• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    伊犁河谷不同林齡樹上干杏林土壤線蟲的群落特征

    2024-12-31 00:00:00王巧莉崔東劉文新楊延成楊海軍江智誠閆江超曹敬張敏如
    果樹學(xué)報 2024年12期
    關(guān)鍵詞:群落結(jié)構(gòu)多樣性

    摘" " 要:【目的】明確伊犁河谷樹上干杏林土壤線蟲的群落特征?!痉椒ā窟x取4、8、10和14年生樹上干杏林為研究對象,以荒地為對照,分析土壤線蟲群落組成、分布、生態(tài)指數(shù)及其類群組成與土壤理化性質(zhì)的關(guān)系。【結(jié)果】4和10年生樹上干杏林食細菌線蟲占比高于其他線蟲類群;8和14年生樹上干杏林植物寄生線蟲占比高于其他線蟲類群。8、10、14年生樹上干杏林土壤線蟲密度在10~20 cm土層較高,4年生樹上干杏林土壤線蟲密度在0~10 cm土層較高。H’指數(shù)表明,10年生樹上干杏林土壤線蟲多樣性最低;4年生樹上干杏林MI指數(shù)顯著低于其他樣地(S10除外),WI指數(shù)顯著高于其他樣地,表明土壤受到的干擾程度大,土壤健康狀況良好;8年生樹上干杏林MI指數(shù)和PPI指數(shù)高于其他樣地,表明其受到的干擾較小,土壤環(huán)境穩(wěn)定性較低。土壤全鉀含量、含水率、pH和鈣含量是影響樹上干杏林土壤線蟲類群組成的主要環(huán)境因子?!窘Y(jié)論】4和10年生樹上干杏林主要營養(yǎng)類群為食細菌線蟲,土壤健康狀況良好;8和14年生樹上干杏林主要營養(yǎng)類群為植物寄生線蟲,土壤健康狀況較差。研究結(jié)果可為樹上干杏林合理種植提供理論依據(jù)。

    關(guān)鍵詞:樹上干杏林;土壤線蟲;群落結(jié)構(gòu);多樣性

    中圖分類號:S662.2 文獻標志碼:A 文章編號:1009-9980(2024)12-2543-12

    Community characteristics of soil nematode in Shushanggan apricot plantations of different ages in the Yili River Valley

    WANG Qiaoli1, 2, 3, CUI Dong1, 2*, LIU Wenxin1, 2, YANG Yancheng1, 2, YANG Haijun2, 4, JIANG Zhicheng1, 2, YAN Jiangchao1, 2, CAO Jing1, 2, 3, ZHANG Minru1, 2, 3

    (1Institute of Resources and Ecology, Yili Normal University, Yining 835000, Xinjiang, China; 2College of Resources and Environment, Yili Normal University, Yining 835000, Xinjiang, China; 3College of Biological Science and Technology, Yili Normal University, Yining 835000, Xinjiang, China; 4College of Ecology and Environment, Yunnan University, Kunming 650000, Yunnan, China)

    Abstract: 【Objective】 Nematodes are one of the classic indicators of soil health. This study aimed to clarify the composition of soil nematode community and its responsive characteristics to soil physicochemical properties in Shushanggan apricot plantations in Yili River Valley, so as to provide a theoretical basis for sustainable management of Shushanggan apricot plantations. 【Methods】 In this experiment, soil samples of Shushanggan apricot plantations aged at 4, 8, 10 and 14 years and nearly barren land were collected in Sangong township, Huocheng county in September, 2023. The geographical location and elevation of the sampling site were determined by GPS. Five undertree forestlands of Shushanggan apricot plantations with different planting years were selected as the quadrates (20 m′20 m), and the soil layers were selected at 0-10 cm and 10-20 cm. Five small samples (10 cm′10 cm) were selected from the plantation land under each tree, 0.5 m away from the base of trunk and mixed into one soil sample by five-point sampling method. A total of 50 soil samples were collected from the five plots. An appropriate amount of soil sample was taken from each layer of each quadrate, mixed evenly and air-dried to determine the soil physicochemical properties. Soil nematodes were isolated by sucrose density gradient centrifugation and identified by morphological method. To investigate the number, composition and ecological function index of soil nematode community in Shushanggan apricot plantations, this research was conducted to analyze the relationship between soil nematode groups and soil physicochemical properties. 【Results】 A total of 7066 nematodes were isolated from all plots, and 52 genera of nematodes were identified, belonging to 2 classes, 6 orders and 23 families, with an average density of 373 nematodes per 100 g of dry soil. The density of soil nematodes in Shushanggan apricot plantations decreased first, reaching the highest in 10 years (752 nematodes per 100 g dry soil), and then increased. The dominant genera in the Shushanggan apricot plantations of different ages were Acrobeloides, Paratylenchus and Microdorylaimus. Among them, the dominant genera of the 4- and 10-year-old apricot plantations are Acrobeloides, Chiloplacus, Aphelenchus and Microdorylaimus. The dominant genera of the 8- and 14-year-old plantations are Pararotylenchus, Rotylenchus and Helicotylenchus. According to the c-p value, c-p2 and c-p3 were the main groups. The density of soil nematode in the 8-, 10- and 14-year-old plantations was higher in the 10-20 cm soil layer, and higher in the 0-10 cm soil layer on the 4 years old plantations. There were significant differences in diversity index (H′) between 10 years old Shushanggan apricot plantations and barren land (p<0.05). Soil nematodes diversity index (H′) in Shushanggan apricot plantations decreased first, reaching the lowest in 10-years, and then increased. The plant parasitic index (PPI) in barren land was significantly lower than that in Shushanggan apricot plantations of different ages. The maturity index (MI) of the 4-year-old Shushanggan apricot plantations was significantly lower than that of other plots, while the Wasselska index (WI) was significantly higher than that of other plots. The nematode channel ratio (NCR) of the 8-year-old plantations was significantly lower than that of the 10-year-old Shushanggan apricot plantations, while the MI and PPI of the 8-year-old plantations were the highest. The total kalium (TK), pH and calcium (Ca) content in the soil were the main environment factors affecting the composition of soil community in Shushanggan apricot plantations (p<0.05). Correlation analysis showed that TK was negatively correlated with c-p1 and bacterivores nematodes (Ba). Soil moisture content (SM) was positively correlated with all nematode trophic groups and c-p groups. pH and Ca content were significantly and positively correlated with Fu and negatively correlated with c-p3 and Pp. 【Conclusion】 After the conversion of barren land to Shushanggan apricot plantations, the tolerance nematodes c-p2 and c-p3 increased and the sensitivity nematodes c-p4 decreased, indicating that Shushanggan apricot plantations were disturbed to varying degrees in different age’s plantations, and Shushanggan apricot plantations were disturbed the most at 4 years old, followed by 10 years old. Although the density of nematode in the 10-year-old Shushanggan apricot plantations was higher than that in other plots, the stability and diversity of nematode community were poor due to human interference, while the diversity and stability in the barren land were higher than those in other plots, indicating that the soil nematode diversity was higher in undisturbed ecosystems. In general, the disturbance of 4- and 10-year-old plantatios was larger, and the disturbance of 8- and 10-year-old ones was smaller. However, the soil enrichment degree in 4- and 10-year-old Shushanggan apricot plantations was higher, and the food web structure was more mature. Instead, the soil food chain of 8- and 14-year-old plantations was shorter, and the soil organic matter conversion ability was poor. In conclusion, the main trophic groups of 4- and 10- year-old plantations were Bacterivores, and the soil health was good. The main trophic groups of 8- and 14-year-old plantations were Fungivores, and the soil health was poor. The results provided theoretical basis for rational planting of Shushanggan apricot plantations.

