丝袜人妻中文字幕| 在线观看日韩欧美| 国产97色在线日韩免费| 亚洲男人的天堂狠狠| 99热这里只有精品一区 | 国模一区二区三区四区视频 | 国产日本99.免费观看| 在线播放国产精品三级| 日日摸夜夜添夜夜添小说| 免费在线观看影片大全网站| 一二三四社区在线视频社区8| 成年人黄色毛片网站| 夜夜躁狠狠躁天天躁| 国产一级毛片七仙女欲春2| 欧美黑人欧美精品刺激| 日本一区二区免费在线视频| 久久久久免费精品人妻一区二区| 日韩精品免费视频一区二区三区| 中亚洲国语对白在线视频| 午夜成年电影在线免费观看| 动漫黄色视频在线观看| 床上黄色一级片| 日本一区二区免费在线视频| www日本在线高清视频| 巨乳人妻的诱惑在线观看| 狠狠狠狠99中文字幕| 欧美成人免费av一区二区三区| 天天一区二区日本电影三级| 免费电影在线观看免费观看| av福利片在线| 免费在线观看视频国产中文字幕亚洲| 久久精品国产亚洲av香蕉五月| 老鸭窝网址在线观看| 成人18禁在线播放| 我的老师免费观看完整版| 国产午夜精品久久久久久| 一进一出抽搐动态| 久久久久免费精品人妻一区二区| 色噜噜av男人的天堂激情| 欧美黑人巨大hd| 国内久久婷婷六月综合欲色啪| 女同久久另类99精品国产91| 黄色视频不卡| 久久久久久亚洲精品国产蜜桃av| 天天一区二区日本电影三级| 丰满人妻一区二区三区视频av | АⅤ资源中文在线天堂| 精品日产1卡2卡| www日本在线高清视频| 美女免费视频网站| 男插女下体视频免费在线播放| 亚洲欧美日韩高清在线视频| 婷婷精品国产亚洲av在线| 免费看美女性在线毛片视频| 久久久久精品国产欧美久久久| 夜夜看夜夜爽夜夜摸| 国产高清视频在线观看网站| e午夜精品久久久久久久| 琪琪午夜伦伦电影理论片6080| 国内精品久久久久久久电影| 天天一区二区日本电影三级| 日韩欧美三级三区| 亚洲欧美激情综合另类| 久久久久国产精品人妻aⅴ院| 日韩欧美一区二区三区在线观看| 精品熟女少妇八av免费久了| 99国产精品一区二区三区| 久久这里只有精品中国| 高清毛片免费观看视频网站| 麻豆一二三区av精品| 欧美日本亚洲视频在线播放| 亚洲aⅴ乱码一区二区在线播放 | 免费电影在线观看免费观看| 99久久精品国产亚洲精品| 亚洲va日本ⅴa欧美va伊人久久| 一区福利在线观看| 18禁黄网站禁片午夜丰满| 欧美日韩国产亚洲二区| 99热只有精品国产| 夜夜夜夜夜久久久久| 成人国产综合亚洲| 麻豆国产97在线/欧美 | 最好的美女福利视频网| 在线观看午夜福利视频| 国产亚洲精品综合一区在线观看 | 九色国产91popny在线| 亚洲专区中文字幕在线| 日本 欧美在线| 精品一区二区三区av网在线观看| 精品久久久久久,| 亚洲黑人精品在线| 一级毛片精品| avwww免费| 成年人黄色毛片网站| 99久久99久久久精品蜜桃| 日韩 欧美 亚洲 中文字幕| 日本一二三区视频观看| 特级一级黄色大片| 五月玫瑰六月丁香| 久久这里只有精品19| 在线十欧美十亚洲十日本专区| 在线永久观看黄色视频| 精品无人区乱码1区二区| 婷婷亚洲欧美| 久久久久久久午夜电影| svipshipincom国产片| 人妻夜夜爽99麻豆av| 国产精品精品国产色婷婷| 成人亚洲精品av一区二区| 亚洲 欧美 日韩 在线 免费| 18禁美女被吸乳视频| 日韩欧美国产在线观看| 欧美av亚洲av综合av国产av| 1024手机看黄色片| 亚洲av五月六月丁香网| 嫩草影院精品99| www.