• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Fully Flexible Potential Model for Carbon Dioxide*

    2009-05-12 03:33:04ZhuAimei朱愛梅ZhangXinbo張新波LiuQinglin劉慶林andZhangQiugen張秋根

    ZhuAimei (朱愛梅), Zhang Xinbo (張新波), Liu Qinglin (劉慶林) and Zhang Qiugen (張秋根)

    ?

    A Fully Flexible Potential Model for Carbon Dioxide*

    ZhuAimei (朱愛梅), Zhang Xinbo (張新波), Liu Qinglin (劉慶林)**and Zhang Qiugen (張秋根)

    National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, Department of Chemical and Biochemical Engineering, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China

    molecular simulations, radial distributions, fully flexible potential model, carbon dioxide

    1 Introduction

    Carbon dioxide, especially, supercritical carbon dioxide (ScCO2) is widely studied as a “green solvent” in chemical reaction and catalysis because it is nonflammable, inexpensive, nontoxic, and has exceeding miscible ability.

    In order to improve the precision of physical models for solute solubility and reaction rates in a liquid and supercritical carbon dioxide, a model should include intermolecular interactions between carbon dioxide molecules and/or other solutes. For decades, the most acceptable models are fully rigid models, such as the rescaling the potential parameters of the elementary physical model (EPM2) [1], one of three different atom-atom intermolecular potentials developed by Murthy, Singer, and McDonald (MSM) [2, 3], and transferable potentials for phase equilibria (TraPPE) [4],and several optimized potential models with improvement in some aspects [5-7] have been proposed. For example, Vrabec. [5] developed the two-centers+ quadrupole model that predicted saturated vapor pressures with a better precision (10%) than the EPM2 model. Draghi. [7] added bond stretching and bending potentials and developed a fully flexible model on the basis of the EPM2 model, however, there were 11% and 15% average deviation of the saturated pressure and the saturated vapor density, respectively.

    Although several potential models have been proposed for carbon dioxide, unfortunately, none of them can meet all requirements.and Car-Parrinello molecular-dynamics (CPMD) calculations on charged CO2clusters [8, 9], and neutron diffraction experiments on supercritical carbon dioxide [9-11] have shown a similar deviation. The CPMD simulations of carbon dioxide have been employed within a plane-wave- basis density functional theory (DFT). Comparing with neutron diffraction experiments, the CPMD simulations [8] on the microscopic structure of carbon dioxide are quite good, while they are unable to describe the phase behaviors accurately since they have employed only 32 molecules in the system.

    The aim of this study is to find a suitable potential model for carbon dioxide, which will accurately predict both the microscopic structure and the phase behavior under high and low temperatures and pressures. For the proposed model, the ways to obtain the parameters, the methodologies, and the simulation details were provided. The simulation results of carbon dioxide obtained by the present potential and the best-known potential EPM2 were discussed, including vapor-liquid equilibra (VLE), structural properties, PVT properties, and dynamic properties.

    2 Potential models

    The non-bonded interactions are described by pair wise-additive Lennard-Jones (L-J) 12-6 potentials and Coulombic interactions of partial charges.

    where,r,ε,σ,q,q, and0are the separation, L-J well depth, L-J size, partial charges, and? permittivity of free space, respectively, for the pair of atomsand. The parameters for unlike L-J interactions are determined by Lorentz-Berthelot combining rules [13].

    The long-range interactions using a Group based summation method [14-16] were compared with the Ewald summation. The intramolecular part consists of harmonic bond stretching and bond angle vibration terms in the equation below

    where,,0,, and0are the measured bending length, the equilibrium bending length, the measured bending angle, and the equilibrium bending angle, respectively; andkandkare the force constants.

    The force field parameters are obtained using the optimization method proposed by Zhang [6] and Khare. [16]. Firstly, we understand how the parameters affect the simulations results. The initial force constants are obtained from quantum chemical calculations, and the other initial parameters are obtained from the EPM2 model. For example, the PVT properties at supercritical conditions for carbon dioxide are calculated to get a prerequisite knowledge of the parameter spaces. Then, the Lennard-Jones parameters of oxygen or carbon atom are changed, and the PVT properties of carbon dioxide that are the most sensitive to the Lennard-Jones parameter of oxygen atoms are slightly changed to get good results. The analysis of the carbon dioxide structure shows that the equilibrium bending length is short, which is consequently increased. The process described above was repeated to obtain all the optimized parameters that were different from the initial parameters. All the parameters for carbon dioxide in this study are listed in Table 1.