    Key words: Shushanggan apricot plantations; Soil nematode; Community structure; Diversity

    土壤線蟲是地球上數(shù)量最多的后生動物,具有遷移能力弱、世代周期短、功能類群豐富、占據(jù)食物網(wǎng)關(guān)鍵鏈接、對土地利用等變化擾動響應(yīng)敏感等特點,是最常用的土壤質(zhì)量與功能指示生物之一[1-2]。土壤線蟲豐度、多樣性等特征都會隨著土壤環(huán)境的變化而表現(xiàn)出不同的變化趨勢,其生態(tài)指數(shù)能夠反映受擾動后或不同生態(tài)系統(tǒng)中土壤線蟲群落結(jié)構(gòu)和功能的變化,指示土壤有機物降解路徑及食物網(wǎng)結(jié)構(gòu)變化等特征[3]。鐘爽等[4]、張雪艷等[5]和高飛等[6]研究均表明,隨著種植年限增加,植物寄生線蟲將引起連作障礙,對農(nóng)業(yè)可持續(xù)發(fā)展產(chǎn)生嚴重的影響。還有研究表明,種植年限增加會使土壤的主要分解途徑由細菌轉(zhuǎn)化為真菌,且對土壤肥力、理化性質(zhì)、酶和微生物群落產(chǎn)生負面影響,從而使土壤食物網(wǎng)遭到破壞,土壤健康狀況惡化[7]。同時,人類干擾及環(huán)境變化也會對線蟲的多樣性產(chǎn)生影響[8]。例如,施肥處理會增加食微線蟲比例,降低植物寄生線蟲豐度,對維持土壤食物網(wǎng)結(jié)構(gòu)與功能的成熟穩(wěn)定具有正向調(diào)節(jié)作用[9]。因此,明確土壤線蟲的營養(yǎng)類群及其生物多樣性對土壤健康狀況及農(nóng)業(yè)發(fā)展具有重要的意義[10]。

    樹上干杏(Armeniaca vulgaris var. ansu)(俗稱吊死干)是新疆伊犁特有的杏資源,具有極高的經(jīng)濟價值和引種價值[11]。在當前農(nóng)業(yè)結(jié)構(gòu)調(diào)整和農(nóng)業(yè)多元化發(fā)展的大背景下,為推動耕地與果園協(xié)調(diào)共生,伊寧州霍城縣三宮村將荒山改造成杏林等經(jīng)濟林,成為當?shù)剞r(nóng)民脫貧致富的主要途徑之一[12]。筆者在本研究中依托伊犁霍城縣三宮鄉(xiāng)樹上干杏種植園,選擇不同林齡樹上干杏林并以周邊未開墾的荒地作為對照,通過研究樹上干杏林土壤線蟲群落結(jié)構(gòu)的變化,分析土壤線蟲生態(tài)指數(shù)、土壤理化性質(zhì)對樹上干杏林土壤線蟲營養(yǎng)類群的影響等,評價不同林齡樹上干杏林土壤質(zhì)量的狀況,以期為完善樹上干杏林合理種植、管理技術(shù)和土地可持續(xù)利用提供一定的理論依據(jù)。

    1 材料和方法

    1.1 試驗區(qū)概況

    研究地點選擇新疆伊犁哈薩克自治州霍城縣三宮鄉(xiāng)樹上干杏種植林地,地理坐標80o09′~84o56′ E和42o14′~44o50′ N。該地區(qū)地勢起伏不定,三面環(huán)山,東高西低,形成一種特殊的“濕島”結(jié)構(gòu)[13]。土壤為砂壤土,氣候類型為溫帶大陸性半濕潤荒漠氣候,年平均氣溫10.4 ℃,年平均降水量417.6 mm,土地肥沃,水源充足[14]。這種地貌特征和氣候環(huán)境使得該地區(qū)的水分蒸發(fā)和降水分配表現(xiàn)出顯著的地域差異,為樹上干杏的種植提供了有利條件[15]。研究區(qū)屬于個人承包種植林地,施肥、灌溉等管理方法一致,基本條件相同。肥料施用主要依賴于廄肥、堆肥和牛糞尿等,此外還混合施用了鉀素肥料和速效氮素化肥等,每株平均施用廄肥50 kg,同時配合1.2 kg N、P、K三元復(fù)合肥。灌溉方式為滴灌,單行種植,種植密度為行株距5 m′4.2 m,每666.7 m2鐘植17~19株。樹上干杏林周圍大多為尚未開發(fā)利用的荒地。

