【摘要】經(jīng)導(dǎo)管主動(dòng)脈瓣置換術(shù)(TAVR)已成為治療主動(dòng)脈瓣狹窄的重要介入手段,得益于材料技術(shù)的進(jìn)步與操作經(jīng)驗(yàn)的積累,TAVR已廣泛運(yùn)用于外科手術(shù)中高風(fēng)險(xiǎn)的患者,并逐漸向年輕、低風(fēng)險(xiǎn)患者拓展。生物瓣作為TAVR的核心材料,其功能障礙可能影響手術(shù)效果和患者的生活質(zhì)量?,F(xiàn)對(duì)生物瓣功能障礙的診斷評(píng)估、危險(xiǎn)因素、臨床預(yù)后和相關(guān)研究成果進(jìn)行總結(jié),旨在為預(yù)防和減輕生物瓣功能障礙、提高生物瓣的耐久性提供參考。
【關(guān)鍵詞】主動(dòng)脈瓣狹窄;經(jīng)導(dǎo)管主動(dòng)脈瓣置換術(shù);生物瓣功能障礙;耐久性
【DOI】10.16806/j.cnki.issn.1004-3934.2024.08.000
Research Progress of Bioprosthetic Valve Dysfunction After
Transcatheter Aortic Valve Replacement
YANG Zhenyu,F(xiàn)ANG Wei,REN He,HU Jianqiang,MA Wenshuai,WANG Qiuhe,LI Yan
(Department of Cardiology,Tangdu Hospital,Air Force Military Medical University,Xi 'an 710038,Shaanxi,China)
【Abstract】Transcatheter aortic valve replacement (TAVR) is an important intervention for patients with aortic stenosis. Thanks to the advancement of material technology and the accumulation of operational experience,TAVR has been widely used in high-risk patients and is gradually expanding to younger and low-risk patients. As the core material of TAVR,the dysfunction of bioprosthetic valve may reduce treatment efficacy and patient quality of life. This review comprehensively summarizes the diagnosis and prognosis of bioprosthetic valve dysfunction,providing reference for preventing and reducing biological valve dysfunction and improving the durability of bioprosthetic valves.
【Keywords】 Aortic stenosis;Transcatheter aortic valve replacement;Bioprosthetic valve dysfunction;Durability
經(jīng)導(dǎo)管主動(dòng)脈瓣置換術(shù)(transcatheter aortic valve replacement,TAVR)作為治療主動(dòng)脈瓣狹窄的成熟介入手段,自2002年問世以來已得到廣泛應(yīng)用,并展示出了相對(duì)于傳統(tǒng)的外科主動(dòng)脈瓣置換術(shù)(surgical aortic valve replacement,SAVR)的明顯優(yōu)勢(shì)[1-2]。TAVR所使用的經(jīng)導(dǎo)管心臟瓣膜(transcatheter heart valve,THV)通常為生物瓣,其耐久性有限,同時(shí)也制約了TAVR在更多年輕患者中的應(yīng)用[3-4]。為此,結(jié)構(gòu)性心臟病專家提出了生物瓣功能障礙(bioprosthetic valve dysfunction,BVD)和生物瓣衰?。╞ioprosthetic valve failure,BVF)的概念。