    3 Simulation Details

    3.1 Phase equilibrium simulations

    Pure component vapor-liquid equilibria were obtained using the NVT-Gibbs ensemble Monte Carlo (GEMC) method [17] with periodic boundary conditions. The intra and intermolecular force field parameters adopted are shown in Table 1. The simulation system contained 400-500 molecules. Simulations for the vapor-liquid equilibria at high temperature consisted of 1.2′107moves, and longer simulations (1.5′107) were required at low temperatures. The ratio of the different types of Monte Carlo moves was 13%-16% translation moves, 13%-16% rotation moves, 8%-12% volume moves, and the rest were transfer moves that were employed. The temperature increases with the decreasing of the ratio of transfer moves. A cutoff distance of 1.05 nm was used for the non-bonded interactions, with long-range corrections applied beyond this distance for the van der Waals interactions. Initial configurations were based on the face centered cubic (fcc) lattice. Then, enough Monte Carlo cycles (1×104moves) at an elevated temperature were used to “melt” the crystal structure, and the system was then “cooled” to the desired temperature.

    Owing to the large fluctuations near the critical point, it is not possible to determine its location explicitly. Simulation data at subcritical conditions are used to estimate the critical point by invoking the following scaling law

    where,is a constant, andcis the critical density. The critical pressures were found by extrapolating the vapor pressure curve to the critical temperature. The vapor pressures were fitted to the semi-empirical equation [18]

    where,0-3are the fitting constants.

    3.2 Pressure, self-diffusion coefficient, and structure of pure carbon dioxide

    In our molecular dynamics simulations, 400 molecules were placed in a cubic simulation box. The conventional periodic boundary conditions and minimum image conventions were used in the simulations. Velocity Verlet algorithm was adopted to propagate the statistical trajectory. Long-range electrostatic forces and energies were calculatedthe group based method, which was compared with the Ewald method in calculating the pressures of VLE. The constant number of atom, pressure and temperature ensemble molecular dynamics (NPT-MD) simulations proposed by Khare. [14-16] were used to calculate the vapor pressures (the saturated pressures), and then the pressure-density data were fitted linearly to determine the vapor pressure corresponding to the equilibrium vapor density from coexisting calculations. The NPT-MD ensemble was also used to calculate the dynamic properties, and the self-diffusion coefficients were calculated by the Einstein equation [19]:

    where,r() is the molecular positionat time, and ther(0) is the initial position.

    The constant number of atom, volume and temperature ensemble molecular dynamics (NVT-MD) ensemble was used to investigate the structural properties of pure carbon dioxide. All the simulations were run at the time step of 1 fs for 120 ps, using the method of Andersen and Berendsen for the temperature control and the pressure control, respectively. The choice of the simulation length, number of molecules,., in this study is made on the basis of Ref. [14-16].

    Table 1 Parameters for carbon dioxide in this study

    4 Results and Discussion

    Figure 1 shows the simulated coexistence envelopes, the experimental observations [20], and the literature simulation data [5, 21]. At 230 K, the deviations of the saturated liquid and vapor density are 0.5% and 17% (EPM2), and 0.2% and 18% (TraPPE), respectively. At 290 K, the maximums are 3.3% and 8.7% (EPM2), and 3.5% and 18.6% (TraPPE), respectively. The present model shows as good results as the EPM2 and TraPPE models below 260 K. The deviations of the saturated liquid and vapor density by the present model are 0.6% and 1.3% (230 K), and 0.7% and 2.0% (290 K), respectively. The average absolute deviation by the EPM2, TraPPE, and the present model are 2.3% and 6.3%, 1.7% and 19.1%, and 0.3% and 2.0%, respectively. Generally, the present model produces improved saturated liquid and vapor density over the two well-known models in a wide temperature range, especially at higher temperatures.

    Figure 1 Pure carbon dioxide phase equilibria——?Exp. [20];△?TraPPE [6];■?EPM2 [21];●?this work

    The experimental data [20], the literature simulation data [1, 4, 6], and the predictions in this study for the critical properties are shown in Table 2. The EPM2 predictions agree with the experimental data for the critical density and pressure, however, there is significant deviation for the critical temperature. The critical pressure predicted by the MSM and TraPPE models is either considerably lower or higher than the experimental data. The critical properties obtained by the Errington and the present model agree with the experimental values. In this study, the deviation ofc,c, andcare only 0.09 K, 0.0003 g×cm-3, and 0.01 MPa, respectively.