    1.2 樣品采集與測定方法

    1.2.1 土壤樣品采集及土壤線蟲分離鑒定 試驗于2023年9月在霍城縣三宮鄉(xiāng)選擇林齡4(S4)、8(S8)、10(S10)、14(S14)年生的樹上干杏和周邊荒地(對照)為研究樣地進行樣品采集。用GPS測定采樣地的地理位置與海拔,不同種植年份的樹上干杏林分別選取5個樹下林地作為樣方(20 m′20 m),按0~10、10~20 cm采集土樣,采用五點采樣法在每個樹下林地距離樹干基部0.5 m的位置分別選擇5個小樣方(10 cm′10 cm)混合為1個土樣,5個樣地共計50份土樣。在每個樣方的各層取適量土樣,混合均勻后風(fēng)干,用于測定土壤理化性質(zhì)。每袋土樣稱取50 g新鮮土壤放入4 ℃冰箱中低溫保存,并采用蔗糖密度梯度離心法對土壤線蟲進行分離。用顯微鏡計數(shù)50 g鮮土的線蟲總數(shù),然后根據(jù)土壤含水率將土壤線蟲個體數(shù)量換算成100 g干土中含有的線蟲數(shù)目。用形態(tài)學(xué)法進行線蟲科屬的鑒定,隨機抽取100條線蟲(不足100條進行全量鑒定)進行鑒定。鑒定方法參考De Nematoden van Nederland[16]和《中國土壤動物檢索圖鑒》[17]。

    1.2.2 土壤理化性質(zhì)測定 依據(jù)《土壤農(nóng)化分析》[18]測定土壤pH、含水率及銨態(tài)氮、全鉀、速效磷、速效鉀和鈣含量。

    1.2.3 指數(shù)計算 依據(jù)土壤線蟲食性可將其分為食細菌線蟲(bacterivores,Ba)、食真菌線蟲(Fungivores,F(xiàn)u)、植物寄生線蟲(plant parasites,Pp)、捕食雜食線蟲(predators omnivores,Op)四個營養(yǎng)類群[19];依據(jù)土壤線蟲r策略到k策略的生活史策略將其分為5個類群,分別賦予c-p值[20]。

    基于此,分別計算不同林齡樹上干杏林土壤線蟲多樣性指數(shù)(shannon-weaver diversity index,H’)和生態(tài)指數(shù)。其中,生態(tài)指數(shù)包括:植物寄生線蟲成熟度指數(shù)(plant parasites maturity index,PPI)、自由線蟲成熟度指數(shù)(free live nematode maturity index,MI)、線蟲通路比值(nematode channel ratio,NCR)、瓦斯樂斯卡指數(shù)(wasilewska index,WI)、富集指數(shù)(enrichment index,EI)和結(jié)構(gòu)指數(shù)(structure index,SI)[21]。

    1.2.4 數(shù)據(jù)分析 使用Excel 2010軟件處理原始數(shù)據(jù)并計算土壤線蟲多樣性指數(shù)和生態(tài)功能指數(shù),采用SPSS 26.0對數(shù)據(jù)進行單因素方差分析和Duncan多重比較,分析不同樣地之間土壤線蟲群落的差異,并采用獨立樣本t檢驗分析不同土層之間的差異。采用冗余分析(RDA)和蒙特卡洛檢驗估算土壤環(huán)境因子對線蟲群落的影響,采用Origin 2021和CANOCO 5.0繪圖。

    2 結(jié)果與分析

    2.1 樹上干杏林土壤線蟲群落組成

    從不同林齡樹上干杏林共分離得到土壤線蟲7066條,隸屬于2綱6目23科52屬(表1),優(yōu)勢屬為擬麗突屬(Acrobeloides)、針屬(Paratylenchus)和小矛線屬(Microdorylaimus)。其中,荒地土壤線蟲優(yōu)勢屬為捕食-雜食線蟲小矛線屬;4年生樹上干杏林優(yōu)勢屬為食細菌線蟲板唇屬(Chiloplacus)、擬麗突屬和食真菌線蟲真滑刃屬(Aphelenchus);8年生樹上干杏林優(yōu)勢屬為植物寄生線蟲擬盤旋屬(Pararotylenchus)和盤旋屬(Rotylenchus);10年生樹上干杏林優(yōu)勢屬為植物寄生線蟲針屬和食細菌線蟲擬麗突屬;14年生樹上干杏林優(yōu)勢屬為植物寄生線蟲擬盤旋屬、螺旋屬(Helicotylenchus)和盤旋屬。

    2.2 樹上干杏林土壤線蟲營養(yǎng)類群和生活史類群結(jié)構(gòu)

    不同林齡樹上干杏林土壤線蟲營養(yǎng)類群相對豐度存在較大差異(圖1-A),荒地的Pp和Op較多,Ba和Fu較少;4、10年生樹上干杏林Ba占比高于同一樣地其他線蟲類群;8、14年生樹上干杏林Pp高于同一樣地其他線蟲類群。

    不同林齡樹上干杏林生活史的相對豐度也存在較大差異(圖1-B),不同林齡樹上干杏林以及荒地c-p2類群或c-p3類群土壤線蟲表現(xiàn)出絕對優(yōu)勢,c-p1類群和c-p5類群線蟲極少。其中,4年生樹上干杏林c-p2類群最多;8年生和14年生樹上干杏林c-p3類群最多;不同林齡樹上干杏林c-p4類群均有所減少。

