摘 要:" 基因編輯技術(shù)的快速發(fā)展為獼猴桃(Actinidia spp.)的精準(zhǔn)育種提供了革命性工具。該文系統(tǒng)綜述了CRISPR/Cas9技術(shù)在獼猴桃性狀改良中的多維應(yīng)用及其策略與挑戰(zhàn)。基于高質(zhì)量基因組資源(如中華獼猴桃端粒到端粒無間隙參考基因組)與高效遺傳轉(zhuǎn)化體系(如無標(biāo)記農(nóng)桿菌轉(zhuǎn)化系統(tǒng)),研究者在果實(shí)品質(zhì)、抗病性及株型調(diào)控等領(lǐng)域取得了突破性進(jìn)展:通過靶向編輯AcNAC1、bZIP及MYB/bHLH復(fù)合體等關(guān)鍵基因,實(shí)現(xiàn)了檸檬酸含量降低、維生素C合成增強(qiáng)與花青素積累優(yōu)化;采用宿主-病原體雙向策略,強(qiáng)化AcCBL3介導(dǎo)的草酸鈣屏障,并干擾病原菌hopAI1毒力基因,顯著提升抗病效率;通過敲除CEN-like、AcFLC-like基因,創(chuàng)制出緊湊株型與非冷依賴萌芽新種質(zhì)。采后生理研究揭示了乙烯信號(hào)通路與細(xì)胞壁降解酶系的協(xié)同調(diào)控網(wǎng)絡(luò),為延長(zhǎng)貨架期提供分子靶標(biāo)。盡管多倍體編輯復(fù)雜性及轉(zhuǎn)基因監(jiān)管爭(zhēng)議仍然存在挑戰(zhàn),但多組學(xué)整合與合成生物學(xué)工具的介入,正推動(dòng)著獼猴桃育種從單基因操作向代謝通路重編程跨越。隨著全球?qū)o外源DNA編輯品種的政策松綁,基于CRISPR/Cas9的獼猴桃分子設(shè)計(jì)育種將迎來產(chǎn)業(yè)化發(fā)展的重要機(jī)遇期。此外,該文還進(jìn)一步探討了技術(shù)優(yōu)化路徑與未來研究方向,為加速獼猴桃突破性品種選育提供了理論框架。
關(guān)鍵詞: 獼猴桃育種, CRISPR/Cas9基因編輯, 全基因組測(cè)序, 分子設(shè)計(jì)育種, 果實(shí)品質(zhì)改良
中圖分類號(hào):" Q943
文獻(xiàn)標(biāo)識(shí)碼:" A
文章編號(hào):" 1000-3142(2025)03-0438-12
Kiwifruit trait improvement via CRISPR/Cas9:Precision breeding strategies and challenges
ZHU Rongxiang1, LIU Yuhong2, LI Jiewei1, YE Kaiyu1, LIU Cuixia1, XIA Liming1,GONG Hongjuan1, QI Beibei1, GAO Jianyou1, JIANG Qiaosheng1, WANG Faming1*
( 1. Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany,Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, Guangxi, China;
2. Guilin Agricultural Science Research Center, Guilin 541006, Guangxi, China )
Abstract:" The rapid advancement of gene editing technologies has revolutionized precision breeding in kiwifruit (Actinidia spp.). This review systematically summarizes the multidimensional applications, strategies, and challenges of CRISPR/Cas9 technology in kiwifruit trait improvement. Leveraging high-quality genomic resources, such as the telomere-to-telomere gapless reference genome of A. chinensis, and efficient genetic transformation systems like marker-free Agrobacterium-mediated methods, researchers have achieved breakthroughs in fruit quality, disease resistance, and plant architecture regulation. Key advancements include: targeted editing of AcNAC1, bZIP and MYB/bHLH complexes to reduce citrate content, enhance vitamin C biosynthesis, and optimize anthocyanin accumulation; a host-pathogen dual-targeting strategy that strengthens the AcCBL3-mediated calcium oxalate barrier and disrupts the hopAI1 virulence gene in pathogens, significantly improving disease resistance; and knockout of CEN-like and AcFLC-like genes to develop compact plant architecture and non-cold-independent budbreak germplasms. Postharvest studies have elucidated synergistic regulatory networks between ethylene signaling and cell wall hydrolases, offering molecular targets for shelf-life extension. Despite challenges such as polyploid editing complexity and transgenic regulatory controversies, the integration of multi-omics and synthetic biology tools is advancing kiwifruit breeding from single-gene manipulation to metabolic pathway reprogramming. With global regulatory relaxation for foreign DNA-free edited varieties, CRISPR/Cas9-based molecular design breeding will usher in an important opportunity period of industrial development. In addition, this review further outlines technical optimization pathways and future research priorities, providing a theoretical framework for accelerating the breakthrough breeding of kiwifruit cultivars.