    Table 2 Critical properties of carbon dioxide reproduced by different models

    The simulated densities by the present model and the experimental data [20] from 5 to 800 MPa are shownin Fig. 2. The relative errors for other models increased almost parallel with increasing the pressures [5]. The largest deviation for the EPM2 model is almost 7 % at 980.65 K and 800 MPa. Below 100 MPa, the simulated densities of the present model agree with the experimental data. In the range of 100 to 800 MPa, the deviations increase slightly, and the largest deviation is 5 % at 1100 K and 800 MPa.

    Figure 3 Snapshot of CO2under the supercritical state from the NVT-MD simulations (Oxygen atoms are in white, and carbon atoms are in gray)

    Table 3 The structural features for ScCO2

    The self-diffusion coefficient estimated by the present model and the experimental observations [22] are shown in Table 4. The self-diffusion coefficient at supercritical condition is important for chemical industries, particularly at 10-15 MPa. The best prediction of the present model is at 13.79 MPa and the predicted results are also reasonable with increasing the pressures in the supercritical condition.

    Table 4 Self-diffusion coefficients estimated by this study and the experiments at 348.15 K

    5 Conclusions

    A new fully flexible potential model for carbon dioxide was optimized to reproduce experimental properties. The phase equilibrium of pure carbon dioxide was calculated by the GEMC over a wide temperature range. The densities of supercritical carbon dioxide and the structural properties (318.15 K and 0.703 g×cm-3) for carbon dioxide were calculated using the present method. Radial distribution functions for ScCO2were calculated. The critical properties were estimated from subcritical simulation data using the critical scaling laws.

    1 Harris, J.G., Yung, K.H., “Carbon dioxide’s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model”,..., 99, 12021-12024 (1995).

    2 Murthy, C.S., Oshea, S.F., McDonald, I.R., “Electrostatic interactions in molecular crystals: lattice dynamics of solid nitrogen and carbon dioxide”,.., 50, 531-541 (1983).

    3 Geiger, L.C., Ladanyi, B.M., Chapin, M.E., “A comparison of models for depolarized light scattering in supercritical CO2”,..., 93, 4533-4542 (1990).

    4 Potoff, J.J., Siepmann, J.I., “Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen”,., 47, 1676-1682 (2001).

    5 Vrabec, J., Stoll, J., Hasse, H., “A set of molecular models for symmetric quadrupolar fluids”,..., 105, 12126-12133 (2001).

    6 Zhang, Z., Duan, Z., “An optimized molecular potential for carbon dioxide”,..., 122, 214507-214522 (2005).

    7 Draghi, C.N., Bruin, T.D., Pellitero, J.P., Avalos, J.B., Mackie, A.D., “Thermodynamic and transport properties of carbon dioxide from molecular simulation”,..., 126, 064509-1-8 (2007).

    8 Saharay, M., Balasubramanian, S., “molecular-dynamics study of supercritical carbon dioxide”,..., 120, 9694-9702 (2004).

    9 Zhang, Y., Yang, J., Yu, Y., “Dielectric constant and density dependence of the structure of supercritical carbon dioxide using a new modified empirical potential model: A Monte Carlo simulation study”,..., 109, 13375-13382 (2005).

    10 Ishii, R., Okazaki, S., Odawara, O., Okada, I., Misawa, M., Fukunaga, T., “Structural study of supercritical carbon dioxide by neutron diffraction”,., 104, 291-304 (1995).

    11 Ishii, R., Okazaki, S., Okada, I., Furusaka, M., Watanabe, N., Misawa, M., Fukunaga, T., “Density dependence of structure of supercritical carbon dioxide along an isotherm”,..., 105, 7011-7021 (1996).

    12 Fedchenia, I.I., Schr?der, J., “Local orientational correlations and short time anisotropic motion in molecular liquids: computer simulations of liquid CO2”,..., 106, 7749-7755 (1997).

    13 Kolafa, J., Nezbeda, I., Lisal, M., “Effect of short- and long-range forces on the properties of fluids. III. Dipolar and quadrupolar fluids”,.., 99, 1751-1764 (2001).

    14 Chen, B., Potoff, J.J., Siepmann, J.I., “Monte Carlo calculations for alcohol and their mixtures with alkanes. Transferable potential for phase equilibra.5.united-atom description of primary, secondary, and tertiary alcohols”,..., 105, 3093-3104 (2001).

    15 Nath, S.K., “Molecular simulation of vapor-liquid phase equilibria of hydrogen sulfide and its mixtures with alkanes”,..., 107, 9498-9504 (2003).

    16 Khare, R., Sum, A.K., Nath, S.K., de Pablo, J.J., “Simulation of vapor-liquid phase equilibria of primary alcohols and alcohol-alkane mixtures”,..., 108, 10071-10076 (2004).