    2.3 樹上干杏林土壤線蟲垂直分布

    不同林齡樹上干杏林土壤線蟲垂直分布特征見圖2,10年生樹上干杏林0~10 cm土層與10~20 cm土層存在顯著差異(p<0.05),10年生樹上干杏林與荒地在0~10 cm土層存在顯著差異(p<0.05)。4年生樹上干杏林和荒地土壤線蟲密度在0~10 cm土層較高,8、10、14年生樹上干杏林土壤線蟲密度在10~20 cm土層較高。同時,8年生樹上干杏林土壤線蟲密度最低,10年生樹上干杏林土壤線蟲密度最高。

    2.4 樹上干杏林土壤線蟲群落生態(tài)指數(shù)分析

    不同林齡樹上干杏林土壤線蟲生態(tài)指數(shù)存在顯著差異(表2),10年生樹上干杏林多樣性指數(shù)(H′)低于其他樣地,不同林齡樹上干杏林H′:對照>S4>S14>S8>S10。4年生樹上干杏林MI與8、14年生樹上干杏林呈顯著差異(p<0.05),不同林齡樹上干杏林MI:S8>對照>S14>S10>S4。不同林齡樹上干杏林PPI與荒地均呈顯著差異(p<0.05),所有樣地PPI:S8=S14>S10>S4>對照。10年生樹上干杏林NCR與8年生樹上干杏林呈顯著差異(p<0.05),所有樣地的NCR:S10>S4>S14>對照>S8。4年生樹上干杏林WI與其他樣地均呈顯著差異(p<0.05),所有樣地WI:S4>S10>S14>對照>S8,其中,4、10、14年生樹上干杏林WI>1,表明土壤健康狀況較好。線蟲區(qū)系分析結(jié)果表明(圖3),所有樣地的土壤線蟲區(qū)系均位于第二象限,表示土壤食物網(wǎng)的養(yǎng)分狀況良好,土壤食物網(wǎng)結(jié)構(gòu)相對來說都比較穩(wěn)定且成熟。

    2.5 土壤理化性質(zhì)與線蟲類群的RDA分析

    不同林齡樹上干杏林0~20 cm土壤理化性質(zhì)如表3。其中,8、14年生樹上干杏林土壤全鉀(TK)含量顯著高于4、10年生樹上干杏林,14年生樹上干杏林pH顯著高于8年生樹上干杏林。10年生樹上干杏林土壤含水率(SM)顯著高于荒地;荒地的鈣(Ca)含量顯著高于不同林齡樹上干杏林。

    以不同林齡樹上干杏林土壤線蟲營養(yǎng)類群和c-p類群為響應(yīng)變量,以土壤理化性質(zhì)為解釋變量進行冗余分析(圖4)。結(jié)果表明,前兩軸分別解釋了土壤線蟲類群的26.16%和43.85%。由蒙特卡洛檢驗可知(表4),土壤全鉀含量、含水率、pH和Ca含量是影響土壤線蟲類群組成的重要因素(p<0.05)。土壤中全鉀含量是解釋度最高的環(huán)境因子(p<0.05),解釋度為27.6%,其次是含水率(23.3%)、pH(17.5%)和鈣含量(9.9%)。土壤全鉀含量與c-p1和食細菌線蟲(Ba)均呈顯著負相關(guān);土壤含水率(SM)與所有線蟲營養(yǎng)類群和c-p類群均呈正相關(guān);土壤pH和鈣含量均與食真菌線蟲(Fu)呈較顯著的正相關(guān),與c-p3和植物寄生線蟲(Pp)呈較顯著的負相關(guān)。

    3 討 論

    3.1 不同林齡樹上干杏林對土壤線蟲群落組成及多樣性的影響

    在不同種植年限和管理措施下,土壤中線蟲群落結(jié)構(gòu)及多樣性均表現(xiàn)出差異性[22]。筆者在本研究中的結(jié)果表明,線蟲密度隨著林齡增加呈現(xiàn)先上升后下降的變化趨勢,10年生樹上干杏林線蟲密度最大,與王楠等[23]的研究結(jié)果一致。在本研究中共鑒定出土壤線蟲52屬,優(yōu)勢屬為針屬、擬麗突屬和小矛線屬。研究表明,由于不同區(qū)域土壤生境以及植物寄主存在差異,導(dǎo)致土壤線蟲的生態(tài)分布具有一定的地帶性,不同區(qū)域線蟲群落優(yōu)勢屬均存在較大差異[24]。

    8、10和14年生樹上干杏林土壤線蟲密度在10~20 cm土層較高,這可能是由于高溫干旱以及人為踩踏導(dǎo)致表層土壤空隙變小,含水量下降[25],從而使表層土壤線蟲密度降低。相較于表層,深層土壤受到的人為干擾減少,食物網(wǎng)阻力低于表層,能夠較為穩(wěn)定地發(fā)揮其生態(tài)功能,為土壤線蟲生存起到積極的正向作用[26]。

    8和14年生樹上干杏林主要營養(yǎng)類群為植物寄生線蟲,4和10年生樹上干杏林植物寄生線蟲占比減少,食細菌線蟲占比增大,表明4和10年生樹上干杏林土壤線蟲營養(yǎng)類群更健康[10]。早在2001年,F(xiàn)erris等[27]研究表明,c-p值較大的k策略者對食物網(wǎng)復(fù)雜性與穩(wěn)定性發(fā)揮重要作用,但生命周期較長,在干擾后恢復(fù)速度較慢;而c-p值較小的r策略者在擾動后能夠快速恢復(fù)。由于人工種植林地除草和翻耕等人為管理措施,因此對土壤環(huán)境的穩(wěn)定性干擾較大[28]。在本試驗中,荒地轉(zhuǎn)種樹上干杏林之后,不同林齡樹上干杏林耐受性線蟲c-p2與c-p3增加,敏感性線蟲c-p4減少,說明不同林齡樹上干杏林均受到不同程度干擾,其中4年生樹上干杏林受到的擾動最大,10年生次之。