1 "BVD的定義和評(píng)估
BVD是由結(jié)構(gòu)性或非結(jié)構(gòu)性原因引起,進(jìn)而產(chǎn)生假體瓣膜狹窄、假體瓣膜中心性反流、血流動(dòng)力學(xué)惡化等可逆或不可逆的人工瓣膜功能損害,最終影響生物瓣的耐久性。瓣膜學(xué)術(shù)研究聯(lián)盟-3(Valve Academic Research Consortium 3,VARC-3)根據(jù)引起血流動(dòng)力學(xué)和/或瓣膜解剖形態(tài)變化的類型不同,將BVD分為四類:結(jié)構(gòu)性瓣膜退化(structural valve deterioration,SVD)、非結(jié)構(gòu)性瓣膜退化(non-structural valve deterioration,NSVD)、瓣膜血栓和瓣膜性心內(nèi)膜炎[5]。
BVD是一個(gè)漸進(jìn)的病理過程,主要特征為患者血流動(dòng)力學(xué)和/或瓣膜解剖形態(tài)的變化,因此經(jīng)胸超聲心動(dòng)圖(transthoracic echocardiography,TTE)或經(jīng)食管超聲心動(dòng)圖(transesophageal echocardiography,TEE)是主要診斷方式。此外,計(jì)算機(jī)斷層掃描(computed tomography,CT)在檢測(cè)瓣葉瓣架形態(tài)方面具有獨(dú)特優(yōu)勢(shì),也是評(píng)估BVD的重要影像學(xué)手段之一[6]。但血流動(dòng)力學(xué)和/或瓣膜解剖形態(tài)的變化不一定引發(fā)明顯的臨床癥狀,因此選擇合適的評(píng)估時(shí)間點(diǎn)尤為重要。美國(guó)心臟瓣膜合作實(shí)驗(yàn)室建議在患者TAVR術(shù)后1~3月、術(shù)后1年及此后每年定期復(fù)查TTE,如在檢查中發(fā)現(xiàn)任何潛在風(fēng)險(xiǎn)跡象,應(yīng)進(jìn)行深入評(píng)估或采取其他確證性檢查(圖1)[7]。
1.1 "SVD
SVD指瓣膜本身結(jié)構(gòu)(包括生物瓣小葉、支架、支柱等)發(fā)生的不可逆的內(nèi)在變化,進(jìn)而出現(xiàn)小葉增厚、破裂、粘連、鈣化、纖維化,以及支架或支柱的斷裂、變形,可伴有瓣膜血流動(dòng)力學(xué)的惡化。當(dāng)生物瓣發(fā)生SVD時(shí),可在TEE/TTE上觀察到至少1個(gè)人工瓣葉出現(xiàn)彌漫性或局灶性高回聲小葉增厚(>2 mm),可伴有瓣葉撕裂/撕脫/穿孔/活動(dòng)受限;增強(qiáng)CT可顯示鈣化或非鈣化高密度的小葉增厚影響小葉運(yùn)動(dòng)。為了更好地評(píng)估其對(duì)生物瓣功能的影響,歐洲經(jīng)皮心血管介入治療協(xié)會(huì)(European Association of Percutaneous Cardiovascular Intervention,EAPCI)將其分為三類,瓣中瓣國(guó)際數(shù)據(jù)登記(valve-in-valve international data registry,VIVID)在此基礎(chǔ)上,根據(jù)血流動(dòng)力學(xué)障礙的類型進(jìn)行了更細(xì)致地分類(表1)[8-9]。
1.2 "NSVD
NSVD為非生物瓣本身的異常[如瓣周漏、血管翳、瓣膜錯(cuò)位和移位、人工瓣膜-患者不匹配(prosthesis-patient mismatch,PPM)]所導(dǎo)致的血流動(dòng)力學(xué)障礙,與生物瓣本身結(jié)構(gòu)的惡化無關(guān),但可能介導(dǎo)早期SVD的發(fā)生。
