• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Support Vector Machine Based on Bayesian Criterion

    2011-03-09 11:57:02YUChuanqiang于傳強(qiáng)GUOXiaosong郭曉松WANGYu王宇WANGZhenye王振業(yè)
    Defence Technology 2011年2期
    關(guān)鍵詞:王宇

    YU Chuan-qiang(于傳強(qiáng)),GUO Xiao-song(郭曉松),WANG Yu(王宇),WANG Zhen-ye(王振業(yè))

    (1.The Second Artillery Engineering College,Xi’an 710025,Shaanxi,China;2.The Second Artillery Weather Center,Beijing 100089,China)

    Introduction

    Monitor devices always detect system’s state parameters and compare them with their normal values to decide the system’s running state.As changes of some factors,such as system model deviation,noise,system’s reference input and the external environment etc.,the deference between the detected parameter and its normal value is usually not zero even in normal system[1].In order to reduce the effects of the uncertainty factors on the parameter’s deference,thresholds are often introduced to enhance the robustness of the monitor device[2-4].The selection of threshold is important because a big threshold can cause high missing report rate and a small threshold can cause high false report rate.

    In practical applications,the threshold selection method most in use is that based on 3σ criterion[5],where σ is the standard deviation of the detected parameter,and the better method is that based on minimum error probability criterion[6].

    There are two significant shortcomings for the practical application of the method based on minimum error probability.Firstly,the prior probability is not taken into account.Secondly,the losses caused by wrong decision are not considered.

    Aiming at the above two shortcomings,a Bayesian threshold selection criterion based on minimum risk is used in a certain weapon system’s state decision process.Compared with other criterion in the classification problem,Bayesian criterion has two advantages:i.e.,it considers the system’s prior knowledge,and it takes the losses caused by wrong decision into account.This criterion greatly improves the effect in the system state decision[7].

    The main drawback of Bayesian criterion for the state decision is that the system’s distribution density has to be known and it is usually found out cumbersomely.There is a basic principle in the statistical learning theory[8]:in a solution of a given problem,we should try to avoid putting a more general problem as its middle step.Compared with the solution of parameter probability density,the classification of system state according to the detected parameters is a more specific problem.Therefore,a better solution idea is to classify the parameters directly according to the training samples,which omits the solution of probability density.

    Classification is one of the major applications of SVM which can classify the test samples after training.Thus,it can be directly used to classify the detected signals and to judge the system’s state[9].But,it does not consider the classified problem’s prior probability and occurrence probability,and is only interested in the magnitude of the problem’s actual value,strictly speaking,the inner product of the sample for seedless function or the inner product of the kernel function for seed function,its solution depends on the characteristics of the training samples.According to the Bayesian criterion,if the prior probability of the classified information can be added into support vector machine algorithm,the reliability of the classification results will be enhanced.Next,the main idea of SVM based on the Bayesian theory and the implementation process of the algorithm will be discussed.

    1 SVM in Classification Problem

    Suppose two types of one-dimensional data{x1,…,xn}∈X,{y1,…,yn}∈Y,and their locations in the one-dimensional coordinate are shown in Fig.1,where▽and○represent the different categories respectively,and obviously,this group of data is linearly inseparable.

    Fig.1 A group of linearly inseparable data

    To solve this problem with SVM,one method is through introducing slack variables,misjudged loss or penalty parameter to extend the distance between the non-separable points in the training samples and the decision hyper-plane,so that the problem becomes linearly separable;the other is to use the kernel function to map one-dimensional data to a high-dimensional space,which is equivalent to change the original decision hyper-plane into hyper-surface,so that the issues can be resolved.Similarly,the above two method can be combined to solve the nonlinear non-separable problem.

    However,the decision function obtained by training SVM with this data group will inevitably lead to misclassification,because the training data used in SVM crosses,as shown in middle part of Fig.1.The decision function’s establishment entirely depends on the training samples,the decision results for this sample group may be optimal,SVM can make the right judgments for this data group,but it is difficult to ensure to make high reliability judgment for other new data,especially near the data crossover,the misclassification probability is higher.In fact,this is an inevitable problem in the classification method to use the samples to make judgment,the basic reason is that the complete samples of the problem can not be obtained;even if we can obtain the complete samples,it may not be able to classify completely,and we can only make the optimal decisions based on the existing samples.

    2 SVM Based on Bayesian Criterion

    In weapon systems,the data crossover phenomenon of the detected parameters is quite prominent because the working environment is quite poor and some factors,such as interference,are very strong,many data detected as failure results may be caused by the interference and other factors.Therefore,the classification reliability is in doubt if the support vector machine is only used to carry out judgment and decision or the decision is only made on the basis of the analysis results for the historical samples.The method with higher reliability is to make decision by considering not only the historical information of the existing samples,but also the current information.