    3.2 不同林齡樹上干杏林對土壤線蟲群落生態(tài)功能的影響

    10年生樹上干杏林土壤線蟲多樣性指數(shù)(H’)低于其他樣地,表明10年生樹上干杏林土壤線蟲群落的多樣性較低。10年生樹上干杏林土壤線蟲密度高于其他樣地,這可能是由于10年生樹上干杏林受到的人為管控力度較大,而其他受擾動較小的樣地土壤線蟲密度較低,多樣性較高,這與劉貝貝等[29]關(guān)于灘涂濕地土壤線蟲群落特征的研究結(jié)果一致。

    線蟲成熟度指數(shù)(MI)越高表明土壤生態(tài)系統(tǒng)受干擾程度越小[16];線蟲瓦斯樂斯卡指數(shù)(WI)反映食微生物線蟲對植物寄生線蟲的比例,WI<1,表明以植物寄生線蟲為主,土壤健康狀況差;WI>1,表明以食微線蟲為主,土壤健康狀況良好[30]。4年生樹上干杏林土壤線蟲MI指數(shù)低于其他樣地,表明4年生樹上干杏林受到的干擾較大,土壤食物網(wǎng)結(jié)構(gòu)簡單。其原因可能是樹上干杏是慢生的落葉喬木植物,處于早期發(fā)展階段的樹上干杏林下生態(tài)系統(tǒng)并不成熟[31]。而4年生樹上干杏林WI指數(shù)顯著高于其他樣地,這與4年生食微線蟲豐度成正比,這可能是由于4年生樹上干杏林施肥等人為農(nóng)業(yè)管理措施較為頻繁,肥料豐富了土壤微生物資源,這有助于食微線蟲的繁殖發(fā)育,從而提高了食微線蟲比例[32]。這也表明適度干擾反而更有利于維持樹上干杏林土壤生產(chǎn)力和物種共存,這一結(jié)果與薛會英等[33]關(guān)于藏北高寒草甸土壤線蟲群落對圍封及自由放牧響應(yīng)的研究結(jié)果一致。

    本試驗所有樣地的NCR指數(shù)在0.5~0.8之間,表明細菌是不同林齡樹上干杏林土壤有機質(zhì)的主要分解者,這與刑樹文等[34]關(guān)于不同種植年限蕉柑根際土壤線蟲的研究結(jié)果一致。8年生樹上干杏林的NCR指數(shù)顯著低于10年生樹上干杏林,表明8年生樹上干杏林土壤食物鏈較短,土壤富集程度較低,生物轉(zhuǎn)化能力較差,而10年生正好相反。但8年生樹上干杏林MI指數(shù)和PPI指數(shù)最高,表明其受到的干擾最小,植物寄生線蟲豐度較高。

    3.3 土壤線蟲群落結(jié)構(gòu)與樹上干杏林環(huán)境因子的關(guān)系

    土壤線蟲群落的動態(tài)不僅取決于植物根系的直接作用,還取決于通過土壤理化性質(zhì)介導(dǎo)的間接作用[35]。在本試驗中,土壤全鉀含量、含水率、pH和鈣含量是影響樹上干杏林土壤線蟲類群組成的主要環(huán)境因子(p<0.05)。侯磊等[36]在雪被厚度對色季拉山急尖長苞冷杉林的研究表明,土壤全鉀含量、pH、含水率等是影響土壤線蟲群落的主要因子,這與本研究的結(jié)果具有一致性。其中,土壤全鉀含量與食細菌線蟲(Ba)呈顯著負相關(guān),這可能是因為8、14年生樹上干杏林土壤全鉀含量顯著高于4、10年生樹上干杏林,過高的鉀含量抑制了c-p1類群和Ba類群[37]的形成,進而導(dǎo)致8、14年生樹上干杏林Ba類群豐度降低。瞿云明等[38]關(guān)于氰氨化鈣土壤改良劑的研究以及孫兆凱等[39]關(guān)于土壤pH對根際線蟲數(shù)量與生姜產(chǎn)量的影響等研究表明,氰氨化鈣是一種新型的具有殺菌作用的“生態(tài)肥料”,能在陽光照射下產(chǎn)生高溫、有毒的氰胺溶液,殺滅絕大多數(shù)的植物寄生性線蟲及其蟲卵,并能有效調(diào)控土壤pH,進而抑制植物寄生線蟲的滋生,有效地保護作物的地下根系,為食微線蟲的生存提供保障。在本研究中,土壤pH和Ca含量均與食真菌線蟲(Fu)呈較顯著的正相關(guān),與植物寄生線蟲(Pp)呈較顯著的負相關(guān),且不同林齡樹上干杏林Ca含量均顯著低于荒地。可能是施加的鈣肥量過少和不當?shù)乃使芾?,?dǎo)致各林齡樹上干杏林pH過高,進而導(dǎo)致植物寄生線蟲增多,食真菌線蟲數(shù)量減少。

    4 結(jié) 論

    筆者在本研究中共分離得到土壤線蟲7066條,隸屬于2綱6目23科52屬。8、10和14年生樹上干杏林土壤線蟲群落表現(xiàn)為向下遞增的趨勢,4年生呈現(xiàn)相反趨勢。10年生樹上干杏林土壤線蟲多樣性最低。4和10年生樹上干杏林主要營養(yǎng)類群為食細菌線蟲,土壤健康狀況良好;8和14年生樹上干杏林主要營養(yǎng)類群為植物寄生線蟲,土壤健康狀況較差。土壤全鉀含量、含水率、pH和鈣含量是影響樹上干杏林土壤線蟲類群組成的主要環(huán)境因子。

    參考文獻References:

    [1] 孝惠爽,趙杰,傅聲雷. 華南典型尾葉桉純林經(jīng)營對土壤理化性質(zhì)、微生物和線蟲群落的影響[J]. 生態(tài)學(xué)報,2023,43(19):7963-7973.

    XIAO Huishuang,ZHAO Jie,F(xiàn)U Shenglei. Effects of Eucalyptus plantations and management on soil physico-chemical properties,microbial and nematode communities in South China[J]. Acta Ecologica Sinica,2023,43(19):7963-7973.