瓣周漏和PPM是NSVD發(fā)生的主要原因。瓣周漏也稱瓣周反流(paravalvular regurgitation,PVR),是存在于瓣架外側(cè)與周圍組織之間的病理性反流,彩色多普勒結(jié)合實(shí)驗(yàn)室檢查(溶血和貧血相關(guān)指標(biāo))可輔助診斷;PPM被定義為人工瓣膜的血液動(dòng)力學(xué)與患者在生理?xiàng)l件下對(duì)心臟輸出的需求之間的不匹配,其中中度PPM的有效瓣口面積指數(shù)≤0.85 cm2/m2,重度PPM的有效瓣口面積指數(shù)<0.65 cm2/m2[10]。瓣膜下血管翳是TTE/TEE下發(fā)現(xiàn)的瓣周區(qū)域致密的固定的高回聲組織或CT下發(fā)現(xiàn)的沿瓣膜/瓣架及其下方分布的低密度半圓形或圓形結(jié)構(gòu),瓣膜移位/錯(cuò)位指人工瓣膜在植入后發(fā)生移動(dòng)或脫出,二者發(fā)生率均較低。
1.3 "瓣膜血栓
瓣膜血栓可分為有臨床意義的臨床瓣膜血栓和無癥狀的亞臨床瓣膜血栓。亞臨床瓣膜血栓是4D-CT或超聲心動(dòng)圖探測(cè)到的一種影像學(xué)特征,表現(xiàn)為低密度瓣葉增厚(hypo-attenuated leaflet thickening,HALT)和/或瓣葉運(yùn)動(dòng)減弱(reduced leaflet motion,RLM),可伴有輕度血流動(dòng)力學(xué)惡化但無臨床癥狀及后遺癥。HALT是CT造影圖像上視覺識(shí)別的瓣葉新月形增厚,從瓣葉與瓣架結(jié)合處發(fā)生,延伸至自由緣并逐漸變薄,根據(jù)瓣葉受累程度的不同分為4級(jí)(1級(jí)≤25%;25%<2級(jí)≤50%;50%<3級(jí)≤75%;4級(jí)>75%)。RLM則是HALT導(dǎo)致的瓣葉運(yùn)動(dòng)障礙,根據(jù)受損程度同樣分為4級(jí)(1級(jí):無活動(dòng)受限;2級(jí):受限程度<50%;3級(jí):受限程度≥50%;4級(jí):瓣葉運(yùn)動(dòng)完全喪失)[5]。
臨床瓣膜血栓多與術(shù)后早期跨瓣壓差快速增加相關(guān),可伴有癥狀性心力衰竭或血栓栓塞發(fā)生,若未及時(shí)干預(yù)則可能導(dǎo)致生物瓣瓣葉的纖維化和鈣化,進(jìn)而演變成不可逆的瓣膜退化。確診臨床瓣膜血栓除了需證實(shí)HALT/RLM的存在外,還需滿足以下條件:(1)出現(xiàn)血栓栓塞事件或臨床后遺癥;(2)無明顯癥狀及臨床后遺癥,但出現(xiàn)重度血流動(dòng)力學(xué)BVD[11]。
1.4 "瓣膜性心內(nèi)膜炎
瓣膜性心內(nèi)膜炎又稱人工瓣膜心內(nèi)膜炎(prosthetic valve endocarditis,PVE),發(fā)生于瓣周及瓣膜本身結(jié)構(gòu),可導(dǎo)致瓣周膿腫、瘺管、瓣膜破裂、穿孔及贅生物形成,通常與瓣膜形態(tài)變化及血流動(dòng)力學(xué)惡化相關(guān)。PVE的癥狀與原生瓣膜心內(nèi)膜炎相似,可出現(xiàn)發(fā)熱、無力、寒戰(zhàn)、關(guān)節(jié)疼痛和瓣膜病理性雜音,但通常表現(xiàn)不典型,診斷有一定困難。PVE的診斷通常依靠超聲心動(dòng)圖所證實(shí)的膿腫、膿液及贅生物,對(duì)于超聲影像特征不明顯的PVE,18F-氟代脫氧葡萄糖正電子發(fā)射斷層顯像/CT是有效的補(bǔ)充檢查手段[12-13]。