    SVM has the advantage in the use of existing samples,therefore,we just discuss how to add the current information into SVM.For convenience,we take the one-dimensional sample as an example.

    notes the support vector,the decision function of SVM can be expressed as

    For a set of samples,the classification result de-pends on s(x).If X1={1.5,2,3.1,4,5}in f(x)=1 and X2={4.4,5.2,6,7}in f(x)= -1,trained SVM with the samples and classified them then,we can obtain the classification region,as shown in Fig.2.In Fig.2,the vertical axis denotes the value of s(x),the horizontal axis the value of sample,□ the sample in X1,○ the sample in X2,and ▽ the value of s(x).The divide point is the intersection of line a and horizontal axis,L1denotes the positive region,L2the negative region.The falsely divided samples A and B are the first sample in the left and right of line a,respectively.

    Fig.2 Classification region

    This false divide issue is simply described in Section 1.In order to solve this problem,the slack variables,misjudgment loss(penalty parameter),kernel function or their combination will be introduced in SVM.

    If such modified SVM can completely classify the training samples,a new problem will be engendered to use that classification method to solve practical problems.We can reasonably suppose that a test data is at point A belonging to positive type;when SVM classifies this data,it will be divided into negative type,because A in the training samples belong to negative type.The main reason causing the above phenomenon is that the area near points A and B belongs to the cross-region,the data at this area can not be classified accurately without other conditions.

    Since we can not correctly classify,then we can only improve the accurate probability of the classification results as much as possible.A feasible solution on this issue is to add a prior probability to the decision function of SVM,i.e.,

    Compared with the traditional decision function,c(p-0.5)is the added term,where c(-∞ <c≤∞)is the weighting coefficient,p(0 ≤p≤1)the prior probability,if p=0.5,there is no prior information of the samples.

    The parameter p can be obtained from the prior probability algorithm or other ways.c depends on the sample characteristics.

    2.1 Derivation of SVM Based on Bayesian Criterion

    Following two rules can be summarized for the classification problem.

    1)Point A belonging to positive-region can be classified as a negative type if the prior probability belonging to the negative type reaches a certain value,and vice versa.

    2)For the point A belonging to the positive-region,the larger the value of s(A)is,the larger the prior probability to partition it into the negative type is,and vice versa.

    We can obtain the algorithm to get the value of c according to the above simple rules.It can be discussed as the following three situations.

    2.1.1 Falsely Divided Samples in Two Regions for Training Samples

    1)The prior probability of the samples belonging to the positive type exceeds 0.5

    For point B in Fig.2,if s(x)=s(B)<0,then f(B)=-1,and if c(p-0.5)≥ -s(B),then f(B)=1.Suppose that the value of s(x)is the smallest value in all falsely divided samples.It can be believed that point B is classified as positive type only if the prior probability of point B belonging to positive type reaches a certain value.In order to have higher reliability,the value of prior probability can be set to 1.Thus,we have

    2)The prior probability of the samples belonging to the negative type exceeds 0.5

    Similarly,for point A in Fig.2,we have

    2.1.2 No Falsely Divided Samples in Two Regions for Training Samples

    For convenience,we also take Fig.2 as an example.The points A and B are not the falsely divided points.In this case,the samples are completely separable,we can also use the similar calculation method.

    1)The prior probability of the samples belonging to the positive type exceeds 0.5

    For point B,suppose that s(x)is the smallest value in all negative samples,if s(x)=s(B)< 0,then f(B)= -1,and if c(p-0.5)≥ -s(B),then f(B)=1.Like the above method,it can also be believed that point B can be classified as positive type only if the prior probability of point B belonging to positive type reaches a certain value,therefore,we have

    2)The prior probability of the samples belonging to the negative type exceeds 0.5

    Similarly,for the point A in Fig.2,we have

    2.1.3 Falsely Divided Samples in Only One Region for Training Samples

    In this case,the problem can be solved by combining the above two methods.

    2.2 Conclusions on SVM Based on Bayesian Criterion

    Based on the above three cases, the value of c can be found out by using following two formulas.If p=0.5,the adding items in the formula(2)are zero,thus,c can be taken as any value.

    1)If the prior probability of samples belonging to the positive type exceeds 0.5,

    where the point B is the nearest point in the negative region to the demarcation line.

    2)If the prior probability of samples belonging to the negative type exceeds 0.5,

    where the point A is the nearest point in the positive region to the demarcation line.

    Now,the problems for finding the value of the parameter c are solved.In this way,the problems for using the decision function of SVM based on Bayesian criterion to obtain the parameter values are all solved,and the implementation steps are as follows.