精华液| 久久久久久免费高清国产稀缺| 亚洲av电影在线进入| 成人亚洲精品av一区二区| 999久久久精品免费观看国产| 嫩草影院精品99| 丰满人妻熟妇乱又伦精品不卡| 免费在线观看影片大全网站| 大型av网站在线播放| 精品第一国产精品| 欧美又色又爽又黄视频| 国产精品一区二区三区四区久久| 国产成人欧美在线观看| 婷婷精品国产亚洲av| www日本黄色视频网| 好男人在线观看高清免费视频| 香蕉久久夜色| 亚洲精品粉嫩美女一区| svipshipincom国产片| 天天躁夜夜躁狠狠躁躁| 国产精品久久视频播放| 日韩国内少妇激情av| 国产成年人精品一区二区| 欧美丝袜亚洲另类 | 国产不卡一卡二| 香蕉国产在线看| 熟妇人妻久久中文字幕3abv| 18禁国产床啪视频网站| 色av中文字幕| 国产精品久久久久久亚洲av鲁大| 精品久久久久久久末码| 好看av亚洲va欧美ⅴa在| 美女黄网站色视频| 色av中文字幕| 亚洲精品一区av在线观看| 1024视频免费在线观看| 国产亚洲精品一区二区www| 免费av毛片视频| 国产成人av教育| 变态另类成人亚洲欧美熟女| 午夜亚洲福利在线播放| 中文字幕高清在线视频| 亚洲熟妇中文字幕五十中出| 特大巨黑吊av在线直播| 日韩欧美国产一区二区入口| 久久午夜亚洲精品久久| 婷婷精品国产亚洲av| 淫秽高清视频在线观看| 欧美一级a爱片免费观看看 | 男男h啪啪无遮挡| 国产高清激情床上av| 18禁黄网站禁片午夜丰满| 亚洲欧美精品综合一区二区三区| 视频区欧美日本亚洲| 亚洲第一电影网av| 国产在线观看jvid| 1024手机看黄色片| 国产亚洲精品久久久久久毛片| 久久久精品欧美日韩精品| 可以免费在线观看a视频的电影网站| 757午夜福利合集在线观看| 男女下面进入的视频免费午夜| 午夜福利免费观看在线| 一本一本综合久久| 精品第一国产精品| 成人特级黄色片久久久久久久| 宅男免费午夜| 久久久久九九精品影院| 国产片内射在线| 亚洲欧美精品综合一区二区三区| 欧美黑人精品巨大| 久久精品成人免费网站| 精品久久久久久成人av| 国产精品国产高清国产av| 国产不卡一卡二| www日本黄色视频网| 日本a在线网址| 美女扒开内裤让男人捅视频| 国产精品1区2区在线观看.| 男女床上黄色一级片免费看| 精品久久蜜臀av无| 久久久久亚洲av毛片大全| 久久久久九九精品影院| 亚洲欧美精品综合一区二区三区| 最近最新中文字幕大全免费视频| 91九色精品人成在线观看| 欧美黑人欧美精品刺激| 制服人妻中文乱码| 国产精品香港三级国产av潘金莲| 成年女人毛片免费观看观看9| ponron亚洲| 精品久久久久久久末码| 手机成人av网站| 床上黄色一级片| 久久久久久亚洲精品国产蜜桃av| 国产精品一区二区精品视频观看| 美女黄网站色视频| 久9热在线精品视频| 黄色a级毛片大全视频| 一区二区三区激情视频| 亚洲精品美女久久久久99蜜臀| 在线观看免费日韩欧美大片| 人妻丰满熟妇av一区二区三区| 欧美+亚洲+日韩+国产| 99国产综合亚洲精品| 熟女少妇亚洲综合色aaa.