VARC-3根據(jù)血流動(dòng)力學(xué)受損程度將BVD分為三個(gè)階段:形態(tài)學(xué)BVD,中度血流動(dòng)力學(xué)BVD和重度血流動(dòng)力學(xué)BVD(表1)。上述三個(gè)階段呈漸進(jìn)式發(fā)展,也有患者因瓣膜結(jié)構(gòu)的急劇惡化如瓣葉脫垂、撕裂或穿孔,直接導(dǎo)致嚴(yán)重的血流動(dòng)力學(xué)瓣膜退化或BVF。BVF是出現(xiàn)臨床后果例如主動(dòng)脈瓣狹窄/反流癥狀、心力衰竭、死亡,或需進(jìn)行瓣膜再干預(yù)的嚴(yán)重BVD,是BVD病理生理過程的結(jié)果和最終形態(tài)(未有效干預(yù)的前提下)。VARC-3根據(jù)臨床后果的嚴(yán)重程度將BVF分為三個(gè)階段:(1)引起臨床表現(xiàn)(新發(fā)或惡化的主動(dòng)脈瓣狹窄/反流、左心室擴(kuò)張/肥厚/功能減弱、肺動(dòng)脈高壓)的BVD或不可逆的重度血流動(dòng)力學(xué)BVD;(2)達(dá)到主動(dòng)脈瓣再干預(yù)指征;(3)瓣膜相關(guān)的死亡[5]。
2 "BVD的危險(xiǎn)因素
根據(jù)BVD的病理生理學(xué)和既往研究結(jié)論,影響TAVR術(shù)后瓣膜耐久的因素可分為瓣膜相關(guān)因素、手術(shù)相關(guān)因素和患者相關(guān)因素。瓣膜相關(guān)因素包括人工瓣膜的材料、對(duì)生物瓣的處理方法、瓣膜的型號(hào)和尺寸;手術(shù)相關(guān)因素包括瓣膜裝置的定位、預(yù)/后擴(kuò)張、手術(shù)入路、術(shù)者經(jīng)驗(yàn)等;患者相關(guān)因素則是指年齡、性別、腎功能不全、高血壓、糖尿病等基礎(chǔ)狀況和術(shù)后抗血栓治療等[14]。這些因素均可能對(duì)BVD的發(fā)生和THV的耐久性產(chǎn)生影響,針對(duì)這些因素采取積極的預(yù)防措施可能會(huì)減少BVD的發(fā)生、減緩BVD的進(jìn)展、延長(zhǎng)THV的使用壽命。
鈣化通常被認(rèn)為是導(dǎo)致SVD的主要因素,鈣代謝失調(diào)的患者更容易在THV上出現(xiàn)病理性鈣化[15]。在THV制備過程中組織材料上殘留的戊二醛可能與環(huán)境中的鈣離子和蛋白質(zhì)相互作用,導(dǎo)致磷酸鈣晶體沉積[16];材料上未完全清除的異種免疫原在植入后還可能觸發(fā)免疫反應(yīng),進(jìn)一步促進(jìn)鈣化形成。盡管生物瓣的流體力學(xué)相容性較好,但其在心動(dòng)周期中受到的機(jī)械應(yīng)力,以及由瓣膜血栓、PPM、瓣膜不對(duì)稱擴(kuò)張或擴(kuò)張不足等因素引起的應(yīng)力改變,都可能導(dǎo)致血流動(dòng)力學(xué)的變化,進(jìn)而破壞瓣膜結(jié)構(gòu)并在機(jī)械應(yīng)力較大的區(qū)域形成鈣化沉積[17]。同時(shí),接受TAVR的患者通常伴有高脂血癥,血液中高濃度的低密度脂蛋白也會(huì)促進(jìn)炎癥反應(yīng)和鈣化的發(fā)生。因此,選擇合適的瓣膜型號(hào),在圍手術(shù)期及術(shù)后使用降血脂藥和抗血栓藥對(duì)預(yù)防SVD至關(guān)重要。
THV的尺寸過小或擴(kuò)張不足將會(huì)引發(fā)PPM及PVR,從而造成血流動(dòng)力學(xué)障礙、瓣膜性能降低及癥狀緩解不充分,最終導(dǎo)致不良臨床結(jié)局的發(fā)生。在瓣膜植入前進(jìn)行預(yù)擴(kuò)張已被證實(shí)對(duì)預(yù)防中重度PPM有積極作用,而后擴(kuò)張則有助于減少PVR的發(fā)生[18]。新一代改良裙邊設(shè)計(jì)的瓣膜和可調(diào)彎輸送設(shè)備的應(yīng)用使中重度PPM和PVR的發(fā)生率顯著降低,分別從46.4%、10.0%降至10.6%、3.0%[19-21]。盡管如此,心臟治療團(tuán)隊(duì)在進(jìn)行瓣膜型號(hào)和錨定位置的選擇以及評(píng)估是否進(jìn)行預(yù)/后擴(kuò)張時(shí),仍需充分斟酌,以進(jìn)一步降低NSVD的發(fā)生概率。