    [2] 包涵,呂丹丹,施赟,賀雨軒,趙金夢,許革學(xué),李曉敏,王冬. 豫西黃土高原果園生草對土壤線蟲群落及結(jié)構(gòu)的影響[J]. 草地學(xué)報,2024,32(1):96-104.

    BAO Han,Lü Dandan,SHI Yun,HE Yuxuan,ZHAO Jinmeng,XU Gexue,LI Xiaomin,WANG Dong. Effects of orchard grass cover on soil nematode community and structure in the Loess Plateau of western Henan province[J]. Acta Agrestia Sinica,2024,32(1):96-104.

    [3] GUAN P T,ZHANG X K,YU J,MA N N,LIANG W J. Variation of soil nematode community composition with increasing sand-fixation year of Caragana microphylla:Bioindication for desertification restoration[J]. Ecological Engineering,2015,81:93-101.

    [4] 鐘爽,何應(yīng)對,韓麗娜,周兆禧,馬蔚紅,曾會才,金志強. 連作年限對香蕉園土壤線蟲群落結(jié)構(gòu)及多樣性的影響[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報,2012,20(5):604-611.

    ZHONG Shuang,HE Yingdui,HAN Li’na,ZHOU Zhaoxi,MA Weihong,ZENG Huicai,JIN Zhiqiang. Effect of continuous cropping of banana on soil nematode community structure and diversity[J]. Chinese Journal of Eco-Agriculture,2012,20(5):604-611.

    [5] 張雪艷,張亞萍,許帆,田興武,劉馨,祁娟霞,李建設(shè). 不同種植年限黃瓜溫室土壤線蟲群落結(jié)構(gòu)及多樣性的比較[J]. 植物營養(yǎng)與肥料學(xué)報,2017,23(3):696-703.

    ZHANG Xueyan,ZHANG Yaping,XU Fan,TIAN Xingwu,LIU Xin,QI Juanxia,LI Jianshe. Comparison of soil nematodes community structure and diversity in cucumber greenhouses in different cultivation years[J]. Journal of Plant Nutrition and Fertilizer,2017,23(3):696-703.

    [6] 高飛,趙賀,周峰,倪瑋,李輝信,焦加國,孫興祥. 江蘇省不同種植年限的西/甜瓜農(nóng)田土壤線蟲群落特征[J]. 生態(tài)學(xué)雜志,2020,39(1):155-163.

    GAO Fei,ZHAO He,ZHOU Feng,NI Wei,LI Huixin,JIAO Jiaguo,SUN Xingxiang. Community characteristics of nematodes in agricultural soil of watermelon and melon with different cultivation years in Jiangsu province[J]. Chinese Journal of Ecology,2020,39(1):155-163.

    [7] LI X Y,LEWIS E E,LIU Q Z,LI H Q,BAI C Q,WANG Y Z. Effects of long-term continuous cropping on soil nematode community and soil condition associated with replant problem in strawberry habitat[J]. Scientific Reports,2016,6:30466.

    [8] 黑雅婭,楊樹,張欣,陳軍宏,張揚,薛應(yīng)鈺. 婁徹氏鏈霉菌ZZ-9與阿維菌素復(fù)配對南方根結(jié)線蟲病的防治效果[J]. 中國瓜菜,2022,35(5):96-101.

    HEI Yaya,YANG Shu,ZHANG Xin,CHEN Junhong,ZHANG Yang,XUE Yingyu. Management of Meloidogyne incognita by using the combination of Streptomyces rochei ZZ-9 and avermectin[J]. China Cucurbits and Vegetables,2022,35(5):96-101.

    [9] NAHAR M S,GREWAL P S,MILLER S A,STINNER D,STINNER B R,KLEINHENZ M D,WSZELAKI A,DOOHAN D. Differential effects of raw and composted manure on nematode community,and its indicative value for soil microbial,physical and chemical properties[J]. Applied Soil Ecology,2006,34(2/3):140-151.

    [10] 黃芳,徐玉梅,王健,劉曉琴. 山西省果樹土壤線蟲的群落結(jié)構(gòu)及多樣性研究[J]. 果樹學(xué)報,2023,40(12):2591-2597.

    HUANG Fang,XU Yumei,WANG Jian,LIU Xiaoqin. Research on the community structure and diversity of soil nematodes in the orchards of Shanxi province[J]. Journal of Fruit Science,2023,40(12):2591-2597.

    [11] 鄭濤,蘇柯星,叢桂芝,陳明杰,孫丙寅,劉淑明. 樹上干杏和梅杏果實品質(zhì)分析與綜合評價[J]. 食品與發(fā)酵工業(yè),2021,47(9):201-207.

    ZHENG Tao,SU Kexing,CONG Guizhi,CHEN Mingjie,SUN Bingyin,LIU Shuming. Quality analysis and comprehensive evaluation of the ‘Shushanggan’ apricots and apricots[J]. Food and Fermentation Industries,2021,47(9):201-207.

    [12] 張運平,林建平,黃藝敏,袁浩,馮桂賢,張佩怡. 基于空間決策模型的耕-果錯位空間分析與協(xié)調(diào)布局優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2024,40(6):330-338.

    ZHANG Yunping,LIN Jianping,HUANG Yimin,YUAN Hao,F(xiàn)ENG Guixian,ZHANG Peiyi. Spatial analysis and coordinated layout optimization of farmland-orchard mismatch using spatial decision modeling[J]. Transactions of the Chinese Society of Agricultural Engineering,2024,40(6):330-338.

    [13] 周昌,黃順. 新疆伊犁黃土工程地質(zhì)特征及致災(zāi)機理研究綜述[J]. 工程地質(zhì)學(xué)報,2023,31(4):1247-1260.

    ZHOU Chang,HUANG Shun. Mechanical properties and disaster-causing mechanism of loess in Ili,Xinjiang,China[J]. Journal of Engineering Geology,2023,31(4):1247-1260.