Key words: kiwifruit breeding, CRISPR/Cas9 gene editing, whole genome sequencing, molecular design breeding, fruit quality improvement
獼猴桃(Actinidia spp.)作為典型的多年生藤本果樹,其果實(shí)因獨(dú)特的風(fēng)味特征和突出的營(yíng)養(yǎng)價(jià)值而成為全球重要的商品化水果。然而,獼猴桃的遺傳改良長(zhǎng)期面臨多種生物學(xué)挑戰(zhàn):其一,高度雜合的基因組特性(染色體基數(shù)x=29,存在二倍體至十倍體種質(zhì))導(dǎo)致性狀遺傳規(guī)律復(fù)雜(Han et al., 2023; Yu et al., 2025);其二,童期長(zhǎng)達(dá)3年至6年,顯著延緩育種進(jìn)程(Ferguson amp; Huang, 2007);其三,潰瘍病等生物脅迫與氣候變化導(dǎo)致的非生物脅迫交互影響,威脅產(chǎn)業(yè)可持續(xù)發(fā)展(Gao et al., 2025)。雖然傳統(tǒng)雜交育種已取得系列成果,但由于種質(zhì)資源匱乏和表型選擇效率低下,因此難以滿足市場(chǎng)對(duì)果實(shí)品質(zhì)、抗逆性和栽培適應(yīng)性的多維需求。基因編輯技術(shù)的突破為果樹育種提供了跨越式發(fā)展機(jī)遇。CRISPR/Cas9系統(tǒng)憑借其精準(zhǔn)性、高效性和多靶點(diǎn)編輯能力,在木本作物中展現(xiàn)出獨(dú)特優(yōu)勢(shì):通過靶向關(guān)鍵功能基因可實(shí)現(xiàn)性狀的定向改良,同時(shí)避免外源基因插入引發(fā)的生物安全爭(zhēng)議。全球主要農(nóng)業(yè)國(guó)家加速建立基因編輯作物的分類管理制度,其中日本、巴西、澳大利亞等14個(gè)國(guó)家已明確對(duì)無外源DNA的編輯植株實(shí)施與傳統(tǒng)育種品種等同的監(jiān)管政策(Entine et al., 2021),這為獼猴桃分子設(shè)計(jì)育種的產(chǎn)業(yè)化提供了制度保障。
當(dāng)前研究急需解決的核心科學(xué)問題在于:建立適配獼猴桃生物學(xué)特性的基因編輯技術(shù)體系,解析復(fù)雜農(nóng)藝性狀的分子調(diào)控網(wǎng)絡(luò),以及實(shí)現(xiàn)多性狀協(xié)同改良的精準(zhǔn)設(shè)計(jì)。本文系統(tǒng)綜述CRISPR/Cas9技術(shù)在獼猴桃育種中的最新研究進(jìn)展,重點(diǎn)探討基因組資源建設(shè)、性狀改良策略和技術(shù)轉(zhuǎn)化路徑之間的協(xié)同關(guān)系。通過整合多組學(xué)數(shù)據(jù)與合成生物學(xué)工具,揭示從基因編輯到表型輸出的調(diào)控規(guī)律,為加速獼猴桃突破性品種選育提供理論框架和技術(shù)路線。
1 CRISPR/Cas9技術(shù)演進(jìn)及其在果樹中的適用性
CRISPR/Cas9技術(shù)起源于細(xì)菌和古細(xì)菌的適應(yīng)性免疫系統(tǒng),其技術(shù)成熟與應(yīng)用拓展經(jīng)歷了多個(gè)關(guān)鍵發(fā)展階段(圖1)。1987年,科學(xué)家首次發(fā)現(xiàn)CRISPR(規(guī)律成簇間隔短回文重復(fù)序列),但其功能直至2005—2007年才被揭示:CRISPR包含病毒序列,并依賴Cas基因?qū)崿F(xiàn)免疫防御;CRISPR-Cas被證實(shí)為細(xì)菌的適應(yīng)性免疫機(jī)制,為后續(xù)基因編輯技術(shù)奠定理論基礎(chǔ)(Barrangou et al., 2007)。Jinek等(2012)研究確認(rèn)CRISPR-Cas9是RNA引導(dǎo)的DNA核酸內(nèi)切酶,通過crRNA:tracrRNA雙鏈引導(dǎo)實(shí)現(xiàn)靶向DNA雙鏈斷裂,標(biāo)志著其正式成為高效基因編輯工具,這一機(jī)制如圖2所示(Wang T et al., 2019)。2013年,該技術(shù)首次成功應(yīng)用于人類細(xì)胞(Cong et al., 2013),開啟了精準(zhǔn)基因組編輯的新紀(jì)元。此后,技術(shù)持續(xù)迭代:2013—2015年,開發(fā)堿基編輯(BE)(Komor et al., 2016);2016—2018年,推進(jìn)先導(dǎo)編輯(PE)及CRISPR-Cas13系統(tǒng)(Anzalone et al., 2019);2019—2020年,CRISPR-Cas9獲諾貝爾化學(xué)獎(jiǎng)(Doudna amp; Charpentier, 2014);2022年后,更聚焦于遞送系統(tǒng)優(yōu)化和植物基因編輯應(yīng)用(Javaid et al. 2022)。
CRISPR/Cas9技術(shù)在果樹中的適用性得益于其精準(zhǔn)性、多靶點(diǎn)編輯能力以及對(duì)復(fù)雜基因組的適應(yīng)性,該技術(shù)已成功應(yīng)用于柑橘、葡萄、蘋果、獼猴桃等果樹。例如,通過編輯柑橘CsLOB1基因,顯著增強(qiáng)其對(duì)潰瘍病的抗性(Zhou et al., 2020; Ma et al., 2023);在葡萄中靶向MLO基因,提高霉菌抗性,并優(yōu)化分枝結(jié)構(gòu)(Wan et al., 2020);而蘋果MdTFL1基因的編輯使開花時(shí)間提前,縮短育種周期(Charrier et al., 2019)。在獼猴桃中,基因編輯體系的建立得益于其遺傳轉(zhuǎn)化技術(shù)的突破。例如,Li PW等(2024)通過農(nóng)桿菌介導(dǎo)的無標(biāo)記轉(zhuǎn)化系統(tǒng),成功編輯了與鈣草酸晶體形成相關(guān)的AeCBL3基因,為獼猴桃基因功能研究提供了高效工具。在技術(shù)優(yōu)化方面,基于CRISPR的堿基編輯器(base editor)和先導(dǎo)編輯器(prime editor)已在蘋果、柑橘中實(shí)現(xiàn)單核苷酸精準(zhǔn)替換。例如,通過胞嘧啶脫氨酶融合Cas9n(D10A)在蘋果MdPG1位點(diǎn)引入無痕突變,降低果實(shí)軟化速率(Ma et al., 2023);此外,Wang等(2018)通過優(yōu)化雙sgRNA/Cas9表達(dá)盒,顯著提高了獼猴桃多基因編輯效率,為復(fù)雜性狀的協(xié)同改良奠定了基礎(chǔ)。