    (1)Train SVM with the training samples;

    (2)After training,test the training samples by using SVM;

    (3)Find out the value of c according to the formulas(5)and(6);

    (4)For a given sample,if its prior probability is known,substituting this value into formula(2)to get the classification result,and if it is unknown,substituting p=0.5 into formula(2)to get the classification result.

    3 Problems in Application

    In the above algorithm,the value of c only depends on the positive point or the negative point the nearest to the demarcation line,but it may not be reasonable in many cases.As we know,the support vector of SVM is the best point to reflect the characteristics of the classified sample.Therefore,the value of s(x)can be taken as the average value of s(x)of a few points near to the demarcation line.The experiment results show that the expansibility and robustness are improved by using such method.

    In order to solute the prior probability,if the result of the testing data is negative type at a time,then the test data belongs to the negative type at the next time,and vise versa.Its probability can be taken as 1 in both cases,but different value of c represents different meanings.

    In the status detection,the data of SVM inputs in a time sequence,the value of prior probability can be calculated according to the above method.For some static classification problems,such as the character recognition,image segmentation,and so on,the prior probability calculation needs to be further studied.

    4 Verifications

    For a temperature control device in a weapon system,its power is supplied by a regulated power supply with 28 V.The output power of this power supply is larger,and it is used very frequently and irregularly,thus,it is easy to be broken down.Now,we detect its status by using the common SVM and the SVM based on Bayesian criterion[10].

    According to the system’s historical data,a training sample set including 200 normal date,with 27.6 in mean value and 0.55 in,standard deviation,and 200 data in exceptional status with 29.5 in mean value and 0.52 in standard deviation can be built.The distribution of training data is shown in Fig.3,where ○ denotes the sample in fault condition,* the sample in normal condition.It can be seen evidently form the figure that there is data crossover phenomenon in the two kinds of samples.

    Fig.3 Distribution of training data

    Now we train two kinds of SVM,a traditional SVM and a SVM based on Bayesian criterion with the samples.These two SVMs all use the support vector machine algorithm in type C,the value of parameter C is taken as 100,and use the RBF kernel function,the number of support vectors is 48 after training,which account for 12%of the entire samples.In the SVM based on Bayesian criterion,the number of positive support vectors is 23,and the value of parameter c is 1.177 5;the number of negative support vectors is 25,and the value of parameter c is -1.393 4.

    After training,the actual detected data in sampling rate of 1 000 is classified by using two kinds of support vector machines algorithm.

    4.1 Classification Results for Fault Data

    The failure data is acquired when the filter capacitor in the power supply is burnt.The classification results are shown in Fig.4.

    Fig.4 Classification results for fault data with two kinds of SVMs

    The top curve in Fig.4 represents the measured output voltage of the power supply,which is changed from 100-th sample point,and reaches 29.1 in 110-th sample point.The above phenomenon is caused by the breakage of the filter capacitor in the power supply.The middle curve in Fig.4 shows the classification results of the traditional support vector machine algorithm.In this curve,“1”represents the normal status and“-1”the fault status.We find the fault in the 105-th sample point,and there is some false reported status during the fault.The bottom curve in Fig.4 shows the classification results of the support vector machine algorithm based on Bayesian criterion.Similarly,“1”denotes the normal status and“-1”the fault status,and the false reported status exists also,but the number of false report is reduced obviously.It shows the superiority of this algorithm.

    4.2 Classification Results for Disturbed Data

    We used the data,which is disturbed by the starting of a hydraulic system,to verify two support vector machine algorithms,as shown in Fig.5.The meaning of the curve in Fig.5 is similar to Fig.4.It can be seen from Fig.5 that the support vector machine algo-rithm based on Bayesian criterion has the better classification result.

    Fig.5 Classification results for disturbed data with two kinds of SVM

    5 Conclusions

    The traditional SVM algorithm only uses the historical training sample and does not consider the current system status in the classification.The improved SVM algorithm based on Bayesian criterion overcomes the shortcoming of the traditional one.This new algorithm is used to detect the status of a weapon system,and the classification results show that it is better than the traditional algorithm.Both robustness and sensitivity of the algorithm are enhanced.

    [1]LIU Chun-heng,ZHOU Dong-hua.An adaptive selection method for threshold in fault detection[J].Journal of Shanghai Maritime University,2001,22(3):46 - 50.(in Chinese)

    [2]Ding X,Guo L,F(xiàn)rank P M.Parameterization of linear observers and its application to observer design[J].IEEE Transactions on Automatic Control,1994,39(8):1648-1652.

