摘 要:基于雙線性軟鋼阻尼器模型,建立了單自由度結(jié)構(gòu)-位移型軟鋼阻尼器系統(tǒng)運(yùn)動(dòng)方程,分段求解了自由振動(dòng)下的結(jié)構(gòu)響應(yīng),推導(dǎo)了首個(gè)振動(dòng)循環(huán)的位移解析解、振動(dòng)幅值及周期,建立了振動(dòng)循環(huán)間振動(dòng)幅值的遞推表達(dá)式和任意循環(huán)的周期表達(dá)式,得到了各振動(dòng)循環(huán)的幅值與周期的近似解,并通過仿真分析進(jìn)行了驗(yàn)證。結(jié)果表明:當(dāng)初始位移大于軟鋼阻尼器屈服位移時(shí),兩振動(dòng)循環(huán)間的幅值衰減量近似相同,各振動(dòng)循環(huán)的周期也近似相等,近似解與解析解基本一致;僅當(dāng)幅值逐漸減小接近屈服位移時(shí),幅值和周期的近似解和解析解出現(xiàn)一定誤差。
關(guān)鍵詞:軟鋼阻尼器;雙線性模型;自由振動(dòng);線性衰減
中圖分類號(hào):TU352.1" 文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1000-4939(2025)01-0206-06
Damping and response characteristics of the displacement-typemild steel damper
CHEN Sheng1,WANG Wenxi1,ZHANG Jing2,Wang Xiuyong2
(1.Hunan Key Laboratory of Wind Engineering and Bridge Engineering,Hunan University,
410082 Changsha,China;
2.Hunan Provincial Key Laboratory of Structures for Wind Resistance and Vibration Control,Hunan University of Science and Technology,411201 Xiangtan,China
)
Abstract:First,based on the bilinear mild steel damper model,the motion equation of the single-degree-of-freedom structure-displacement mild steel damper system is established.Then,by solving the structural response under free vibration,the displacement analytical solution,vibration amplitude and period of the first vibration cycle are derived.Last,amplitude and period,the recursive expression of the vibration amplitude between vibration cycles and the period expression of any cycle are established,and the approximate solution of the amplitude and period of each vibration cycle is obtained,which is verified by simulation analysis.The results show that when the initial displacement is greater than the yield displacement of the mild steel damper,the amplitude attenuation between the two vibration cycles is approximately the same,and the period of each vibration cycle is also approximately the same,which the approximate solution is basically the same as the analytical solution.Only when the amplitude gradually decreases and approaches the yield displacement,a certain error occurs in the approximate and analytical solutions of amplitude and period.
Key words:mild steel damper;bilinear model;free vibration;linear attenuation
結(jié)構(gòu)在風(fēng)、地震等動(dòng)力荷載下容易產(chǎn)生大幅振動(dòng),采用阻尼器等減振裝置能有效消耗結(jié)構(gòu)振動(dòng)能量,從而達(dá)到減振目的[1]。阻尼器可分為位移相關(guān)型阻尼器和速度相關(guān)性阻尼器[2],位移相關(guān)型阻尼器的耗能與其自身變形和相對(duì)滑動(dòng)位移有關(guān),常見的有軟鋼阻尼器、摩擦阻尼器和記憶合金阻尼器[3-5];而速度相關(guān)性阻尼器的阻尼特性與加載頻率有關(guān),常用的有黏滯阻尼器和黏彈性阻尼器[6]。
軟鋼阻尼器由于其穩(wěn)定的滯回特性、良好的耗能能力、構(gòu)造簡(jiǎn)單、造價(jià)低廉、受環(huán)境和溫度影響小以及維護(hù)方便,引發(fā)國內(nèi)外廣泛研究[7]。自從1972年KELLY等[8]最早提出了金屬屈服阻尼器,國內(nèi)外學(xué)者也設(shè)計(jì)開發(fā)了許多不同形式的軟鋼阻尼器[9-10]。由于軟鋼阻尼器恢復(fù)力模型為彈塑性模型,從而導(dǎo)致了結(jié)構(gòu)動(dòng)力學(xué)方程的非線性化,一般對(duì)軟鋼阻尼器非線性力進(jìn)行等價(jià)線性化處理[11]。即根據(jù)軟鋼阻尼器和黏滯阻尼器在一個(gè)振動(dòng)循環(huán)內(nèi)所消耗能量相等,推導(dǎo)出軟鋼阻尼器的等效黏滯阻尼系數(shù)[12]。IWAN等[13]認(rèn)為基于割線剛度和耗能的等概率幅值平均的等效線性化方法具有較好的精度。