2 獼猴桃基因組資源與CRISPR/Cas9應(yīng)用的基礎(chǔ)
獼猴桃基因組的解析是CRISPR/Cas9技術(shù)精準(zhǔn)應(yīng)用的前提。近年來,隨著測(cè)序技術(shù)的突破和組學(xué)數(shù)據(jù)的積累,獼猴桃基因組資源已形成多層次、多物種的完整體系,為基因功能研究和編輯靶點(diǎn)挖掘提供了堅(jiān)實(shí)基礎(chǔ)。
Huang等(2013)首次報(bào)道了獼猴桃的基因組草圖,為后續(xù)研究奠定了基礎(chǔ);Wu等(2019)利用PacBio HiFi測(cè)序技術(shù)和Hi-C技術(shù)對(duì)中華獼猴桃進(jìn)行重新測(cè)序和組裝,獲得了高質(zhì)量的基因組序列。隨后,Xia等(2023)對(duì)自然二倍體美味獼猴桃(Actinidia chinensis var. deliciosa)進(jìn)行了染色體尺度組裝,發(fā)現(xiàn)與果實(shí)硬度相關(guān)的果膠代謝基因簇(如PME和PG)的拷貝數(shù)變異,為果實(shí)質(zhì)地改良提供了靶點(diǎn)。Yue等(2023)進(jìn)一步完成了中華獼猴桃的端粒到端粒(T2T)無間隙組裝,解決了著絲粒和端粒等復(fù)雜區(qū)域的序列空缺問題,顯著提升CRISPR/Cas9靶向設(shè)計(jì)的準(zhǔn)確性。Yao等(2022)對(duì)毛花獼猴桃(A. eriantha)的全基因組測(cè)序發(fā)現(xiàn),其特有的抗?jié)儾∠嚓P(guān)基因(如NBS-LRR家族)在馴化過程中部分丟失,提示可通過CRISPR/Cas9重新引入這些基因,以增強(qiáng)栽培品種的抗性。Yu等(2023)通過全基因組測(cè)序研究了兩個(gè)獼猴桃物種毛花獼猴桃
(A. eriantha)和長(zhǎng)葉獼猴桃(A. hemsleyana)之間的生殖隔離機(jī)制,包括染色體倒位和基因家族的變化,為利用基因編輯打破生殖隔離、拓寬遺傳多樣性提供了理論依據(jù)。
此外,還有多種其他獼猴桃種類或品種完成了高水平全基因組測(cè)序,如‘Red5’獼猴桃(A. chinensis)(Pilkington et al., 2018)、毛花獼猴桃(A. eriantha)(Tang et al., 2019; Yao et al., 2022; Liao et al., 2023; Wang et al., 2023)、六倍體美味獼猴桃(A. deliciosa)(Liu YB et al., 2024)、‘東紅’獼猴桃(A. chinensis)(Han et al., 2023)、闊葉獼猴桃(A. latifolia)(Han et al., 2023)、軟棗獼猴桃(A. arguta)(Lu et al., 2024; Zhang et al., 2024)、長(zhǎng)葉獼猴桃(A. hemsleyana)(Yu et al., 2023)、浙江獼猴桃(A. zhejiangensis)(Yu et al., 2023)、山梨獼猴桃(A. rufa)(Akagi et al., 2023; Li XL et al., 2024)、葛棗獼猴桃(A. polygama)(Akagi et al., 2023; Li XL et al., 2024)、長(zhǎng)果獼猴桃(A. longicarpa)(Li XL et al., 2024)、大籽獼猴桃(A. macrosperma)(Li XL et al., 2024)、網(wǎng)脈獼猴桃(A. reticulata)(Li XL et al., 2024)和黑蕊獼猴桃(A. melanandra)(Hemara et al., 2025)等。此外,Yu等(2025)利用8個(gè)獼猴桃物種的15個(gè)高質(zhì)量基因組組裝生成了獼猴桃泛基因組。越來越多的高質(zhì)量獼猴桃全基因組測(cè)序的完成及其功能基因挖掘?yàn)镃RISPR/Cas9基因編提供了豐富的靶點(diǎn)信息。各品種/種類的相關(guān)信息詳如表1所示。
基因組資源的豐富性需與高效的遺傳轉(zhuǎn)化技術(shù)結(jié)合才能實(shí)現(xiàn)編輯應(yīng)用。Li PW等(2024)開發(fā)的農(nóng)桿菌介導(dǎo)無標(biāo)記轉(zhuǎn)化系統(tǒng),通過利用發(fā)根農(nóng)桿菌(Agrobacterium rhizogenes)的Ri質(zhì)粒替代傳統(tǒng)雙元載體,成功實(shí)現(xiàn)了獼猴桃根系的穩(wěn)定編輯,并且無需抗生素篩選標(biāo)記。這一技術(shù)尤其適用于編輯與根系發(fā)育或抗逆性相關(guān)的基因(如AeCBL3)。另外,通過優(yōu)化雙sgRNA/Cas9克隆策略和表達(dá)盒,顯著提高了突變頻率和多靶點(diǎn)編輯效率(Wang et al., 2018)。這些技術(shù)突破使得獼猴桃成為少數(shù)可實(shí)現(xiàn)高效多靶點(diǎn)編輯的多年生果樹之一。
綜上所述,獼猴桃基因組資源的系統(tǒng)化建設(shè)與編輯技術(shù)的協(xié)同創(chuàng)新,為CRISPR/Cas9驅(qū)動(dòng)的分子設(shè)計(jì)育種奠定了“從序列到表型”的全鏈條基礎(chǔ)。
3 CRISPR技術(shù)在獼猴桃果實(shí)品質(zhì)改良中的應(yīng)用
3.1 有機(jī)酸代謝調(diào)控