    17 de Pablo, J.J., Laso, M., Suter, U.W., “Simulation of polyethylene above and below the melting point”,..., 96, 6157-6162 (1992).

    18 Errington, J.R., Panagiotopoulos, A.Z., “Phase equilibria of the modified Buckingham exponential-6 potential from Hamiltonian scaling grand canonical Monte Carlo”,..., 109, 1093-1100 (1998).

    19 Allen, M.P., Tildesley, D.J., Computer Simulation of Liquids, Oxford Science, Oxford (1989).

    20 National Institute of Standards and Technology, NIST Chemistry WebBook, http://webbook.nist.gov/chemistry

    21 Vorholz, J., Harismiadis, V.I., Rumpf, B., Panagiotopoulos, A.Z., Maurer, G., “Vapor plus liquid equilibrium of water, carbon dioxide, and the binary system, water plus carbon dioxide, from molecular simulation”,, 170, 203-234 (2000).

    22 Etesse, P., Zega, J.A., Kobayashi, R., “High pressure nuclear magnetic resonance measurement of spin-lattice relaxation and self-diffusion in carbon dioxide”,..., 97, 2022-2029 (1992).

    2008-07-30,

    2008-12-01.

    the National Natural Science Foundation of China (50573063), the Program for New Century Excellent Talents in University of the State Ministry of Education (NCET-05-0566) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (2005038401).