歐進(jìn)萍等[14]
考慮多自由度耗能減震的特點(diǎn),得出采用雙線性模型的軟鋼阻尼器的等效線性阻尼和剛度。
軟鋼阻尼器的等效黏性阻尼系數(shù)依賴于振動(dòng)幅值和頻率,在進(jìn)行時(shí)程分析容易產(chǎn)生較大的誤差,同時(shí),對(duì)軟鋼阻尼器進(jìn)行等價(jià)線性化處理忽略了軟鋼阻尼器的減振特征。本研究基于單自由度-軟鋼阻尼器耦合動(dòng)力模型,推導(dǎo)了運(yùn)動(dòng)幅值和周期的解析遞推關(guān)系式以及近似遞推關(guān)系式,得到了軟鋼阻尼器在自由振動(dòng)下的阻尼特征。
1 自由振動(dòng)下單自由度結(jié)構(gòu)-軟鋼阻尼器系統(tǒng)振動(dòng)分析
1.1 軟鋼阻尼器本構(gòu)關(guān)系
圖1為位移型軟鋼阻尼器在初始加載期間簡(jiǎn)化的力-變形關(guān)系,即阻尼器的本構(gòu)關(guān)系圖。其中ke為阻尼器處于彈性階段的彈性剛度,kp為阻尼器處于塑性階段的塑性剛度,xep為阻尼器屈服位移。
1.2 單自由度結(jié)構(gòu)-軟鋼阻尼器運(yùn)動(dòng)方程
單自由度結(jié)構(gòu)-軟鋼阻尼器耦合力學(xué)模型如圖2所示。為了簡(jiǎn)化,忽略結(jié)構(gòu)固有阻尼。在圖2中:m為結(jié)構(gòu)質(zhì)量,k為結(jié)構(gòu)剛度,x0為自由振動(dòng)時(shí)結(jié)構(gòu)初始位移。
假設(shè)初始位移大于屈服位移(初始位移小于屈服位移時(shí),阻尼器只提供彈性剛度ke,本研究不進(jìn)行推導(dǎo)),單自由度結(jié)構(gòu)-軟鋼阻尼器系統(tǒng)的自由振動(dòng)方程可表示為
2 數(shù)值分析與驗(yàn)證
為了分析和驗(yàn)證上節(jié)得到的幅值與周期近似解,對(duì)單自由度結(jié)構(gòu)-軟鋼阻尼器系統(tǒng)自由振動(dòng)響應(yīng)進(jìn)行數(shù)值分析。所采用的模型參數(shù)如表1,數(shù)值仿真采用Newmark-β法,其中Newmark-β中參數(shù)λ取值為0.5,參數(shù)β取值為1/6,數(shù)值求解過程無條件穩(wěn)定。自由振動(dòng)時(shí)主結(jié)構(gòu)的初始位移設(shè)為0.05m。
圖5、圖6表示經(jīng)歷i個(gè)振動(dòng)循環(huán)后的幅值和周期解析解與近似解的比較。由圖可知,近似解與解析解基本一致,當(dāng)幅值逐漸減小接近屈服位移時(shí),幅值和周期的近似解和解析解的差值增大,此時(shí)幅值的近似解相對(duì)于解析解偏小,而周期的近似解相對(duì)于解析解偏大;幅值等于屈曲位移時(shí)幅值和周期解析解與近似解相等。
圖7給出了單自由度結(jié)構(gòu)-雙線性軟鋼阻尼器模型自由振動(dòng)下的仿真位移時(shí)程,同時(shí)也給出了解析解幅值點(diǎn)和近似解幅值點(diǎn),對(duì)應(yīng)的連線為其包絡(luò)線。由圖7可知:仿真幅值點(diǎn)和解析幅值點(diǎn)完全一致,驗(yàn)證了理論推導(dǎo)的正確性;近似解與仿真解在結(jié)構(gòu)振動(dòng)前4s內(nèi)與仿真峰值幾乎一致;在結(jié)構(gòu)振動(dòng)4~6s之間,也就是阻尼器由彈塑性變形到完全彈性變形過渡階段時(shí),有一定的偏差;當(dāng)阻尼器完全處于彈性變形階段,近似解與仿真解只存在較小的偏差。由于在衰減階段,結(jié)構(gòu)呈現(xiàn)線性衰減,故在衰減階段峰值連線為直線,近似解峰值點(diǎn)連線斜率相對(duì)于解析解峰值點(diǎn)連線的斜率稍大,意味著衰減斜率近似值比實(shí)際稍大。
圖8為仿真時(shí)程圖與近似時(shí)程圖對(duì)比,其中近似時(shí)程圖由式(32)得出,從圖8可看出仿真時(shí)程曲線與近似時(shí)程曲線基本一致,僅當(dāng)幅值逐漸減小接近屈服位移時(shí),仿真時(shí)程曲線與近似時(shí)程曲線出現(xiàn)一定偏差。
3 結(jié) 論
本研究建立了單自由度結(jié)構(gòu)-位移型軟鋼阻尼器系統(tǒng)運(yùn)動(dòng)方程,研究了位移型軟鋼阻尼器的阻尼特征以及自由振動(dòng)下的響應(yīng)衰減特征,結(jié)論如下。
1)分段求解了自由振動(dòng)下的結(jié)構(gòu)響應(yīng),得到了首個(gè)振動(dòng)循環(huán)的位移解析解、振動(dòng)幅值及周期。在此基礎(chǔ)上,建立了振動(dòng)循環(huán)間振動(dòng)幅值的遞推表達(dá)式和任意循環(huán)的周期表達(dá)式。
2)當(dāng)初始位移遠(yuǎn)大于軟鋼阻尼器屈服位移時(shí),得到了各振動(dòng)循環(huán)的幅值與周期的近似解。結(jié)果表明兩振動(dòng)循環(huán)間的幅值衰減量近似相同,各振動(dòng)循環(huán)的周期也近似相等。
3)當(dāng)結(jié)構(gòu)振動(dòng)振幅大于阻尼器屈服位移時(shí),位移振幅隨著時(shí)間近似按線性衰減;當(dāng)結(jié)構(gòu)振動(dòng)幅值小于阻尼器屈服位移時(shí),阻尼器只提供剛度,不提供耗能效果。
4)仿真分析表明,近似解與解析解基本一致,僅當(dāng)幅值逐漸減小接近屈服位移時(shí),幅值和周期的近似解和解析解出現(xiàn)一定誤差。
參考文獻(xiàn):
[1] 王修勇, 孫洪鑫,彭劍,等.大跨橋梁結(jié)構(gòu)振動(dòng)控制理論與技術(shù)[M].北京:人民交通出版社,2021.