    [3]Ding S X,Jeinsch T,F(xiàn)rank P M,Ding E L.A unified approach to the optimization of fault detection systems[J].International Journal of Adaptive Control and Signal Processing,2000,14(7):725 -745.

    [4]Basseville M.Detecting changes in signals and systems[J].Automatic,1998,24(3):309-326.

    [5]JIANG Yun-chun,QIU Jing,LIU Guan-jun,et al.A adaptive threshold method in fault detection[J].Journal of Astronautics,2006,27(1):36 -40.(in Chinese)

    [6]FENG Shao-jun,YUAN Xin.A new method to identify the threshold in fault diagnosis[J].Journal of Data Acquisition and Processing,1999,14(1):30 - 32.(in Chinese)

    [7]JIA Nai-guang.Statistical decision theory and Bayesian[M].Beijing:China Statistics Press,1998:78 -96.(in Chinese)

    [8]Vapnik V N.The nature of statistical learning theory[M].New York:Springer-Verlag,2000:102-112.

    [9]Granovsky B L,Hans-Georg Müller.Optimizing kernel methods:a unifying variational principle[J].International Statistical Review,1999,59(3):373-388.

    [10]YU Chuan-qiang.The realization of fault diagnosis device in the temperature and electricity control and hydraulic system in XXX weapons system[D].Xi’an:Second Artillery Engineering Institute,2003.(in Chinese)