TAVR術(shù)后瓣膜血栓的形成機(jī)制尚未明確,但一些體外試驗(yàn)和單中心研究[22-23]提出瓣膜擴(kuò)張不足、不對(duì)稱擴(kuò)張或植入過深會(huì)增加瓣葉周圍的血流淤滯區(qū),從而促進(jìn)瓣膜血栓的發(fā)生;然而,也有研究[24]指出THV的過度擴(kuò)張會(huì)導(dǎo)致血管內(nèi)皮損傷,從而引起血管性血友病因子的聚集,形成血栓病灶。近年來針對(duì)TAVR術(shù)后抗血栓方案的研究[25]結(jié)果表明,抗凝藥物的使用可降低瓣膜血栓特別是HALT/RLM的發(fā)生風(fēng)險(xiǎn),但其帶來的臨床收益并不顯著。因此,選擇合適型號(hào)的瓣膜并采用正確的手術(shù)技術(shù)以確保瓣膜充分?jǐn)U張,目前仍然是預(yù)防瓣膜血栓的主要策略。
PVE最常見的致病微生物是金黃色葡萄球菌和腸球菌,術(shù)后殘余的中心性反流也可能成為其發(fā)病的促因。因此,圍手術(shù)期抗生素的規(guī)范使用是預(yù)防PVE的重要策略,同時(shí)對(duì)高危患者進(jìn)行微生物檢測(cè)也有助于PVE的早期識(shí)別和治療[26]。
3 "BVF后的干預(yù)策略
盡管心臟團(tuán)隊(duì)采取了許多措施來延緩BVD的發(fā)生并最大限度提高生物瓣的耐久性,當(dāng)前THV衰敗后再干預(yù)率也處于較低水平(約0.59%),但隨著TAVR開展量的持續(xù)增加及早期植入患者瓣膜耐久性的下降,再干預(yù)的需求將會(huì)逐年上升[27]。因此,為患者選擇適當(dāng)?shù)脑俑深A(yù)策略對(duì)心臟團(tuán)隊(duì)和患者來說是至關(guān)重要的,也影響著長(zhǎng)期生活質(zhì)量和總體預(yù)后。
經(jīng)導(dǎo)管主動(dòng)脈瓣中瓣置換術(shù)(valve-in-valve transcatheter aortic valve replacement,ViV"TAVR)和經(jīng)導(dǎo)管主動(dòng)脈瓣外科取出換瓣術(shù)(transcatheter aortic valve replacement surgical explantation,TAVR-explant)構(gòu)成了THV再干預(yù)的主流手術(shù)方式,前者使用導(dǎo)管將新的THV植入在衰敗的THV內(nèi)部,后者則通過外科開胸取出衰敗THV后再植入外科主動(dòng)脈瓣膜。在所有進(jìn)行再干預(yù)的患者中,SVD是最常見的原因(58.2%),其次是PVR(30.9%)、嚴(yán)重PPM(8.3%)和瓣膜血栓形成(2.9%);除PPM患者更多接受TAVR-explant外(17.1% vs 0.5%),ViV"TAVR和TAVR-explant手術(shù)指征的權(quán)重順序大致相同,這可能與THV更易受瓣葉鈣化影響有關(guān)[27]。ViV"TAVR的禁忌證包括解剖結(jié)構(gòu)不合適、需合并其他心臟手術(shù)、THV相關(guān)結(jié)構(gòu)問題(冠狀動(dòng)脈阻塞、瓣膜移位等)和心內(nèi)膜炎[28]??傮w而言,接受ViV"TAVR的患者圍手術(shù)期生存率更高、血管并發(fā)癥更低,但術(shù)后冠狀動(dòng)脈阻塞和瓦氏竇隔離的風(fēng)險(xiǎn)較高,其中使用自膨脹瓣膜進(jìn)行ViV"TAVR患者設(shè)備成功率更高(77.2% vs 64.3%)、跨瓣壓差更低(10.3 mm Hg vs 15.2 mm Hg)(1 mm Hg=0.133 3 kPa)[29]。因此,在再干預(yù)之前,應(yīng)仔細(xì)評(píng)估衰敗THV的設(shè)計(jì)特點(diǎn)、擴(kuò)張情況和聯(lián)合對(duì)齊情況,以便為患者選擇最合適的手術(shù)方法和瓣膜類型。
4 "總結(jié)與展望
BVD是TAVR患者普遍可能遭遇的問題,未及時(shí)干預(yù)的SVD、NSVD、瓣膜血栓和PVE最終會(huì)演變?yōu)锽VF,導(dǎo)致嚴(yán)重血流動(dòng)力學(xué)障礙,影響瓣膜和患者的生活質(zhì)量。多模態(tài)影像學(xué)技術(shù)有助于準(zhǔn)確評(píng)估生物瓣的功能狀態(tài),實(shí)現(xiàn)早期干預(yù);對(duì)于嚴(yán)重功能障礙,ViV"TAVR是一種安全可行的治療方式,能夠有效減輕BVF的影響,而TAVR-explant則可作為解剖結(jié)構(gòu)不合適、需合并其他心臟手術(shù)或發(fā)生心內(nèi)膜炎的患者的后備選擇。