    ** To whom correspondence should be addressed. E-mail: qlliu@xmu.edu.cn

    精品人妻熟女av久视频| 美女xxoo啪啪120秒动态图| 久久精品国产自在天天线| 久久久久视频综合| 好男人视频免费观看在线| 午夜免费鲁丝| 国产精品一区www在线观看| 少妇 在线观看| 国产爽快片一区二区三区| 久久毛片免费看一区二区三区| 肉色欧美久久久久久久蜜桃| 亚洲欧洲国产日韩| 亚洲欧美日韩卡通动漫| 午夜精品国产一区二区电影| 亚洲,欧美,日韩| 只有这里有精品99| 日本vs欧美在线观看视频| 桃花免费在线播放| 亚洲情色 制服丝袜| 熟女人妻精品中文字幕| 国产av一区二区精品久久| 美女脱内裤让男人舔精品视频| 国产一区二区在线观看日韩| 中文字幕最新亚洲高清| 97超碰精品成人国产| 国产精品一区二区在线观看99| 看免费成人av毛片| 69精品国产乱码久久久| 一二三四中文在线观看免费高清| 亚洲精品中文字幕在线视频| 亚洲国产精品999| 精品人妻偷拍中文字幕| 日韩av免费高清视频| 春色校园在线视频观看| 在线观看一区二区三区激情| 国产av精品麻豆| 少妇被粗大猛烈的视频| 亚洲高清免费不卡视频| 亚洲人成网站在线播| 十八禁网站网址无遮挡| 欧美日韩精品成人综合77777| 激情五月婷婷亚洲| 欧美xxxx性猛交bbbb| 青春草视频在线免费观看| 欧美日韩综合久久久久久| 日本色播在线视频| 校园人妻丝袜中文字幕| 妹子高潮喷水视频| 人妻一区二区av| 久久久午夜欧美精品| 日本猛色少妇xxxxx猛交久久| 日韩免费高清中文字幕av| 熟妇人妻不卡中文字幕| 午夜久久久在线观看| 国产综合精华液| 久久人人爽人人片av| 日本欧美视频一区| 人成视频在线观看免费观看| 成人国语在线视频| 国产片特级美女逼逼视频| 在线观看一区二区三区激情| 成人毛片60女人毛片免费| 美女国产视频在线观看| 99久久精品国产国产毛片| 99久久人妻综合| 免费看光身美女| 亚洲精品乱码久久久久久按摩| 黑人高潮一二区| 一级a做视频免费观看| 亚洲色图综合在线观看| 亚洲国产成人一精品久久久| 欧美激情极品国产一区二区三区 | 熟女av电影| 22中文网久久字幕| 久久久久人妻精品一区果冻| 一级黄片播放器| 欧美97在线视频| 欧美+日韩+精品| 夜夜看夜夜爽夜夜摸| 少妇人妻久久综合中文| 午夜福利影视在线免费观看| 少妇精品久久久久久久| 久久免费观看电影| 人人妻人人添人人爽欧美一区卜| 成人二区视频| 色网站视频免费| 菩萨蛮人人尽说江南好唐韦庄| 久久韩国三级中文字幕| 日本91视频免费播放| 狠狠婷婷综合久久久久久88av| 成人国语在线视频| 国产片特级美女逼逼视频| 精品人妻在线不人妻| 亚洲av欧美aⅴ国产| 亚洲精品乱久久久久久| 丰满少妇做爰视频| 在线观看免费视频网站a站| 精品人妻偷拍中文字幕| 黄色怎么调成土黄色| 97精品久久久久久久久久精品| 亚洲人成网站在线播| 女性被躁到高潮视频| 午夜免费鲁丝| 久久久久网色| 两个人免费观看高清视频| 22中文网久久字幕| 免费观看性生交大片5| 中文字幕亚洲精品专区| 三级国产精品欧美在线观看| 男女边吃奶边做爰视频| 91精品国产九色| 黄色一级大片看看| 自拍欧美九色日韩亚洲蝌蚪91| 中文乱码字字幕精品一区二区三区| 久久这里有精品视频免费| 亚洲精品视频女| 国产精品女同一区二区软件| 亚洲av不卡在线观看| 亚洲经典国产精华液单| 国产一区亚洲一区在线观看| a 毛片基地| 国产不卡av网站在线观看| 黄片无遮挡物在线观看| 国产亚洲精品久久久com| 少妇精品久久久久久久| 91午夜精品亚洲一区二区三区| 黑人欧美特级aaaaaa片| 飞空精品影院首页| 一级毛片黄色毛片免费观看视频| 国产亚洲欧美精品永久| 久久99热6这里只有精品| 国产成人freesex在线| 亚洲欧洲国产日韩| 免费黄色在线免费观看| 亚洲av二区三区四区| 日韩大片免费观看网站| 三级国产精品片| 国产探花极品一区二区| 美女国产视频在线观看| 日韩 亚洲 欧美在线| 日韩成人伦理影院| 99久久中文字幕三级久久日本| 热99国产精品久久久久久7| 久久这里有精品视频免费| 国产午夜精品久久久久久一区二区三区| 啦啦啦中文免费视频观看日本| 黑人巨大精品欧美一区二区蜜桃 | www.