[2] 中華人民共和國住房和城鄉(xiāng)建設(shè)部,中華人民共和國國家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局.建筑抗震設(shè)計(jì)標(biāo)準(zhǔn):GB/T 50011—2010[S].北京:中國建筑工業(yè)出版社,2010.
[3] 邢書濤,郭迅.一種新型軟鋼阻尼器力學(xué)性能和減震效果的研究[J].地震工程與工程振動(dòng),2003,23(6):179-186.
XING Shutao,GUO Xun.Study on mechanical behavior and effectiveness of a new type of mild steel damper[J].Earthquake engineering and engineering vibration,2003,23(6):179-186(in Chinese).
[4] 張玉敏,谷玉珍.摩擦阻尼器在建筑結(jié)構(gòu)減震應(yīng)用的現(xiàn)狀研究[J].建筑結(jié)構(gòu),2018,48(增刊2):387-392.
ZHANG Yumin,GU Yuzhen.Research on the status quo of frictionenergy dissipation in building structure damping application[J].Building structure,2018,48(S2):387-392(in Chinese).
[5] 姜袁,彭剛.SMA阻尼器在土木結(jié)構(gòu)被動(dòng)控制中的運(yùn)用[J].應(yīng)用力學(xué)學(xué)報(bào),2004,21(4):88-92.
JIANG Yuan,PENG Gang.SMA damper used for civil structure passive control[J].Chinese journal of applied mechanics,2004,21(4):88-92(in Chinese).
[6] 沈星,倪曉博,葉愛君.橋梁新型橫向金屬阻尼器研究[J].振動(dòng)與沖擊,2014,33(21):96-101.
SHEN Xing,NI Xiaobo,YE Aijun.A new type of metallic damper for bridges’ aseismic performance in transverse direction[J].Journal of vibration and shock,2014,33(21):96-101(in Chinese).
[7] 李創(chuàng)第,葛新廣,陸運(yùn)軍.粘滯和粘彈性阻尼器減震結(jié)構(gòu)的等效阻尼[J].應(yīng)用力學(xué)學(xué)報(bào),2011,28(4):328-333.
LI Chuangdi,GE Xinguang,LU Yunjun.Equivalent damping of dissipation structures with viscous and viscoelastic dampers[J].Chinese journal of applied mechanics,2011,28(4):328-333(in Chinese).
[8] KELLY J M,SKINNER R I,HEINE A J.Mechanisms of energy absorption in special devices for use in earthquake resistant structures[J].Bulletin of the New Zealand Society for Earthquake Engineering,1972,5(3):63-88.
[9] JAVANMARDI A,IBRAHIM Z,GHAEDI K,et al.State-of-the-art review of metallic dampers:testing,development and implementation[J].Archives of computational methods in engineering,2020,27(2):455-478.
[10]LOTFI MAHYARI S,TAJMIR RIAHI H,HASHEMI M.Investigating the analytical and experimental performance of a pure torsional yielding damper[J].Journal of constructional steel research,2019,161:385-399.
[11]周云.金屬耗能減震結(jié)構(gòu)設(shè)計(jì)理論及應(yīng)用[M].武漢:武漢理工大學(xué)出版社,2013.
[12]CHOPRA A K.Dynamics of structures[M].[S.l.]:Pearson Education India,2007.
[13]IWAN W D,GATES N C.Estimating earthquake response of simple hysteretic structures[J].Journal of the engineering mechanics division,1979,105(3):391-405.
[14]歐進(jìn)萍,吳斌,龍旭.耗能減振結(jié)構(gòu)的抗震設(shè)計(jì)方法[J].地震工程與工程振動(dòng),1998,18(2):98-107.
OU Jinping,WU Bin,LONG Xu.Aseismic design methods of passive energy dissipation systems[J].Earthquake engineering and engineering vibration,1998,18(2):98-107(in Chinese).
(編輯 張璐)