| 一二三四在线观看免费中文在| 黑人操中国人逼视频| 亚洲精品一卡2卡三卡4卡5卡| 88av欧美| 日本撒尿小便嘘嘘汇集6| 亚洲欧美日韩东京热| 一区福利在线观看| 后天国语完整版免费观看| 欧美乱色亚洲激情| 亚洲av成人av| 99久久综合精品五月天人人| 黄色成人免费大全| 亚洲男人天堂网一区| 午夜老司机福利片| 欧美精品亚洲一区二区| 亚洲国产欧美人成| 国产区一区二久久| 全区人妻精品视频| 欧美一区二区国产精品久久精品 | 久久久精品大字幕| 亚洲av成人不卡在线观看播放网| 91av网站免费观看| 50天的宝宝边吃奶边哭怎么回事| 欧美av亚洲av综合av国产av| 91国产中文字幕| 一区二区三区国产精品乱码| 国产真人三级小视频在线观看| 真人一进一出gif抽搐免费| 欧美日本视频| 国产蜜桃级精品一区二区三区| 后天国语完整版免费观看| 9191精品国产免费久久| 国产不卡一卡二| 一级片免费观看大全| 蜜桃久久精品国产亚洲av| 日韩中文字幕欧美一区二区| 久久久久久久午夜电影| 熟女少妇亚洲综合色aaa.| 精品国产超薄肉色丝袜足j| 亚洲人成77777在线视频| 成人亚洲精品av一区二区| 精品一区二区三区视频在线观看免费| 嫩草影院精品99| 日本三级黄在线观看| 精品一区二区三区视频在线观看免费| 亚洲狠狠婷婷综合久久图片| 国产片内射在线| 国产精品久久久久久亚洲av鲁大| 亚洲黑人精品在线| 啦啦啦观看免费观看视频高清| 亚洲自拍偷在线| 午夜免费激情av| 午夜日韩欧美国产| or卡值多少钱| 搡老熟女国产l中国老女人| 久久久久久国产a免费观看| 怎么达到女性高潮| АⅤ资源中文在线天堂| 国内精品久久久久精免费| 1024香蕉在线观看| 最近最新中文字幕大全电影3| 久久亚洲精品不卡| 在线播放国产精品三级| 亚洲成人国产一区在线观看| 国产又黄又爽又无遮挡在线| 深夜精品福利| 脱女人内裤的视频| 亚洲精品美女久久久久99蜜臀| xxx96com| 老汉色av国产亚洲站长工具| 国产av麻豆久久久久久久| 久久久水蜜桃国产精品网| 日本一本二区三区精品| 黄片小视频在线播放| √禁漫天堂资源中文www| 欧美在线黄色| 国产精品亚洲av一区麻豆| 婷婷精品国产亚洲av在线| 精品一区二区三区四区五区乱码| 日本五十路高清| 免费在线观看亚洲国产| 男女午夜视频在线观看| 中出人妻视频一区二区| 日本 av在线| 欧美另类亚洲清纯唯美| 国产免费av片在线观看野外av| 日韩欧美在线二视频| 久久精品夜夜夜夜夜久久蜜豆 | 精品电影一区二区在线| 免费在线观看亚洲国产| 人人妻人人澡欧美一区二区| 精品久久蜜臀av无| 国产主播在线观看一区二区| 日本三级黄在线观看| 99久久精品热视频| 国产又黄又爽又无遮挡在线| 亚洲精品美女久久久久99蜜臀| 午夜精品一区二区三区免费看| 中文字幕人妻丝袜一区二区| 可以在线观看毛片的网站| 变态另类丝袜制服| 国产亚洲精品综合一区在线观看 | 国产精品免费视频内射| 日本一二三区视频观看| 久久久久久人人人人人| 午夜激情福利司机影院| 国产男靠女视频免费网站| 国产视频内射| 国产精品久久久av美女十八| 欧美中文综合在线视频| 久久精品国产清高在天天线| 人妻丰满熟妇av一区二区三区| 