    猜你喜歡
    王宇
    Experimental study on the effect of H2O and O2 on the degradation of SF6 by pulsed dielectric barrier discharge
    基于ShuffleNet V2算法的三維視線估計(jì)
    A novel low-loss four-bit bandpass filter using RF MEMS switches
    應(yīng)急物流:疫情之下迎來(lái)“大考”
    美術(shù)作品
    人生的岔路口,幸好遇到你
    Cavitation erosion in bloods*
    死不瞑目!我愛(ài)的悲情已婚男是個(gè)“影帝”
    報(bào)銷
    Proton-exchange Sulfonated Poly(ether ether ketone)/SulfonatedPhenolphthalein Poly(ether sulfone) Blend Membranes in DMFCs*
    欧美成人免费av一区二区三区| 欧美日韩瑟瑟在线播放| 男人舔奶头视频| 高清日韩中文字幕在线| 亚洲国产精品成人综合色| 国产美女午夜福利| 亚洲三级黄色毛片| 日韩精品中文字幕看吧| 少妇人妻一区二区三区视频| 长腿黑丝高跟| 亚洲五月婷婷丁香| 极品教师在线视频| 亚洲最大成人中文| 国产真实伦视频高清在线观看 | 日韩欧美一区二区三区在线观看| 日韩av在线大香蕉| 一级av片app| 9191精品国产免费久久| 国产av在哪里看| 国产精品三级大全| 亚洲人与动物交配视频| 在线国产一区二区在线| 日本五十路高清| 成年女人永久免费观看视频| 少妇人妻精品综合一区二区 | 他把我摸到了高潮在线观看| 久久久久国内视频| 亚洲天堂国产精品一区在线| 久久精品国产亚洲av涩爱 | 亚洲久久久久久中文字幕| 国产精品99久久久久久久久| 五月伊人婷婷丁香| 夜夜爽天天搞| 中文字幕人妻熟人妻熟丝袜美| 欧美不卡视频在线免费观看| 久久婷婷人人爽人人干人人爱| 两个人视频免费观看高清| 亚洲一区高清亚洲精品| 人妻制服诱惑在线中文字幕| 亚洲片人在线观看| 日韩欧美精品免费久久 | 国产精品三级大全| 亚洲欧美激情综合另类| 亚洲欧美日韩东京热| 国产三级在线视频| 欧美成人性av电影在线观看| 99热这里只有精品一区| 精品不卡国产一区二区三区| 五月玫瑰六月丁香| 日韩 亚洲 欧美在线| 中文字幕久久专区| 男人舔奶头视频| 丰满乱子伦码专区| 欧美色欧美亚洲另类二区| 人人妻人人看人人澡| 精品人妻偷拍中文字幕| or卡值多少钱| 老司机午夜福利在线观看视频| 好看av亚洲va欧美ⅴa在| 精品人妻1区二区| 综合色av麻豆| 免费看日本二区| 成人永久免费在线观看视频| 色噜噜av男人的天堂激情| 狠狠狠狠99中文字幕| 国产v大片淫在线免费观看| 特级一级黄色大片| 国产伦精品一区二区三区视频9| av视频在线观看入口| 极品教师在线视频| 熟女电影av网| 亚洲熟妇熟女久久| 99久久精品国产亚洲精品| netflix在线观看网站| 欧美又色又爽又黄视频| 51午夜福利影视在线观看| 一级av片app| 欧美激情久久久久久爽电影| 亚洲激情在线av| 欧美成人一区二区免费高清观看| 啦啦啦观看免费观看视频高清| 国产精品久久久久久久电影| 女生性感内裤真人,穿戴方法视频| 真人一进一出gif抽搐免费| 人妻丰满熟妇av一区二区三区| 三级国产精品欧美在线观看| 嫩草影院精品99| 成年免费大片在线观看| 国产精品国产高清国产av| 热99在线观看视频| 一本一本综合久久| 国产午夜精品论理片| 无遮挡黄片免费观看| 精品免费久久久久久久清纯| 午夜久久久久精精品| 在线天堂最新版资源| 国产成年人精品一区二区| 最近在线观看免费完整版| 怎么达到女性高潮| 国产三级在线视频| 最后的刺客免费高清国语| 日韩欧美国产在线观看| 中文字幕av成人在线电影| 听说在线观看完整版免费高清| 国产日本99.