色视频.com| 亚洲av免费高清在线观看| 久热这里只有精品99| 日本与韩国留学比较| 日日爽夜夜爽网站| av黄色大香蕉| 2022亚洲国产成人精品| 美女福利国产在线| 欧美97在线视频| 久久99蜜桃精品久久| 国产精品久久久久久av不卡| 精品卡一卡二卡四卡免费| 涩涩av久久男人的天堂| 日产精品乱码卡一卡2卡三| xxxhd国产人妻xxx| 欧美97在线视频| 91国产中文字幕| 卡戴珊不雅视频在线播放| tube8黄色片| 日韩一本色道免费dvd| 校园人妻丝袜中文字幕| 精品一区二区三卡| 少妇被粗大猛烈的视频| 51国产日韩欧美| 国产成人精品福利久久| 欧美少妇被猛烈插入视频| 亚洲精品中文字幕在线视频| 日本免费在线观看一区| 国产日韩一区二区三区精品不卡 | 国产精品偷伦视频观看了| 久久 成人 亚洲| 亚洲国产毛片av蜜桃av| 亚洲熟女精品中文字幕| 国产精品嫩草影院av在线观看| 热99久久久久精品小说推荐| 少妇被粗大猛烈的视频| 欧美xxxx性猛交bbbb| 国产在线免费精品| 97在线视频观看| 特大巨黑吊av在线直播| 亚洲激情五月婷婷啪啪| 一级毛片我不卡| 99久久精品一区二区三区| 欧美日韩视频精品一区| 美女国产高潮福利片在线看| 久久精品国产亚洲av涩爱| 亚州av有码| 麻豆乱淫一区二区| 少妇高潮的动态图| 精品久久久久久久久av| 亚洲av在线观看美女高潮| 亚洲精品aⅴ在线观看| xxxhd国产人妻xxx| 赤兔流量卡办理| 亚洲美女视频黄频| 欧美精品亚洲一区二区| 国产高清不卡午夜福利| 黄片播放在线免费| 男女无遮挡免费网站观看| 69精品国产乱码久久久| 亚洲精品日本国产第一区| 国产成人一区二区在线| 97超视频在线观看视频| 建设人人有责人人尽责人人享有的| 亚洲经典国产精华液单| 午夜免费鲁丝| 精品人妻在线不人妻| 免费播放大片免费观看视频在线观看| 秋霞在线观看毛片| 寂寞人妻少妇视频99o| 久久精品久久精品一区二区三区| 青春草视频在线免费观看| 五月伊人婷婷丁香| 51国产日韩欧美| 老司机影院毛片| 一级毛片电影观看| 十八禁高潮呻吟视频| 午夜日本视频在线| av国产久精品久网站免费入址| 考比视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 丰满饥渴人妻一区二区三| 中文字幕人妻丝袜制服| 高清不卡的av网站| 亚洲性久久影院| 自拍欧美九色日韩亚洲蝌蚪91| 特大巨黑吊av在线直播| 在线观看免费日韩欧美大片 | 亚洲av国产av综合av卡| 国内精品宾馆在线| 欧美最新免费一区二区三区| 国产高清国产精品国产三级| 午夜福利视频在线观看免费| av播播在线观看一区| 性色avwww在线观看| 欧美激情国产日韩精品一区| 国产男人的电影天堂91| 伊人久久国产一区二区| 哪个播放器可以免费观看大片| 美女国产高潮福利片在线看| 久久久久久久久久久免费av| a级毛片免费高清观看在线播放| 九九爱精品视频在线观看| 91午夜精品亚洲一区二区三区| 午夜老司机福利剧场| 国产伦理片在线播放av一区| 国产国拍精品亚洲av在线观看| 亚洲av不卡在线观看| 视频在线观看一区二区三区| 午夜福利影视在线免费观看| 成年人免费黄色播放视频| 国产精品三级大全| 中文字幕久久专区| 日韩中文字幕视频在线看片| 三上悠亚av全集在线观看| 视频在线观看一区二区三区| 国产精品嫩草影院av在线观看| 性高湖久久久久久久久免费观看| 中文字幕最新亚洲高清| 久久久精品免费免费高清| 草草在线视频免费看| 少妇熟女欧美另类| 91久久精品电影网| 免费观看的影片在线观看| 免费看光身美女| 男女国产视频网站| 丁香六月天网| 美女国产视频在线观看| 欧美成人午夜免费资源| 中文欧美无线码| av女优亚洲男人天堂| 久久久久久久久久人人人人人人| 国产成人av激情在线播放 | 国产精品国产三级国产av玫瑰| 成人二区视频| 91aial.com中文字幕在线观看| 丝袜脚勾引网站| 日韩熟女老妇一区二区性免费视频| av免费在线看不卡| 亚洲,一卡二卡三卡| 久久久欧美国产精品| 欧美日韩综合久久久久久| 少妇的逼好多水| 婷婷成人精品国产| 五月开心婷婷网| 成人毛片a级毛片在线播放| 日韩大片免费观看网站| 国产高清有码在线观看视频| 99热这里只有是精品在线观看| 国产探花极品一区二区| 亚洲欧美成人综合另类久久久| 国模一区二区三区四区视频| 丝袜喷水一区| 久久久久久久久久久久大奶| 国产高清国产精品国产三级| 如何舔出高潮| 