老汉色av国产亚洲站长工具| 国产成人精品久久二区二区免费| 免费看美女性在线毛片视频| 亚洲午夜精品一区,二区,三区| 亚洲av熟女| 777久久人妻少妇嫩草av网站| 久久精品91无色码中文字幕| 亚洲中文字幕一区二区三区有码在线看 | 精品乱码久久久久久99久播| 亚洲av成人精品一区久久| 亚洲熟妇熟女久久| 黑人操中国人逼视频| 日韩欧美免费精品| 欧美不卡视频在线免费观看 | 手机成人av网站| 色精品久久人妻99蜜桃| 精品国产亚洲在线| 99久久国产精品久久久| 成人三级黄色视频| 国内久久婷婷六月综合欲色啪| 18禁国产床啪视频网站| 可以在线观看毛片的网站| 90打野战视频偷拍视频| 天天一区二区日本电影三级| 国模一区二区三区四区视频 | 国产亚洲精品第一综合不卡| 久久中文看片网| 久9热在线精品视频| 欧美精品亚洲一区二区| a级毛片a级免费在线| 国内精品久久久久精免费| avwww免费| 可以免费在线观看a视频的电影网站| 国产av在哪里看| 亚洲一卡2卡3卡4卡5卡精品中文| 日本成人三级电影网站| 夜夜爽天天搞| 亚洲最大成人中文| 舔av片在线| 99热这里只有是精品50| 日韩 欧美 亚洲 中文字幕| tocl精华| 久久久久国产精品人妻aⅴ院| 99精品欧美一区二区三区四区| tocl精华| 手机成人av网站| 香蕉丝袜av| 欧美高清成人免费视频www| 老汉色av国产亚洲站长工具| 黄色丝袜av网址大全| 国产一区二区在线观看日韩 | 亚洲专区国产一区二区| 欧美成人性av电影在线观看| 亚洲成av人片在线播放无| av有码第一页| 国产99久久九九免费精品| 一进一出好大好爽视频| 日韩av在线大香蕉| 亚洲第一欧美日韩一区二区三区| 精品电影一区二区在线| 午夜精品久久久久久毛片777| 日本成人三级电影网站| 国产成人精品久久二区二区91| 99国产精品99久久久久| 亚洲18禁久久av| 一本精品99久久精品77| 国内揄拍国产精品人妻在线| 久久久久国产一级毛片高清牌| 男女午夜视频在线观看| 国产精品亚洲av一区麻豆| 国产精品久久久av美女十八| 特大巨黑吊av在线直播| 日本 av在线| 精品午夜福利视频在线观看一区| 老司机靠b影院| 国产真实乱freesex| 天天躁夜夜躁狠狠躁躁| 亚洲成人久久爱视频| 国产三级中文精品| 久久久久性生活片| 久久久国产欧美日韩av| 成人国语在线视频| 18禁黄网站禁片免费观看直播| 免费看日本二区| 欧美日本亚洲视频在线播放| e午夜精品久久久久久久| 午夜福利18| 少妇的丰满在线观看| 97人妻精品一区二区三区麻豆| 欧美成人免费av一区二区三区| 日韩精品免费视频一区二区三区| 午夜成年电影在线免费观看| 香蕉av资源在线| 国内久久婷婷六月综合欲色啪| 一进一出好大好爽视频| 观看免费一级毛片| 天堂√8在线中文| 看片在线看免费视频| 国产精品日韩av在线免费观看| 国产精品一区二区免费欧美| 国产精品久久久久久精品电影| 中文字幕最新亚洲高清| 国产真人三级小视频在线观看| 欧美日韩亚洲国产一区二区在线观看| www日本黄色视频网| 成熟少妇高潮喷水视频| 国产精品久久久av美女十八| 欧美成人免费av一区二区三区| 99re在线观看精品视频| 亚洲精品国产一区二区精华液| 