果實(shí)風(fēng)味是獼猴桃商品化的重要指標(biāo),其中檸檬酸含量直接影響果實(shí)的酸甜平衡。通過CRISPR/Cas9靶向敲除NAC轉(zhuǎn)錄因子基因AcNAC1,發(fā)現(xiàn)突變體果實(shí)中檸檬酸含量顯著降低,同時(shí)伴隨乙烯合成相關(guān)基因的上調(diào)。Fu等(2023)的研究不僅揭示了AcNAC1在檸檬酸代謝中的核心作用,而且還為通過基因編輯定向調(diào)控果實(shí)風(fēng)味提供了范例。此外,F(xiàn)u等(2021)研究發(fā)現(xiàn),AcNAC1通過調(diào)控甲硫氨酸磺氧化物還原酶(MSR)影響乙烯合成,表明CRISPR/Cas9技術(shù)可用于解析復(fù)雜代謝網(wǎng)絡(luò)的級(jí)聯(lián)調(diào)控機(jī)制。
3.2 維生素C (抗壞血酸)合成增強(qiáng)
獼猴桃是維生素C含量最高的水果之一,其合成途徑受多個(gè)轉(zhuǎn)錄因子調(diào)控。Liu等(2022)、Liu X等(2023)利用CRISPR/Cas9技術(shù)揭示了bZIP轉(zhuǎn)錄因子AcePosF21和MYBS1-like/GBF3復(fù)合體在冷脅迫下激活GDP-L-半乳糖磷酸化酶(GGP3)表達(dá)的分子機(jī)制。通過編輯這些調(diào)控因子,可顯著提高果實(shí)中維生素C的積累量,為培育高營(yíng)養(yǎng)品種提供了新策略。
3.3 花青素合成與果肉色澤改良
紅心獼猴桃(如‘紅陽(yáng)’品種)因其獨(dú)特的果肉色澤而備受市場(chǎng)青睞。Wang LH等(2019)研究發(fā)現(xiàn),MYB/bHLH轉(zhuǎn)錄因子復(fù)合體通過激活花青素合成基因(如AcANS和AcF3GT1)調(diào)控果肉紅色形成。利用CRISPR/Cas9靶向編輯這些轉(zhuǎn)錄因子的啟動(dòng)子區(qū)域,可進(jìn)一步強(qiáng)化花青素合成,甚至實(shí)現(xiàn)非紅色品種的色澤改良。此類研究為獼猴桃外觀品質(zhì)的精準(zhǔn)設(shè)計(jì)奠定了基礎(chǔ)。
4 抗病性改良:從宿主到病原體的雙向策略
4.1 宿主抗病基因的強(qiáng)化
獼猴桃潰瘍病由丁香假單胞桿菌獼猴桃致病變種(Pseudomonas syringae pv. actinidiae, Psa)引起,是威脅全球獼猴桃產(chǎn)業(yè)的毀滅性病害。傳統(tǒng)育種中抗病基因的挖掘受限于種質(zhì)資源的匱乏,而CRISPR/Cas9技術(shù)為宿主抗病性的快速改良提供了新思路。Li PW等(2024)通過編輯AeCBL3基因,發(fā)現(xiàn)其調(diào)控的鈣草酸晶體在細(xì)胞壁中形成物理屏障,可顯著抑制病原菌侵染。這一發(fā)現(xiàn)揭示了植物次生代謝產(chǎn)物在抗病中的潛在作用,為通過基因編輯增強(qiáng)獼猴桃先天免疫提供了新靶點(diǎn)。此外,在紅心獼猴桃中鑒定的MYB/bHLH復(fù)合體不僅調(diào)控花青素合成,而且還參與苯丙烷代謝途徑,可能通過增強(qiáng)細(xì)胞壁木質(zhì)化間接提升抗病性(Chezem amp; Clay, 2016; Wang et al., 2022)。
4.2 病原體毒力基因的精準(zhǔn)干擾
除了改良宿主,直接靶向病原體基因是抗病策略的另一突破。Ho(2019)首次將CRISPR/Cas9系統(tǒng)引入Psa病原體,并成功構(gòu)建了攜帶活性CRISPR-Cas9系統(tǒng)的穿梭質(zhì)粒。隨后,利用該系統(tǒng)成功消除了Psa3中的質(zhì)粒p18708和整合性共軛元件Pac_ICE1,實(shí)現(xiàn)了對(duì)Psa3染色體基因的靶向編輯(Ho et al., 2020),為研究Psa的致病機(jī)制和開發(fā)新的防治策略提供了基礎(chǔ)。Liu B等(2023)進(jìn)一步優(yōu)化了這一策略,利用dCas9-BE3和dCas12a-BE3堿基編輯系統(tǒng),在不切斷DNA雙鏈的情況下,精準(zhǔn)突變Psa的hopAI1(毒性效應(yīng)因子)基因,使70%以上的病原菌毒力降低。這種基于病原體自身基因的靶向抑制策略為開發(fā)基于CRISPR/Cas9的微生物殺菌劑提供了理論依據(jù)。
5 株型與生長(zhǎng)周期的精準(zhǔn)調(diào)控
5.1 童期縮短與開花誘導(dǎo)
獼猴桃為多年生藤本植物,其長(zhǎng)達(dá)3年至5年的童期嚴(yán)重制約育種效率。Varkonyi-Gasic等(2019)通過CRISPR/Cas9敲除CENTRORADIALIS-like(CEN-like)基因,成功將攀援型獼猴桃轉(zhuǎn)化為緊湊型植株,并誘導(dǎo)其提前開花。這一研究揭示了CEN-like基因在維持頂端優(yōu)勢(shì)中的關(guān)鍵作用,為縮短育種周期提供了革命性工具。然而,Wang等(2021)研究發(fā)現(xiàn),雖然CEN基因編輯改變株型,但對(duì)果實(shí)成熟和采后生理無顯著影響,表明基因功能的模塊化特性可被選擇性利用。最新研究通過CRISPR-Cas9編輯CEN/CEN4基因,在多個(gè)獼猴桃物種中實(shí)現(xiàn)了快速開花表型。例如,雙等位基因編輯毛花獼猴桃(A. eriantha)的CEN或CEN4后,植株在組織培養(yǎng)階段或移栽后即開花,花朵與果實(shí)形態(tài)正常;而通過靶向四倍體軟棗獼猴桃(A. arguta)所有4個(gè)等位基因,獲得了極端早花表型,其中完全突變株表現(xiàn)為極度矮化并在主枝末端開花(Herath et al., 2023)。
5.2 休眠與萌芽的冷響應(yīng)調(diào)控
溫帶果樹的休眠解除依賴低溫積累,而氣候變化導(dǎo)致的暖冬可能擾亂這一過程。Voogd等(2022)鑒定到一個(gè)與擬南芥FLC同源的MADS-box的基因AcFLC-like,其表達(dá)受低溫誘導(dǎo),并通過表觀遺傳修飾(如組蛋白H3K27me3去甲基化)調(diào)控萌芽時(shí)間。通過CRISPR/Cas9編輯該基因的啟動(dòng)子區(qū)域,可打破其低溫依賴性,使獼猴桃在非最適氣候下仍能正常萌芽,為應(yīng)對(duì)氣候變化提供了適應(yīng)性解決方案。同時(shí),研究表明獼猴桃的BFT基因在調(diào)控生長(zhǎng)停止和休眠方面具有重要作用。通過CRISPR/Cas9介導(dǎo)的BFT基因誘變,產(chǎn)生了植株呈現(xiàn)出持續(xù)生長(zhǎng)的表型,這些植株延遲了生長(zhǎng)停止和落葉時(shí)間,并在落葉后提前萌芽,揭示了BFT基因在獼猴桃休眠和萌芽調(diào)控中的重要作用(Herath et al., 2022),為進(jìn)一步理解獼猴桃的生長(zhǎng)發(fā)育機(jī)制提供了重要的依據(jù)。