插逼视频在线观看| 少妇丰满av| 在线观看免费高清a一片| 亚洲第一av免费看| 欧美日韩成人在线一区二区| 国产精品99久久99久久久不卡 | 国模一区二区三区四区视频| 看十八女毛片水多多多| 自线自在国产av| 寂寞人妻少妇视频99o| 少妇猛男粗大的猛烈进出视频| 美女中出高潮动态图| 黄片无遮挡物在线观看| 亚洲成人手机| 成人综合一区亚洲| 亚洲精品乱码久久久久久按摩| 制服人妻中文乱码| 久久久久久久大尺度免费视频| 午夜福利网站1000一区二区三区| 久久ye,这里只有精品| 久久精品国产鲁丝片午夜精品| 大陆偷拍与自拍| 成人漫画全彩无遮挡| 黑人巨大精品欧美一区二区蜜桃 | 制服诱惑二区| 老司机亚洲免费影院| 尾随美女入室| 亚洲精品日韩av片在线观看| 在现免费观看毛片| 蜜桃在线观看..| 寂寞人妻少妇视频99o| 一级毛片电影观看| 十八禁高潮呻吟视频| 久久久久久久久久久久大奶| 亚洲精品av麻豆狂野| 丝袜喷水一区| 欧美日韩在线观看h| 能在线免费看毛片的网站| 精品少妇黑人巨大在线播放| 中国三级夫妇交换| 最后的刺客免费高清国语| 人妻 亚洲 视频| 汤姆久久久久久久影院中文字幕| 日韩欧美精品免费久久| 久热这里只有精品99| 亚洲美女视频黄频| 欧美日韩av久久| 18+在线观看网站| 亚洲怡红院男人天堂| 亚洲四区av| 国产一区二区三区综合在线观看 | 久久久久视频综合| 少妇 在线观看| 免费高清在线观看日韩| 午夜激情久久久久久久| 丝袜在线中文字幕| 亚洲精品aⅴ在线观看| 国产亚洲最大av| 免费黄色在线免费观看| 色5月婷婷丁香| 免费不卡的大黄色大毛片视频在线观看| a级毛片黄视频| 国产亚洲av片在线观看秒播厂| 伦理电影大哥的女人| 在线观看免费日韩欧美大片 | 又黄又爽又刺激的免费视频.| 免费人妻精品一区二区三区视频| 日韩成人av中文字幕在线观看| 亚洲国产精品国产精品| 亚洲av国产av综合av卡| 国产在视频线精品| 久久这里有精品视频免费| 亚洲精品久久久久久婷婷小说| av国产精品久久久久影院| 久久精品国产鲁丝片午夜精品| 日本av免费视频播放| 国产老妇伦熟女老妇高清| 在线播放无遮挡| 亚洲av成人精品一二三区| 久久精品夜色国产| 夫妻性生交免费视频一级片| 人人澡人人妻人| 黄色欧美视频在线观看| 亚洲精品自拍成人| 日日爽夜夜爽网站| 成人综合一区亚洲| 一区在线观看完整版| 国产精品99久久99久久久不卡 | 亚洲人成77777在线视频| 成人18禁高潮啪啪吃奶动态图 | 国产永久视频网站| 国产高清国产精品国产三级| 内地一区二区视频在线| 亚洲精品aⅴ在线观看| 亚洲国产精品一区三区| 久久久久久人妻| 国产av码专区亚洲av| 成人18禁高潮啪啪吃奶动态图 | 人人妻人人爽人人添夜夜欢视频| 国产极品粉嫩免费观看在线 | 在线观看免费视频网站a站| 精品久久久久久电影网| 免费黄色在线免费观看| 夜夜看夜夜爽夜夜摸| xxxhd国产人妻xxx| 国产av一区二区精品久久| 国产成人免费观看mmmm| 国产无遮挡羞羞视频在线观看| 肉色欧美久久久久久久蜜桃| 日日爽夜夜爽网站| 国产精品人妻久久久久久| 日韩三级伦理在线观看| 中文字幕免费在线视频6| 国产极品天堂在线| 中文字幕精品免费在线观看视频 | 最近中文字幕2019免费版| 青青草视频在线视频观看| 少妇精品久久久久久久| 69精品国产乱码久久久| 九色亚洲精品在线播放| .国产精品久久| 国产免费福利视频在线观看| 午夜免费鲁丝| 国产又色又爽无遮挡免| 午夜激情久久久久久久| 老熟女久久久| 亚洲熟女精品中文字幕| 少妇人妻精品综合一区二区| 狠狠婷婷综合久久久久久88av| 亚洲精品av麻豆狂野| 欧美激情 高清一区二区三区| 国产成人精品婷婷| 精品人妻一区二区三区麻豆| 亚洲美女黄色视频免费看| 国产精品99久久99久久久不卡 | 成人手机av| 日韩 亚洲 欧美在线| 亚洲精品,欧美精品| 女的被弄到高潮叫床怎么办| 色婷婷av一区二区三区视频| 一级毛片aaaaaa免费看小| 一级a做视频免费观看| 日日摸夜夜添夜夜爱| 中国美白少妇内射xxxbb| 人人妻人人添人人爽欧美一区卜| 老司机影院毛片| 久久久久网色| 欧美日韩在线观看h| 丝瓜视频免费看黄片| 99久久中文字幕三级久久日本| 精品视频人人做人人爽| 在线观看美女被高潮喷水网站| 久久久久久久久久久免费av| 免费观看的影片在线观看| 久久久亚洲精品成人影院| 