国产蜜桃级精品一区二区三区| 日本三级黄在线观看| 丰满的人妻完整版| 国产在线精品亚洲第一网站| 国产高清视频在线观看网站| 丁香六月欧美| 久久精品综合一区二区三区| 免费一级毛片在线播放高清视频| 亚洲狠狠婷婷综合久久图片| 无限看片的www在线观看| 久久中文字幕人妻熟女| 久久久久免费精品人妻一区二区| 中文字幕熟女人妻在线| 国产成人精品久久二区二区免费| 亚洲性夜色夜夜综合| 欧美精品啪啪一区二区三区| av超薄肉色丝袜交足视频| 夜夜看夜夜爽夜夜摸| 一本久久中文字幕| 悠悠久久av| 午夜精品在线福利| 悠悠久久av| 真人一进一出gif抽搐免费| 在线观看www视频免费| 麻豆av在线久日| 全区人妻精品视频| 成人手机av| 中文亚洲av片在线观看爽| 这个男人来自地球电影免费观看| 黄色成人免费大全| 丝袜人妻中文字幕| 国产亚洲av高清不卡| 男插女下体视频免费在线播放| 亚洲精品一卡2卡三卡4卡5卡| а√天堂www在线а√下载| 日韩国内少妇激情av| 岛国在线免费视频观看| 欧美日韩国产亚洲二区| 91av网站免费观看| 99国产精品一区二区三区| 欧美日韩亚洲综合一区二区三区_| 亚洲国产日韩欧美精品在线观看 | 欧美高清成人免费视频www| 成在线人永久免费视频| 又黄又粗又硬又大视频| 日日干狠狠操夜夜爽| 国产伦在线观看视频一区| 日日干狠狠操夜夜爽| 亚洲专区国产一区二区| 制服诱惑二区| 久久婷婷成人综合色麻豆| 成年免费大片在线观看| 99热只有精品国产| 亚洲最大成人中文| 亚洲人成电影免费在线| 国产主播在线观看一区二区| 午夜日韩欧美国产| 桃红色精品国产亚洲av| 国产在线观看jvid| 可以在线观看毛片的网站| 男女视频在线观看网站免费 | 欧美中文综合在线视频| 亚洲av电影在线进入| 亚洲熟女毛片儿| 成人国语在线视频| 免费高清视频大片| 国产精品一区二区三区四区免费观看 | 免费av毛片视频| 国产亚洲精品一区二区www| 久久九九热精品免费| 中文字幕人成人乱码亚洲影| 真人做人爱边吃奶动态| 又大又爽又粗| 无遮挡黄片免费观看| 精品国产乱子伦一区二区三区| 日韩av在线大香蕉| 日韩欧美国产一区二区入口| xxx96com| 大型av网站在线播放| 又粗又爽又猛毛片免费看| 久久午夜综合久久蜜桃| 亚洲欧美一区二区三区黑人| ponron亚洲| 国产片内射在线| 欧美日韩乱码在线| 久久久久久九九精品二区国产 | 亚洲中文av在线| 黑人巨大精品欧美一区二区mp4| 女人被狂操c到高潮| 国产黄a三级三级三级人| 变态另类成人亚洲欧美熟女| 国产精品亚洲av一区麻豆| 黄色视频不卡| 国产精品亚洲一级av第二区| 国产成人欧美在线观看| 国产一区二区激情短视频| 国产视频一区二区在线看| 可以免费在线观看a视频的电影网站| 亚洲精品粉嫩美女一区| 在线观看免费视频日本深夜| 成年女人毛片免费观看观看9| 国产三级黄色录像| 亚洲熟女毛片儿| 成人亚洲精品av一区二区| 亚洲狠狠婷婷综合久久图片| 亚洲中文字幕一区二区三区有码在线看 | 久久久水蜜桃国产精品网| 国产免费男女视频| 亚洲成av人片免费观看| 亚洲精品久久成人aⅴ小说| 国产亚洲精品av在线| 久9热在线精品视频| 国产免费av片在线观看野外av|