    [14] 劉濤,趙琨,李宏鈞,王潔. 伊犁河谷地區(qū)公路路域野生植物資源特征分析[J]. 公路,2023,68(9):388-394.

    LIU Tao,ZHAO Kun,LI Hongjun,WANG Jie. Analysis of wild plant resources in highway areas of Ili valley[J]. Highway,2023,68(9):388-394.

    [15] 劉廷,郝麗娜,魏立強. 鞏留樹上干杏農(nóng)產(chǎn)品地理標志種植技術(shù)規(guī)范[J]. 基層農(nóng)技推廣,2017,5(2):119-120.

    LIU Ting,HAO Li’na,WEI Liqiang. Technical specification for geographical indication planting of agricultural products of ‘Shushanggan’ apricots on trees in Gongliu county[J]. Primary Agricultural Technology Extension,2017,5(2):119-120.

    [16] BONGERS T. De Nematoden van Nederland[M]. Utrecht:Stichting Uitgeverij Koninklijke Nederlandse Natuurhistorische Vereniging,1988.

    [17] 尹文英. 中國土壤動物檢索圖鑒[M]. 北京:科學(xué)出版社,1998.

    YIN Wenying. Pictorical keys to soil animals of China[M]. Beijing:Science Press,1998.

    [18] 鮑士旦. 土壤農(nóng)化分析[M]. 3版. 北京:中國農(nóng)業(yè)出版社,2000.

    BAO Shidan. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing:China Agriculture Press,2000.

    [19] YEATES G W,BONGERS T,DE GOEDE R G,F(xiàn)RECKMAN D W,GEORGIEVA S S. Feeding habits in soil nematode families and genera:An outline for soil ecologists[J]. Journal of Nematology,1993,25(3):315-331.

    [20] BONGERS T. The maturity index:An ecological measure of environmental disturbance based on nematode species composition[J]. Oecologia,1990,83(1):14-19.

    [21] 寇釗陽,李春越,肖鳳嬌,常順,王益,黨廷輝. 氮磷添加對黃土旱塬農(nóng)田土壤線蟲群落及能量結(jié)構(gòu)的影響[J]. 生態(tài)學(xué)報,2024,44(5):1962-1971.

    KOU Zhaoyang,LI Chunyue,XIAO Fengjiao,CHANG Shun,WANG Yi,DANG Tinghui. Effects of nitrogen and phosphorus addition on soil nematode communities and energy structure in Loess Plateau farmland[J]. Acta Ecologica Sinica,2024,44(5):1962-1971.

    [22] HU N,LI H,TANG Z,LI Z F,TIAN J,LOU Y L,LI J W,LI G C,HU X M. Community diversity,structure and carbon footprint of nematode food web following reforestation on degraded Karst soil[J]. Scientific Reports,2016,6:28138.

    [23] 王楠,黃菁華,霍娜,耿德洲,楊盼盼,張欣玥,趙世偉. 黃土高原半干旱區(qū)不同林齡檸條人工林土壤線蟲群落特征[J]. 生態(tài)學(xué)雜志,2022,41(2):236-245.

    WANG Nan,HUANG Jinghua,HUO Na,GENG Dezhou,YANG Panpan,ZHANG Xinyue,ZHAO Shiwei. Characteristics of soil nematode communities in Caragana korshinskii plantations with different stand ages in semi-arid region of Loess Plateau,Northwest China[J]. Chinese Journal of Ecology,2022,41(2):236-245.

    [24] 孫曉銘,段玉璽,趙磊,陳立杰. 遼寧果樹根圍土壤線蟲的多樣性研究[J]. 果樹學(xué)報,2010,27(3):410-415.

    SUN Xiaoming,DUAN Yuxi,ZHAO Lei,CHEN Lijie. Diversity of soil nematodes in orchards in Liaoning province[J]. Journal of Fruit Science,2010,27(3):410-415.

    [25] 董錫文. 科爾沁沙地沙丘植物恢復(fù)進程中土壤肥力變化及線蟲群落空間分布特征研究[D]. 沈陽:沈陽農(nóng)業(yè)大學(xué),2010.

    DONG Xiwen. Changes of soil fertility and spatial distribution of nematodes after the establishment of vegetation on sand dune in Horqin[D]. Shenyang:Shenyang Agricultural University,2010.

    [26] 代江慧,吳鵬飛,唐思思,王長庭,王玉英,任曉,魏雪. 降水變化對高寒草甸土壤線蟲群落的影響[J]. 生態(tài)學(xué)報,2023,43(22):9371-9383.

    DAI Jianghui,WU Pengfei,TANG Sisi,WANG Changting,WANG Yuying,REN Xiao,WEI Xue. Effects of altered precipitation on soil nematode communities in an alpine meadow[J]. Acta Ecologica Sinica,2023,43(22):9371-9383.

    [27] FERRIS H,BONGERS T,DE GOEDE R G M. A framework for soil food web diagnostics:Extension of the nematode faunal analysis concept[J]. Applied Soil Ecology,2001,18(1):13-29.

    [28] 侯春雨,魏雪,周磊,馬金豪,任曉,王玉英,吳鵬飛. 川西北高寒地區(qū)多年生禾本科人工草地土壤線蟲群落動態(tài)[J]. 生態(tài)學(xué)報,2023,43(24):10104-10118.

    HOU Chunyu,WEI Xue,ZHOU Lei,MA Jinhao,REN Xiao,WANG Yuying,WU Pengfei. Dynamics of soil nematode community in perennial Gramineae artificial grasslands in Northwest Sichuan[J]. Acta Ecologica Sinica,2023,43(24):10104-10118.

    [29] 劉貝貝,葉成龍,虞麗,焦加國,劉滿強,胡鋒,李輝信. 不同植被類型的灘涂濕地土壤線蟲群落特征[J]. 應(yīng)用生態(tài)學(xué)報,2012,23(11):3057-3064.