6 果實(shí)成熟與采后貯藏的分子設(shè)計(jì)
6.1 乙烯合成與信號(hào)通路的調(diào)控
獼猴桃為典型的呼吸躍變型果實(shí),乙烯是調(diào)控其成熟的核心因子。NAC轉(zhuǎn)錄因子通過激活甲硫氨酸磺氧化物還原酶(AcMSR)調(diào)控甲硫氨酸代謝,進(jìn)而影響乙烯合成。通過CRISPR/Cas9敲低AcMSR,可延緩果實(shí)軟化,并延長(zhǎng)貨架期(Fu et al., 2021)。此外,Wang等(2021)證實(shí),即使在高效率的CEN基因編輯株系中,乙烯通路的關(guān)鍵基因(如ACS和ACO)表達(dá)未受干擾,表明成熟調(diào)控網(wǎng)絡(luò)的獨(dú)立性。
6.2 細(xì)胞壁降解酶的靶向編輯
果實(shí)質(zhì)地軟化與多聚半乳糖醛酸酶(PG)和纖維素酶(Cel)活性密切相關(guān)。Zhou等(2020)綜述了在番茄等作物中利用CRISPR/Cas9沉默PG基因以改善耐貯性的案例,這一策略可直接遷移至獼猴桃。Ma等(2023)進(jìn)一步提出,通過多重編輯同時(shí)靶向PG、Cel和果膠甲酯酶(PME)基因,可能實(shí)現(xiàn)果實(shí)質(zhì)地的“可編程化”設(shè)計(jì)。
CRISPR技術(shù)正在驅(qū)動(dòng)獼猴桃育種的系統(tǒng)性革新。CRISPR/Cas9技術(shù)推動(dòng)了獼猴桃育種從單一性狀改良向多維度系統(tǒng)設(shè)計(jì)轉(zhuǎn)型。如表2所示,當(dāng)前研究已建立覆蓋果實(shí)品質(zhì)、抗病性、株型調(diào)控等關(guān)鍵農(nóng)藝性狀的基因編輯技術(shù)矩陣,并逐步揭示跨模塊調(diào)控網(wǎng)絡(luò)的互作規(guī)律。通過整合基因組學(xué)、表觀遺傳調(diào)控及合成生物學(xué)工具,研究者能夠精準(zhǔn)預(yù)測(cè)多基因疊加效應(yīng),構(gòu)建“編輯-驗(yàn)證-優(yōu)化”的閉環(huán)設(shè)計(jì)框架。這一技術(shù)體系不僅將傳統(tǒng)育種的線性迭代模式升級(jí)為并行式性狀組裝,而且還通過“編輯元件模塊化”“遞送系統(tǒng)通用化”等策略顯著提升了木本作物的育種效率。然而,多基因協(xié)同編輯的劑量效應(yīng)與生態(tài)適應(yīng)性仍是亟待突破的瓶頸,這為后續(xù)的技術(shù)優(yōu)化指明了方向。
7 技術(shù)挑戰(zhàn)與未來展望
7.1 編輯效率與脫靶效應(yīng)
盡管Wang等(2018)通過優(yōu)化sgRNA設(shè)計(jì)及Cas9表達(dá)系統(tǒng),將獼猴桃的編輯效率提升超80%,但在實(shí)際應(yīng)用中,仍面臨諸多挑戰(zhàn)。二倍體與多倍體獼猴桃的等位基因復(fù)雜性,使得編輯后表型不均一成為突出問題。多倍體獼猴桃擁有多套染色體和多個(gè)等位基因,在進(jìn)行基因編輯時(shí),難以保證所有等位基因都被精準(zhǔn)修飾。例如,在編輯與果實(shí)甜度相關(guān)基因時(shí),部分等位基因編輯成功可能提升甜度,而未編輯或編輯效果不佳的等位基因則會(huì)導(dǎo)致果實(shí)甜度參差不齊,從而影響商品價(jià)值。此外,脫靶效應(yīng)也不容忽視。CRISPR/Cas9系統(tǒng)可能會(huì)在非預(yù)期位點(diǎn)進(jìn)行切割,造成非靶向基因的突變,引發(fā)一系列未知的生物學(xué)效應(yīng),干擾實(shí)驗(yàn)結(jié)果和育種進(jìn)程。單倍體誘導(dǎo)與基因編輯結(jié)合,或許是突破這些瓶頸的有效途徑(Yao et al., 2018; Liu CL" et al., 2024; Nazir et al., 2024)。以利用MTL基因編輯創(chuàng)建單倍體為例(MTL基因編碼花粉特異性磷脂酶),單倍體僅含一套染色體,能簡(jiǎn)化基因編輯過程,避免等位基因干擾,使編輯效果更易預(yù)測(cè)和分析,有助于篩選出穩(wěn)定優(yōu)良性狀的植株,從而提高育種效率。
7.2 非轉(zhuǎn)基因編輯體系的建立
目前,多數(shù)獼猴桃基因編輯研究依賴農(nóng)桿菌介導(dǎo)的穩(wěn)定轉(zhuǎn)化技術(shù),而這一方法會(huì)導(dǎo)致轉(zhuǎn)基因爭(zhēng)議。消費(fèi)者對(duì)轉(zhuǎn)基因產(chǎn)品的安全性存在疑慮,監(jiān)管政策也較為嚴(yán)格,這限制了基因編輯獼猴桃的商業(yè)化進(jìn)程。因此,開發(fā)無標(biāo)記轉(zhuǎn)化系統(tǒng)及瞬時(shí)表達(dá)CRISPR組分(如RNP遞送)成為邁向商業(yè)化應(yīng)用的關(guān)鍵(Chandran et al., 2023; Li PW et al., 2024)。無標(biāo)記轉(zhuǎn)化系統(tǒng)可減少篩選標(biāo)記基因在編輯植株中的殘留,從而降低生物安全風(fēng)險(xiǎn);而RNP遞送技術(shù)則是將 CRISPR/Cas9蛋白和sgRNA直接導(dǎo)入細(xì)胞,避免了外源DNA整合到基因組中,有望打破轉(zhuǎn)基因爭(zhēng)議的壁壘,從而推動(dòng)基因編輯獼猴桃走向市場(chǎng)。
7.3 合成生物學(xué)與多維性狀整合