免费观看| 成人永久免费在线观看视频| 香蕉av资源在线| 一本久久中文字幕| 真人做人爱边吃奶动态| 一级a爱片免费观看的视频| 成人午夜高清在线视频| av黄色大香蕉| 成人国产一区最新在线观看| 岛国在线免费视频观看| 国产成人a区在线观看| 97超级碰碰碰精品色视频在线观看| 中文资源天堂在线| 91午夜精品亚洲一区二区三区 | 高清日韩中文字幕在线| 88av欧美| 亚洲最大成人av| 一边摸一边抽搐一进一小说| 日韩有码中文字幕| 精品午夜福利视频在线观看一区| 亚洲欧美日韩高清在线视频| 国产精品国产高清国产av| 午夜免费成人在线视频| 国产精品一区二区三区四区久久| 成人午夜高清在线视频| 国产亚洲精品久久久com| 久久精品久久久久久噜噜老黄 | 国产单亲对白刺激| 亚洲人成网站高清观看| 亚洲av五月六月丁香网| 神马国产精品三级电影在线观看| 亚洲av免费在线观看| 亚洲国产精品成人综合色| 99久久精品国产亚洲精品| 啦啦啦韩国在线观看视频| 女同久久另类99精品国产91| 亚洲精品成人久久久久久| 中文字幕熟女人妻在线| 1024手机看黄色片| 黄色丝袜av网址大全| 一个人看的www免费观看视频| 亚洲精品成人久久久久久| 亚洲av电影在线进入| 中出人妻视频一区二区| 午夜两性在线视频| 国产伦人伦偷精品视频| 人妻丰满熟妇av一区二区三区| 国产精品久久久久久亚洲av鲁大| 欧美一级a爱片免费观看看| 国产三级中文精品| 91久久精品国产一区二区成人| 欧美色欧美亚洲另类二区| 精品午夜福利视频在线观看一区| 在现免费观看毛片| 人妻丰满熟妇av一区二区三区| 中文亚洲av片在线观看爽| 国产伦人伦偷精品视频| 国产中年淑女户外野战色| 欧美激情国产日韩精品一区| 久久国产乱子伦精品免费另类| 国产精品爽爽va在线观看网站| 一级作爱视频免费观看| 日本三级黄在线观看| 国产成+人综合+亚洲专区| 日韩中字成人| 久99久视频精品免费| 国产熟女xx| 热99在线观看视频| 日日干狠狠操夜夜爽| 最新在线观看一区二区三区| 啦啦啦观看免费观看视频高清| 少妇熟女aⅴ在线视频| 国产午夜福利久久久久久| 午夜a级毛片| 欧美黑人巨大hd| 久久久精品大字幕| 美女免费视频网站| 精品欧美国产一区二区三| 亚洲午夜理论影院| 久久婷婷人人爽人人干人人爱| 精品熟女少妇八av免费久了| 色5月婷婷丁香| 一区二区三区高清视频在线| 搡老妇女老女人老熟妇| 国产av一区在线观看免费| 国产乱人视频| av在线天堂中文字幕| 精品人妻熟女av久视频| 国产乱人伦免费视频| 深夜a级毛片| 久久久久久久精品吃奶| 波多野结衣巨乳人妻| 少妇丰满av| 日韩亚洲欧美综合| 免费av不卡在线播放| 色哟哟·www| 亚洲第一欧美日韩一区二区三区| 成人特级黄色片久久久久久久| 午夜福利免费观看在线| 真实男女啪啪啪动态图| 少妇人妻一区二区三区视频| 真人一进一出gif抽搐免费| 久久久久久久久久成人| 色哟哟·www| 中文字幕免费在线视频6| 色哟哟哟哟哟哟| 男女之事视频高清在线观看| 精品久久久久久久人妻蜜臀av| 欧美bdsm另类| 久久久久性生活片| 亚洲国产高清在线一区二区三| 露出奶头的视频| 久久久久精品国产欧美久久久| 久久欧美精品欧美久久欧美| 色精品久久人妻99蜜桃| 成人永久免费在线观看视频| 国产三级黄色录像| 99热这里只有精品一区| 亚洲成人精品中文字幕电影| 成人av在线播放网站| 成人国产综合亚洲| 亚洲性夜色夜夜综合| 久久久久精品国产欧美久久久| 国产精品影院久久| 日韩亚洲欧美综合| 免费av不卡在线播放| 亚洲av电影在线进入| 精品人妻一区二区三区麻豆 | 欧美极品一区二区三区四区| 国产高潮美女av| 免费人成视频x8x8入口观看| 亚洲午夜理论影院| 五月玫瑰六月丁香| 欧美另类亚洲清纯唯美| 国产精品影院久久| 成人性生交大片免费视频hd| 婷婷精品国产亚洲av| 舔av片在线| 观看免费一级毛片| 3wmmmm亚洲av在线观看| 最新在线观看一区二区三区| 91午夜精品亚洲一区二区三区 | 亚洲精品乱码久久久v下载方式| 搡老妇女老女人老熟妇| 国产中年淑女户外野战色| 免费一级毛片在线播放高清视频| 一区二区三区高清视频在线| 国产私拍福利视频在线观看| 精品久久久久久久末码| 亚洲精品乱码久久久v下载方式| 在线a可以看的网站| 一进一出好大好爽视频| 国产亚洲av嫩草精品影院| 啦啦啦观看免费观看视频高清| 国产高清视频在线播放一区| 90打野战视频偷拍视频| 夜夜夜夜夜久久久久| 国产探花极品一区二区| 久久精品久久久久久噜噜老黄 | 在线免费观看的www视频| 可以在线观看的亚洲视频| 国产伦在线观看视频一区| 久久精品久久久久久噜噜老黄 | 亚洲三级黄色毛片| 国产精品免费一区二区三区在线| 别揉我奶头 嗯啊视频| 最好的美女福利视频网| 精品无人区乱码1区二区| 久久精品91蜜桃| 免费人成视频x8x8入口观看| 在线十欧美十亚洲十日本专区| 欧美日韩中文字幕国产精品一区二区三区| 又爽又黄a免费视频| 精品久久久久久,| 久久久国产成人免费| 国产乱人伦免费视频| 偷拍熟女少妇极品色| 夜夜躁狠狠躁天天躁| 亚洲片人在线观看| 校园春色视频在线观看| 18禁黄网站禁片免费观看直播| 狂野欧美白嫩少妇大欣赏| 成人特级黄色片久久久久久久| 亚洲av熟女| 99久久99久久久精品蜜桃| 