    LIU Beibei,YE Chenglong,YU Li,JIAO Jiaguo,LIU Man-qiang,HU Feng,LI Huixin. Characteristics of soil nematode communities in coastal wetlands with different vegetation types[J]. Chinese Journal of Applied Ecology,2012,23(11):3057-3064.

    [30] WASILEWSKA L. Long-term changes in communities of soil nematodes on fen peats due to the time since their drainage[J]. Ekologia Polska,1991,39(1):59-104.

    [31] 馬金豪,欒軍偉,王暉,葉曉丹,王一,明安剛,劉世榮. 喬木根系和凋落物對南亞熱帶3種人工林土壤線蟲群落的差異化影響[J]. 生態(tài)學(xué)報,2023,43(18):7367-7380.

    MA Jinhao,LUAN Junwei,WANG Hui,YE Xiaodan,WANG Yi,MING Angang,LIU Shirong. Differential impacts of tree root and litter on soil nematode communities in three artificial stands in subtropical South China[J]. Acta Ecologica Sinica,2023,43(18):7367-7380.

    [32] WILSCHUT R A,GEISEN S. Nematodes as drivers of plant performance in natural systems[J]. Trends in Plant Science,2021,26(3):237-247.

    [33] 薛會英,羅大慶,王鴻源,屈興樂. 藏北高寒草甸土壤線蟲群落對圍封及自由放牧的響應(yīng)[J]. 土壤學(xué)報,2017,54(2):480-492.

    XUE Huiying,LUO Daqing,WANG Hongyuan,QU Xingle. Effects of free grazing or enclosure on soil nematodes in alpine meadows in North Tibet,China[J]. Acta Pedologica Sinica,2017,54(2):480-492.

    [34] 邢樹文,李云,李金林,張銀珊. 不同種植年限蕉柑根際土壤線蟲群落及營養(yǎng)類群結(jié)構(gòu)特征[J]. 果樹學(xué)報,2017,34(12):1599-1609.

    XING Shuwen,LI Yun,LI Jinlin,ZHANG Yinshan. Distribution characteristics of soil nematode communities and trophic group in the rhizosphere of Citrus reticulata Blanco ‘Tankan’ with different planting years[J]. Journal of Fruit Science,2017,34(12):1599-1609.

    [35] VAN DEN HOOGEN J,GEISEN S,ROUTH D,…,CROWTHER T W. Soil nematode abundance and functional group composition at a global scale[J]. Nature,2019,572(7768):194-198.

    [36] 侯磊,任毅華,盧杰,薛會英. 雪被厚度對色季拉山急尖長苞冷杉林土壤線蟲群落的影響[J]. 生態(tài)學(xué)報,2023,43(6):2348-2356.

    HOU Lei,REN Yihua,LU Jie,XUE Huiying. Effects of snow cover on soil nematode community in Abies georgei var. smithii forest in Sejila Mountain[J]. Acta Ecologica Sinica,2023,43(6):2348-2356.

    [37] 張宏芝,陳興武,雷鈞杰,喬旭,趙奇,張新志,努爾買買提·拖合尼牙孜. 杏麥間作模式下杏樹根系對小麥根系及產(chǎn)量的影響[J]. 新疆農(nóng)業(yè)科學(xué),2015,52(5):802-807.

    ZHANG Hongzhi,CHEN Xingwu,LEI Junjie,QIAO Xu,ZHAO Qi,ZHANG Xinzhi,Nuermaimaiti·Tuoheniyazi. Effect of apricot tree roots on the wheat roots and yield in apricot-wheat intercropping[J]. Xinjiang Agricultural Sciences,2015,52(5):802-807.

    [38] 瞿云明,徐小燕. 氰氨化鈣處理酸化土壤后配施微生物菌肥對花椰菜的影響[J]. 中國瓜菜,2023,36(5):115-119.

    QU Yunming,XU Xiaoyan. Effect of calcium cyanamide treatment of acidified soil combined with bacterial fertilizer on cauliflower[J]. China Cucurbits and Vegetables,2023,36(5):115-119.

    [39] 孫兆凱. 土壤pH對根際線蟲數(shù)量與生姜產(chǎn)量的影響分析[J]. 農(nóng)業(yè)展望,2019,15(4):64-69.

    SUN Zhaokai. Effect of soil pH on rhizosphere nematode quantity and ginger yield[J]. Agricultural Outlook,2019,15(4):64-69.

    猜你喜歡
    群落結(jié)構(gòu)多樣性
    海南省紅樹林區(qū)浮游動物多樣性的初步研究
    海南省紅樹林區(qū)大型底棲動物多樣性的初步研究
    由古典戲曲看“代言體”在中國的前世今生
    戲劇之家(2016年22期)2016-11-30 15:13:39
    淺談新時期群文輔導(dǎo)工作的特征
    新時期群文輔導(dǎo)工作的特征
    海洋微生物次生代謝的生物合成機制
    科技資訊(2016年19期)2016-11-15 10:39:12
    舞蹈表演的表現(xiàn)形式多樣性研究
    人間(2016年27期)2016-11-11 16:27:23
    水磨地區(qū)蕨類植物多樣性調(diào)查分析
    濟南流域春季浮游植物多樣性的研究
    濟南流域輪蟲群落結(jié)構(gòu)及多樣性的研究
    高安市| 洪泽县| 和林格尔县| 同仁县| 沁源县| 布拖县| 滨海县| 巴马| 临颍县| 井冈山市| 修武县| 武强县| 黄冈市| 普陀区| 凌云县| 贵定县| 登封市| 铁岭市| 宜黄县| 永年县| 寻乌县| 湄潭县| 东至县| 锦屏县| 同德县| 黄大仙区| 台前县| 辽阳市| 北京市| 夹江县| 蛟河市| 临泉县| 苗栗县| 理塘县| 黑水县| 湖北省| 东港市| 邯郸市| 桑植县| 成武县| 达日县|