未來獼猴桃育種有望結(jié)合CRISPR/Cas9與合成生物學(xué)工具,實(shí)現(xiàn)多維性狀的整合調(diào)控。例如,將酵母的萜類合成通路引入獼猴桃,可增強(qiáng)果實(shí)香氣 (Taratynova et al., 2024),提升其市場(chǎng)競(jìng)爭(zhēng)力。同時(shí),借鑒Keul 等(2022)提出的“智能作物”概念,設(shè)計(jì)可響應(yīng)環(huán)境信號(hào)(如溫度、光照)自動(dòng)調(diào)控性狀的基因回路,能夠讓獼猴桃更好地適應(yīng)環(huán)境變化。在高溫時(shí),啟動(dòng)耐熱基因表達(dá);光照不足時(shí),增強(qiáng)光合作用相關(guān)基因活性,從而提高產(chǎn)量和品質(zhì),為培育多功能、適應(yīng)性強(qiáng)的獼猴桃新品種提供新方向。
雖然基因編輯技術(shù)在獼猴桃育種領(lǐng)域面臨挑戰(zhàn),但也充滿希望。隨著技術(shù)的不斷創(chuàng)新與升級(jí),編輯效率與脫靶效應(yīng)、非轉(zhuǎn)基因編輯體系建立等問題逐步被攻克,合成生物學(xué)帶來了更多育種新思路(圖3)。獼猴桃育種將更精準(zhǔn)、更高效,有望培育出更多滿足市場(chǎng)需求的優(yōu)質(zhì)品種,從而推動(dòng)獼猴桃產(chǎn)業(yè)的可持續(xù)發(fā)展,為全球水果市場(chǎng)注入可持續(xù)發(fā)展的潛力。
8 結(jié)語(yǔ)
CRISPR/Cas9技術(shù)正在系統(tǒng)性重構(gòu)獼猴桃育種的科學(xué)范式,推動(dòng)其從單一性狀改良向多維度精準(zhǔn)設(shè)計(jì)躍遷。在基礎(chǔ)研究層面,技術(shù)革新與基因組學(xué)突破形成雙向驅(qū)動(dòng):一方面,多順反子tRNA-sgRNA體系(PTG/Cas9)通過優(yōu)化sgRNA加工效率,將靶標(biāo)突變率提升近10倍(Wang et al., 2018);另一方面,多層次基因組數(shù)據(jù)庫(kù)(如KGD)和端粒到端粒參考基因組的構(gòu)建(Yue et al., 2020, 2023),為跨物種調(diào)控網(wǎng)絡(luò)解析提供了分子導(dǎo)航圖。值得關(guān)注的是,CEN/CEN4基因編輯系統(tǒng)在二倍體至四倍體獼猴桃中實(shí)現(xiàn)持續(xù)開花表型(Herath et al., 2023),將傳統(tǒng)5年童期壓縮至2個(gè)月(Herath et al., 2023),為表型關(guān)聯(lián)研究奠定了基礎(chǔ)。目前,CEN4基因編輯系統(tǒng)在二倍體和四倍體獼猴桃中均實(shí)現(xiàn)持續(xù)開花(Herath et al., 2023),為加速純合系創(chuàng)制提供了可能;而FT基因過表達(dá)與HA標(biāo)簽融合技術(shù)初步實(shí)現(xiàn)開花時(shí)間調(diào)控(Herath et al., 2023)。這些進(jìn)展為木本果樹速效育種樹立了新標(biāo)桿。在技術(shù)應(yīng)用層面,獼猴桃基因編輯已進(jìn)入產(chǎn)業(yè)化前夕:通過CEN4編輯創(chuàng)制的速生種質(zhì)可實(shí)現(xiàn)多世代性狀疊加,配合監(jiān)管政策對(duì)無外源DNA編輯作物的分類管理,顯著縮短品種選育周期。而機(jī)器學(xué)習(xí)驅(qū)動(dòng)的sgRNA脫靶預(yù)測(cè)、 光控CRISPR開關(guān)等前瞻性技術(shù), 為進(jìn)一步提升編輯精準(zhǔn)性和時(shí)空可控性儲(chǔ)備了創(chuàng)新勢(shì)能。
盡管目前仍需應(yīng)對(duì)基因流生態(tài)風(fēng)險(xiǎn)、公眾認(rèn)知差異等挑戰(zhàn),但在我國(guó)基因編輯生物安全評(píng)價(jià)體系逐步完善的政策紅利下(農(nóng)業(yè)農(nóng)村部,2023),CRISPR驅(qū)動(dòng)的獼猴桃精準(zhǔn)育種必將重塑全球水果產(chǎn)業(yè)格局——從氣候適應(yīng)性品種的快速迭代到功能性營(yíng)養(yǎng)成分的定向強(qiáng)化,這一技術(shù)體系正在為果樹產(chǎn)業(yè)的可持續(xù)發(fā)展注入強(qiáng)勁的科技動(dòng)能。
參考文獻(xiàn):
AKGI T, VARKONYI-GASIC E, SHIRASAWA K, et al., 2023. Recurrent neo-sex chromosome evolution in kiwifruit" [J]. Nature Plants, 9(4): 393-402.
ANZALONE AV, RANDOLPH PB, DAVIS JR, et al., 2019. Search-and-replace genome editing without double-strand breaks or donor DNA" [J]. Nature, 576(7785): 149-157.
BARRANGOU R, FREMAUX C, DEVEAU H, et al., 2007. CRISPR provides acquired resistance against viruses in prokaryotes" [J]. Science, 315(5819): 1709-1712.
CHANDRAN S, MUTHU V, UMAPATHY T, et al., 2023. CRISPR/Cas9 assisted genome editing technology for the improvement of horticultural crops" [J]. Journal of Phytopharmacology, 12(2): 127-134.
CHARRIER A, VERGNE E, DOUSSET N, et al., 2019. Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system" [J]. Frontiers in Plant Science, 10: 40.