亚洲熟妇中文字幕五十中出| 99久国产av精品| 欧美日韩综合久久久久久 | 99久久精品热视频| 欧美zozozo另类| 成人鲁丝片一二三区免费| 人妻制服诱惑在线中文字幕| 久久精品久久久久久噜噜老黄 | 免费av毛片视频| 好男人在线观看高清免费视频| 赤兔流量卡办理| 搡老岳熟女国产| 一区二区三区免费毛片| 精品国内亚洲2022精品成人| 久久久久亚洲av毛片大全| 欧美激情在线99| 男女那种视频在线观看| 亚洲精品亚洲一区二区| 欧美在线一区亚洲| 中文字幕久久专区| 少妇人妻一区二区三区视频| 最后的刺客免费高清国语| 国产探花在线观看一区二区| 日本五十路高清| 国内毛片毛片毛片毛片毛片| 亚洲久久久久久中文字幕| 婷婷精品国产亚洲av| 热99在线观看视频| 一边摸一边抽搐一进一小说| 亚洲三级黄色毛片| 亚洲欧美日韩无卡精品| 色精品久久人妻99蜜桃| 精品国内亚洲2022精品成人| 亚洲国产精品sss在线观看| 午夜免费激情av| 看黄色毛片网站| 中文字幕人成人乱码亚洲影| 美女cb高潮喷水在线观看| 午夜日韩欧美国产| 少妇丰满av| 精品欧美国产一区二区三| 成人永久免费在线观看视频| 色综合亚洲欧美另类图片| 精品熟女少妇八av免费久了| 婷婷亚洲欧美| 国产一区二区亚洲精品在线观看| 亚洲av电影不卡..在线观看| 婷婷色综合大香蕉| 中文字幕免费在线视频6| 丁香欧美五月| 亚洲人成伊人成综合网2020| 欧美又色又爽又黄视频| 97超级碰碰碰精品色视频在线观看| 日韩免费av在线播放| 毛片女人毛片| 亚洲电影在线观看av| 性色avwww在线观看| 亚洲经典国产精华液单 | 999久久久精品免费观看国产| 中国美女看黄片| 国语自产精品视频在线第100页| 99国产精品一区二区蜜桃av| 免费无遮挡裸体视频| 欧美激情在线99| 亚洲va日本ⅴa欧美va伊人久久| 18禁在线播放成人免费| 日日摸夜夜添夜夜添av毛片 | xxxwww97欧美| 村上凉子中文字幕在线| 成人鲁丝片一二三区免费| 最好的美女福利视频网| 一级av片app| 日韩欧美精品v在线| 久久99热6这里只有精品| 久久久久亚洲av毛片大全| 狂野欧美白嫩少妇大欣赏| 在线观看av片永久免费下载| 99热6这里只有精品| 男人舔奶头视频| 中文字幕精品亚洲无线码一区| 亚洲成人久久性| av女优亚洲男人天堂| 我的老师免费观看完整版| 一本一本综合久久| 久久热精品热| 99久久精品国产亚洲精品| 国产av在哪里看| 久久99热6这里只有精品| 亚洲精品一区av在线观看| 很黄的视频免费| 国产精品影院久久| 国产单亲对白刺激| 久久精品久久久久久噜噜老黄 | 亚洲专区国产一区二区| 亚洲精品影视一区二区三区av| 一个人看的www免费观看视频| 欧美成人a在线观看| 黄色日韩在线| 高清毛片免费观看视频网站| 国产免费一级a男人的天堂| 欧美色视频一区免费| 免费在线观看影片大全网站| 啪啪无遮挡十八禁网站| 小蜜桃在线观看免费完整版高清| 精品人妻视频免费看| 久久久久国内视频| 一本一本综合久久| 中文字幕高清在线视频| 久久精品夜夜夜夜夜久久蜜豆| 成人性生交大片免费视频hd| 亚洲av二区三区四区| 噜噜噜噜噜久久久久久91| 国产大屁股一区二区在线视频| 亚洲自拍偷在线| 能在线免费观看的黄片| 女同久久另类99精品国产91| 免费看美女性在线毛片视频| 夜夜躁狠狠躁天天躁| 少妇被粗大猛烈的视频| 能在线免费观看的黄片| av天堂中文字幕网| 国产精品女同一区二区软件 | 中文字幕av在线有码专区| 国产不卡一卡二| x7x7x7水蜜桃| 日韩中文字幕欧美一区二区| 琪琪午夜伦伦电影理论片6080| 国产精品一区二区免费欧美| 少妇的逼好多水| 中文字幕av在线有码专区| 欧美性感艳星| 亚洲av二区三区四区| 嫩草影院新地址| 亚洲精品一二三| 国产av不卡久久| 国产69精品久久久久777片| 国产爱豆传媒在线观看| 男插女下体视频免费在线播放| 欧美日本视频| 国产一区二区亚洲精品在线观看| 久久久久久久国产电影| 亚洲精品aⅴ在线观看| 高清av免费在线| 中文字幕制服av| 在线观看av片永久免费下载| 一级毛片我不卡| 一个人看视频在线观看www免费| 成人国产av品久久久| 久久99蜜桃精品久久| 成人鲁丝片一二三区免费| 在线观看一区二区三区| 99热这里只有是精品50| 成人特级av手机在线观看| 人妻一区二区av| 国产免费视频播放在线视频| 日本-黄色视频高清免费观看| 乱系列少妇在线播放| 日本与韩国留学比较| 国产爽快片一区二区三区| 国产精品一及| 成人综合一区亚洲| 偷拍熟女少妇极品色| 五月开心婷婷网| 亚洲欧美清纯卡通| 神马国产精品三级电影在线观看| 午夜精品国产一区二区电影 | 涩涩av久久男人的天堂| 久久久成人免费电影| 超碰97精品在线观看| 男女啪啪激烈高潮av片| 毛片女人毛片| 国产黄片美女视频| 日本av手机在线免费观看| 中文字幕久久专区| 99热网站在线观看| 欧美高清性xxxxhd video| 亚洲av.av天堂| 可以在线观看毛片的网站| 一级毛片久久久久久久久女| 成人亚洲欧美一区二区av| 亚洲av免费高清在线观看| 亚洲精品乱码久久久久久按摩| 免费在线观看成人毛片| 亚洲美女视频黄频| 黄色欧美视频在线观看| 偷拍熟女少妇极品色| 亚洲av二区三区四区| 老司机影院成人| 一区二区三区精品91| 国产91av在线免费观看| 久久久国产一区二区| 国产成人一区二区在线| 性色avwww在线观看| 中文字幕av成人在线电影| 嘟嘟电影网在线观看| 七月丁香在线播放| 国产又色又爽无遮挡免| 天天躁日日操中文字幕| 久久热精品热| 精品99又大又爽又粗少妇毛片| 97超视频在线观看视频| 亚洲欧美成人精品一区二区| 王馨瑶露胸无遮挡在线观看| 边亲边吃奶的免费视频| 国产v大片淫在线免费观看| 丰满人妻一区二区三区视频av| 亚洲人成网站在线观看播放| 午夜福利视频精品| 日韩欧美 国产精品| 性色av一级| 亚洲国产精品专区欧美| 国产精品国产av在线观看| 91久久精品国产一区二区成人| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品成人av观看孕妇| 少妇被粗大猛烈的视频| 男女无遮挡免费网站观看| 视频中文字幕在线观看| 亚洲国产高清在线一区二区三| 久久久久国产精品人妻一区二区| 最新中文字幕久久久久| av专区在线播放| 91在线精品国自产拍蜜月| 亚洲电影在线观看av| 麻豆精品久久久久久蜜桃| 精品一区二区免费观看| 18+在线观看网站| 大片免费播放器 马上看| 久久久久久九九精品二区国产| 亚洲av不卡在线观看| 免费不卡的大黄色大毛片视频在线观看| 久久久欧美国产精品| 亚洲高清免费不卡视频| 亚洲精品自拍成人| 99久久人妻综合| 精品一区在线观看国产| 三级男女做爰猛烈吃奶摸视频| 狂野欧美激情性bbbbbb| 99久久精品热视频| kizo精华| 亚洲综合精品二区| 中文欧美无线码| 国产精品麻豆人妻色哟哟久久| 免费大片18禁| 亚洲第一区二区三区不卡| 久久精品久久久久久久性| 国产精品国产三级国产av玫瑰| 人妻一区二区av| 免费观看的影片在线观看| 日本与韩国留学比较| 国产亚洲av片在线观看秒播厂| 欧美性猛交╳xxx乱大交人| 国产av码专区亚洲av| 韩国高清视频一区二区三区| 一本色道久久久久久精品综合| 熟女av电影| 插阴视频在线观看视频| 91aial.com中文字幕在线观看| 国产一区有黄有色的免费视频| 观看美女的网站| 成年女人看的毛片在线观看| 亚洲精品中文字幕在线视频 | 久久久久久九九精品二区国产| 精品99又大又爽又粗少妇毛片| 麻豆国产97在线/欧美| h日本视频在线播放| 最近的中文字幕免费完整| 亚洲怡红院男人天堂| kizo精华| 高清欧美精品videossex| 日韩欧美精品v在线| 国产免费又黄又爽又色| 69av精品久久久久久| 日韩一本色道免费dvd| 别揉我奶头 嗯啊视频| 激情 狠狠 欧美| 你懂的网址亚洲精品在线观看| 亚洲成人一二三区av| 啦啦啦在线观看免费高清www| 欧美激情久久久久久爽电影| 亚洲人与动物交配视频| 免费av毛片视频| 麻豆成人av视频| 国产精品嫩草影院av在线观看| 欧美bdsm另类| 国产成人午夜福利电影在线观看| 亚洲va在线va天堂va国产| 国产黄色免费在线视频| 91精品国产九色| 久久99热这里只有精品18| 一级爰片在线观看| 久久久国产一区二区| 午夜免费男女啪啪视频观看| 男女国产视频网站| 91精品一卡2卡3卡4卡| 久久精品久久精品一区二区三区| 久久久久久久久久久免费av| 97热精品久久久久久| 欧美三级亚洲精品| 日韩 亚洲 欧美在线| 精品午夜福利在线看| 小蜜桃在线观看免费完整版高清| 偷拍熟女少妇极品色| 免费大片黄手机在线观看| 一二三四中文在线观看免费高清| 最近中文字幕2019免费版| 亚洲av免费高清在线观看| 日韩一本色道免费dvd| 国产真实伦视频高清在线观看| 欧美成人午夜免费资源| 亚洲精品色激情综合| 国产午夜精品一二区理论片| 久久久久久久精品精品| 老司机影院毛片| 国产老妇伦熟女老妇高清| 国产亚洲5aaaaa淫片| 国产91av在线免费观看| 黑人高潮一二区| 亚洲精品一二三| 在线观看免费高清a一片| 免费观看av网站的网址| 欧美xxxx性猛交bbbb| 久久国产乱子免费精品| 日本三级黄在线观看| 各种免费的搞黄视频| 看黄色毛片网站|