99热这里只有是精品在线观看| 看非洲黑人一级黄片| 伊人久久国产一区二区| 男女边吃奶边做爰视频| 亚洲国产日韩一区二区| 少妇猛男粗大的猛烈进出视频| 高清午夜精品一区二区三区| 熟女人妻精品中文字幕| 婷婷色综合大香蕉| videos熟女内射| 有码 亚洲区| 亚洲久久久国产精品| 18禁在线无遮挡免费观看视频| 亚洲国产精品一区二区三区在线| 建设人人有责人人尽责人人享有的| 少妇丰满av| 国产成人精品一,二区| 国产精品一区二区在线不卡| 大香蕉久久网| 亚洲精品日本国产第一区| 一区二区三区精品91| 在线亚洲精品国产二区图片欧美 | 国产午夜精品一二区理论片| 亚洲精品av麻豆狂野| 精品熟女少妇av免费看| 韩国高清视频一区二区三区| 日本wwww免费看| 久久精品熟女亚洲av麻豆精品| 国产综合精华液| 国产av精品麻豆| 欧美日韩av久久| 欧美精品一区二区免费开放| 精品亚洲乱码少妇综合久久| 又粗又硬又长又爽又黄的视频| 亚洲精华国产精华液的使用体验| 久久国产亚洲av麻豆专区| 美女脱内裤让男人舔精品视频| 欧美日韩av久久| 国产午夜精品久久久久久一区二区三区| 蜜桃久久精品国产亚洲av| 成人国产av品久久久| 午夜激情久久久久久久| 亚洲性久久影院| 亚洲婷婷狠狠爱综合网| 欧美精品人与动牲交sv欧美| 嘟嘟电影网在线观看| 日韩制服骚丝袜av| 99久久精品一区二区三区| 天美传媒精品一区二区| 插逼视频在线观看| 九色亚洲精品在线播放| 看非洲黑人一级黄片| 日韩视频在线欧美| 色视频在线一区二区三区| 成人亚洲欧美一区二区av| a 毛片基地| 少妇被粗大猛烈的视频| 成年女人在线观看亚洲视频| 久久97久久精品| 亚洲av日韩在线播放| 国产精品国产三级国产专区5o| 3wmmmm亚洲av在线观看| 黄色欧美视频在线观看| 午夜免费鲁丝| av.在线天堂| 美女国产高潮福利片在线看| 久久99蜜桃精品久久| 黑人巨大精品欧美一区二区蜜桃 | 亚洲欧美中文字幕日韩二区| 这个男人来自地球电影免费观看 | 亚洲一级一片aⅴ在线观看| 少妇的逼水好多| 国产高清有码在线观看视频| 日本黄大片高清| 欧美3d第一页| 亚洲精品乱久久久久久| 久久毛片免费看一区二区三区| 久久99热这里只频精品6学生| 大陆偷拍与自拍| 亚洲精品第二区| 日本午夜av视频| 亚洲第一av免费看| 天美传媒精品一区二区| 永久网站在线| 国产一级毛片在线| 免费不卡的大黄色大毛片视频在线观看| 蜜桃在线观看..| 国产成人a∨麻豆精品| 欧美精品人与动牲交sv欧美| 三上悠亚av全集在线观看| 国产成人精品婷婷| 国产一区二区三区综合在线观看 | 久久狼人影院| 天美传媒精品一区二区| av.在线天堂| 妹子高潮喷水视频| 国产一区亚洲一区在线观看| 99re6热这里在线精品视频| 能在线免费看毛片的网站| 18在线观看网站| 亚洲精品国产av蜜桃| 自拍欧美九色日韩亚洲蝌蚪91| 热99久久久久精品小说推荐| 高清不卡的av网站| 精品熟女少妇av免费看| 国产黄色视频一区二区在线观看| 成人黄色视频免费在线看| 乱码一卡2卡4卡精品| 国产亚洲最大av| 日韩熟女老妇一区二区性免费视频| 婷婷色综合www| 纵有疾风起免费观看全集完整版| 国产69精品久久久久777片| 精品国产一区二区久久| tube8黄色片| 国产亚洲最大av| 尾随美女入室| 国语对白做爰xxxⅹ性视频网站| 久久久久久久久久久久大奶| 国产欧美日韩一区二区三区在线 | 精品亚洲成a人片在线观看| 精品一区在线观看国产| 国产在线免费精品| av女优亚洲男人天堂| 欧美日韩精品成人综合77777| 国产成人精品一,二区| 国产精品女同一区二区软件| 国产熟女欧美一区二区| 51国产日韩欧美| 国产精品秋霞免费鲁丝片| 秋霞伦理黄片| 久久97久久精品| 国产女主播在线喷水免费视频网站| 婷婷成人精品国产| 久久久久视频综合| 亚洲久久久国产精品| 免费观看的影片在线观看| 国产精品成人在线| 丝袜喷水一区| 啦啦啦中文免费视频观看日本| 男女免费视频国产| 亚洲国产欧美日韩在线播放| 777米奇影视久久| 国产在线视频一区二区| 老司机影院成人| 观看av在线不卡| 男女无遮挡免费网站观看| 午夜福利视频精品| 日韩一本色道免费dvd| 黑人巨大精品欧美一区二区蜜桃 | 亚洲精品av麻豆狂野| 中文天堂在线官网| 免费黄网站久久成人精品| av天堂久久9| 国产成人精品无人区| 亚洲少妇的诱惑av| 啦啦啦中文免费视频观看日本|