CHEZEM WR, CLAY NK, 2016. Regulation of plant secondary metabolism and associated specialized cell development by MYBs and bHLHs" [J]. Phytochemistry, 131: 26-43.
CONG L, RAN FA, COX D, et al., 2013. Multiplex genome engineering using CRISPR/Cas systems" [J]. Science, 339(6121): 819-823.
DOUDNA JA, CHARPENTIER E, 2014. The new frontier of genome engineering with CRISPR-Cas9" [J]. Science, 346(6213): 1258096.
ENTINE J, FELIPE MSS, GROENEWALD JH, et al., 2021. Regulatory approaches for genome edited agricultural plants in select countries and jurisdictions around the world" [J]. Transgenic Research, 30: 551-584.
FERGUSON AR, HUANG H, 2007. Genetic resources of kiwifruit: Domestication and breeding" [J]. Horticultural Reviews, 33: 1-121.
FU BL, WANG WQ, LIU XF, et al., 2023. A dramatic decline in fruit citrate induced by mutagenesis of a NAC transcription factor, AcNAC1" [J]. Plant Biotechnology Journal, 21(10): 1695-1706.
FU BL, WANG WQ, LIU XF, et al., 2021. An ethylene-hypersensitive methionine sulfoxide reductase regulated by NAC transcription factors increases methionine pool size and ethylene production during kiwifruit ripening" [J]. New Phytologist, 232(2): 237-251.
GAO JY, LI JW, LIU CX, et al., 2025. Application of trichloroisocyanuric acid in controlling kiwifruit bacterial canker disease demonstrates its promising potential as an eco-friendly bactericide" [J]. Chemical and Biological Technologies in Agriculture, 12: 3.
HAN X, ZHANG YL, ZHANG Q, et al., 2023. Two haplotype-resolved, gap-free genome assemblies for Actinidia latifolia and Actinidia chinensis shed light on the regulatory mechanisms of vitamin C and sucrose metabolism in kiwifruit" [J]. Molecular Plant, 16(3): 452-470.
HEMARA LM, CHATTERJEE A, YEH SM, et al., 2025. Identification and characterization of innate immunity in Actinidia melanandra in response to Pseudomonas syringae pv. actinidiae" [J]. Plant Cell and Environment, 48(2): 1037-1050.
HERATH D, VOOGD C, MAYO-SMITH M, et al., 2022. CRISPR-Cas9-mediated mutagenesis of kiwifruit BFT genes results in an evergrowing but not early flowering phenotype" [J]. Plant Biotechnology Journal, 20(11): 2064-2076.
HERATH D, WANG TC, VOOGD C, et al., 2023. Strategies for fast breeding and improvement of Actinidia species" [J]. Horticulture Research, 10(3): uhad016.
HO J, 2019. Introducing CRISPR/Cas9 into the kiwifruit pathogen Pseudomonas syringae pv. actinidiae (Psa) [D]. Dunedin: University of Otago.
HO J, ZHAO M, WOJCIK S, et al., 2020. The application of the CRISPR-Cas9 system in Pseudomonas syringae pv. actinidiae" [J]. Journal of Medical Microbiology, 69(4): 478-486.
HUANG SX, DING J, DENG DJ, et al., 2013. Draft genome of the kiwifruit Actinidia chinensis" [J]. Nature Communications, 4: 2640.
JAVAID D, GANIE SY, HAJAM YA, et al., 2022. CRISPR/Cas9 system: A reliable and facile genome editing tool in modern biology" [J]. Molecular Biology Reports, 49(12): 12133-12150.
JINEK M, CHYLINSKI K, FONFARA I, et al., 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity" [J]. Science, 337(6096): 816-821.
KEUL AB, FARKAS A, CARPA R, et al., 2022. Development of smart fruit crops by genome editing" [J]. Turkish Journal of Agriculture and Forestry, 46(2): 129-140.
KOMOR AC, KIM YB, PACKER MS, et al., 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage" [J]. Nature, 533(7603): 420-424.
LI PW, ZHANG YL, LIANG J, et al., 2024. Agrobacterium rhizogenes-mediated marker-free transformation and gene editing system revealed that AeCBL3 mediates the formation of calcium oxalate crystal in kiwifruit" [J]. Molecular Horticulture, 4(1): 1.
LI XL, HUO LQ, LI XY, et al., 2024. Genomes of diverse Actinidia species provide insights into cis-regulatory motifs and genes associated with critical traits" [J]. BMC Biology, 22(1): 200.
LIAO GL, HUANG CH, XU XB, et al., 2023. A high-quality genome of Actinidia eriantha provides new insight into ascorbic acid regulation" [J]. Journal of Integrative Agriculture, 22(11): 3244-3255.
LIU B, SONG WP, WANG LC, et al., 2023. dCas9-BE3 and dCas12a-BE3 systems mediated base editing in kiwifruit canker causal agent Pseudomonas syringae pv. actinidiae" [J]. International Journal of Molecular Sciences, 24(5): 4597.
LIU CL, YAN S, MAO FM, et al., 2024. Large-scale production of rice haploids by combining superior haploid inducer with PTGMS lines" [J]. Plant Communications, 5(1): 101067.
LIU X, WU R, BULLEY SM, et al., 2023. Kiwifruit bZIP transcription factor AcePosF21 elicits ascorbic acid biosynthesis during cold stress" [J]. Plant Physiology, 192(2): 982-999.
LIU X, WU R, BULLEY SM, et al., 2022. Kiwifruit MYBS1-like and GBF3 transcription factors influence L-ascorbic acid biosynthesis by activating transcription of GDP-L-galactose phosphorylase 3" [J]. New Phytologist, 234(5): 1782-1800.
LIU YB, ZHOU Y, CHENG F, et al., 2024. Chromosome-level genome of putative autohexaploid Actinidia deliciosa provides insights into polyploidisation and evolution" [J]. Plant Journal, 118(1): 73-89.
LU XM, YU XF, LI GQ, et al., 2024. Genome assembly of autotetraploid Actinidia arguta highlights adaptive evolution and enables dissection of important economic traits" [J]. Plant Communications, 5(1): 100856.
MA ZM, MA LJ, ZHOU JH, 2023. Applications of CRISPR/Cas genome editing in economically important fruit crops: Recent advances and future directions" [J]. Molecular Horticulture, 3(1): 1-29.
Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2023. Safety
assessment and management measures for agricultural genetically modified organisms (2023 Revision)" [Z]. Beijing: China Agriculture Press. [農(nóng)業(yè)農(nóng)村部, 2023. 農(nóng)業(yè)轉(zhuǎn)基因生物安全評(píng)價(jià)管理辦法(2023年修訂) [Z]. 北京: 中國(guó)農(nóng)業(yè)出版社.]
NAZIR MF, LOU J, WANG Y, et al., 2024. Kiwifruit in the omics age: Advances in genomics, breeding, and beyond" [J]. Plants, 13(15): 2156.
PILKINGTON SM, CROWHURST R, HILARIO E, et al., 2018. A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants" [J]. BMC Genomics, 19(1): 257.
TANG W, SUN XP, YUE JY, et al., 2019. Chromosome-scale genome assembly of kiwifruit Actinidia eriantha with single-molecule sequencing and chromatin interaction mapping" [J]. Gigascience, 8(1): giz027.
TARATYNOVA MO, TIKHONOVA EE, FEDYAEVA IM, et al., 2024. Boosting geranyl diphosphate synthesis for linalool production in engineered Yarrowia lipolytica" [J]. Applied Biochemistry and Biotechnology, 196(10): 1304-1315.
VARKONYI-GASIC E, WANG T, VOOGD C, et al., 2019. Mutagenesis of kiwifruit CENTRORADIALIS-like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering" [J]. Plant Biotechnology Journal, 17(5): 869-880.
VOOGD C, BRIAN LA, WANG T, et al., 2022. A MADS-box gene with similarity to FLC is induced by cold and correlated with epigenetic changes to control budbreak in kiwifruit" [J]. New Phytologist, 233(4): 2111-2126.
WAN DY, GUO Y, CHENG Y, et al., 2020. CRISPR/Cas9-mediated mutagenesis of" VvMLO3 results in enhanced resistance to powdery mildew in grapevine (Vitis vinifera)" [J]. Horticulture Research, 7(1): 116.
WANG LH, TANG W, HU YW, et al., 2019. A MYB/bHLH complex regulates tissue-specific anthocyanin biosynthesis in the inner pericarp of red-centered kiwifruit Actinidia chinensis cv. Hongyang" [J]. Plant Journal, 99(2): 359-378.
WANG R, NARDOZZA S, NIEUWENHUIZEN NJ, et al., 2021. Kiwifruit maturation, ripening and environmental response is not affected by CENTRORADIALIS (CEN) gene-editing" [J]. New Zealand Journal of Crop and Horticultural Science, 49(4): 277-293.
WANG T, ZHANG HY, ZHU HL, 2019. CRISPR technology is revolutionizing the improvement of tomato and other fruit crops" [J]. Horticulture Research, 6(1): 77.
WANG WQ, MOSS SMA, ZENG L, et al., 2022. The red flesh of kiwifruit is differentially controlled by specific activation-repression systems" [J]. New Phytologist, 235(2): 630-645.
WANG ZP, WANG SB, LI DW, et al., 2018. Optimized paired-sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit" [J]. Plant Biotechnology Journal, 16(8): 1424-1433.
WANG YZ, DONG MH, WU Y, et al., 2023. Telomere-to-telomere and haplotype-resolved genome of the kiwifruit Actinidia eriantha" [J]. Molecular Horticulture, 3(1): 4.
WU HL, MA T, KANG MH, et al., 2019. A high-quality Actinidia chinensis (kiwifruit) genome" [J]. Horticulture Research, 6(1): 117.
XIA H, DENG HH, LI MZ, et al., 2023. Chromosome-scale genome assembly of a natural diploid kiwifruit (Actinidia chinensis var. deliciosa)" [J]. Scientific Data, 10(1): 92.
YAO L, ZHANG Y, LIU CX, et al., 2018. OsMATL mutation induces haploid seed formation in indica rice" [J]. Nature Plants, 4(8): 530-533.
YAO XH, WANG SB, WANG ZP, et al., 2022. The genome sequencing and comparative analysis of a wild kiwifruit Actinidia eriantha" [J]. Molecular Horticulture, 2(1): 13.
YU XF, QIN MY, QU MH, et al., 2023. Genomic analyses reveal dead-end hybridization between two deeply divergent kiwifruit species rather than homoploid hybrid speciation" [J]. Plant Journal, 115(6): 1528-1543.
YU XF, QU MH, WU P, et al., 2025. Super pan-genome reveals extensive genomic variations associated with phenotypic divergence in Actinidia" [J]. Molecular Horticulture, 5(1): 4.
YUE JY, LIU JC, TANG W, et al., 2020. Kiwifruit Genome Database (KGD): A comprehensive resource for kiwifruit genomics" [J]. Horticulture Research, 7(1): 117.
YUE JY, CHEN QY, WANG YZ, et al., 2023. Telomere-to-telomere and gap-free reference genome assembly of the kiwifruit Actinidia chinensis" [J]. Horticulture Research, 10(1): uhac264.
ZHANG F, WANG YZ, LIN YZ, et al., 2024. Haplotype-resolved genome assembly provides insights into evolutionary history of the Actinidia arguta tetraploid" [J]. Molecular Horticulture, 4(1): 4.
ZHOU JH, LI DD, WANG GM, et al., 2020. Application and future perspective of CRISPR/Cas9 genome editing in fruit crops" [J]. Journal of Integrative Plant Biology, 62(3): 269-286.
(責(zé)任編輯 蔣巧媛 王登惠)
基金項(xiàng)目:" 廣西科技重大專項(xiàng)(桂科AA23023008); 國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系“廣西落葉果樹產(chǎn)業(yè)創(chuàng)新團(tuán)隊(duì)”項(xiàng)目(nycytxgxcxtd-2023-13-01); 廣西植物研究所基本業(yè)務(wù)費(fèi)項(xiàng)目(桂植業(yè)24007); 廣西植物功能物質(zhì)與資源持續(xù)利用重點(diǎn)實(shí)驗(yàn)室項(xiàng)目(ZRJJ2023-3)。
第一作者: 朱榮香(1993—),博士,主要從事園藝植物CRISPR基因編輯育種研究,(E-mail)zrx@gxib.cn。
*通信作者:" 王發(fā)明,博士,研究員,主要從事園藝植物分子育種研究,(E-mail)wfm_rz@163.com.