TAVR正值蓬勃發(fā)展之際,新型瓣膜設(shè)計(jì)、前沿材料的應(yīng)用和手術(shù)方法的創(chuàng)新優(yōu)化共同推動(dòng)了適應(yīng)證的不斷擴(kuò)展。PARTNER3試驗(yàn)和Evolut Low Risk試驗(yàn)[30-31]已證實(shí)了在外科低風(fēng)險(xiǎn)人群中,TAVR術(shù)后遠(yuǎn)期臨床結(jié)局不劣于外科主動(dòng)脈瓣置換術(shù),在遠(yuǎn)期血流動(dòng)力學(xué)和遠(yuǎn)期瓣膜衰敗方面TAVR同樣不劣于甚至優(yōu)于外科手術(shù)。由定位件和金屬瓣架系統(tǒng)共同組成的新型人工瓣膜J-Valve可依靠原生瓣葉實(shí)現(xiàn)鎖定,確保了人工瓣膜與瓣環(huán)的同軸性,為鈣化程度較輕的主動(dòng)脈瓣狹窄及單純反流的患者提供了新的治療選項(xiàng)[32-33];同時(shí),兼具機(jī)械瓣膜良好耐疲勞性和生物瓣良好相容性的新型高分子聚合物瓣膜如LifePolymer和TRISKELE也已進(jìn)入臨床,將為年輕的主動(dòng)脈瓣疾病患者提供更多治療選擇[34-36]。
在心臟瓣膜病領(lǐng)域內(nèi),瓣膜的耐久性是臨床決策和患者管理的核心考量。根據(jù)VARC-3最新定義,BVD和BVF已被正式認(rèn)定為主動(dòng)脈瓣臨床研究的終點(diǎn)事件之一(表2)。這標(biāo)志著對(duì)生物瓣耐久性研究的重視程度顯著提升,未來也將有更多的研究和開發(fā)工作集中在延長(zhǎng)生物瓣的有效壽命上,這些研究將為TAVR在更廣泛患者群體中的應(yīng)用提供堅(jiān)實(shí)的實(shí)證基礎(chǔ),并有望為廣大心臟瓣膜病患者帶來更好的治療預(yù)后和生活質(zhì)量。
參考文獻(xiàn)
[1] Davidson LJ,Davidson CJ. Transcatheter treatment of valvular heart disease:a review[J]. JAMA,2021,325(24):2480-2494.
[2] Sharma T,Krishnan AM,Lahoud R,et al. National trends in TAVR and SAVR for patients with severe isolated aortic stenosis[J]. J Am Coll Cardiol,2022,80(21):2054-2056.
[3] Arsalan M,Walther T. Durability of prostheses for transcatheter aortic valve implantation[J]. Nat Rev Cardiol,2016,13(6):360-367.
[4] Salaun E,Clavel MA,Rodés-Cabau J,et al. Bioprosthetic aortic valve durability in the era of transcatheter aortic valve implantation[J]. Heart,2018,104(16):1323-1332.
[5] Généreux P,Piazza N,Alu MC,et al. Valve Academic Research Consortium 3:updated endpoint definitions for aortic valve clinical research[J]. Eur Heart J,2021,42(19):1825-1857.
[6] Blanke P,Weir-McCall JR,Achenbach S,et al. Computed tomography imaging in the context of Transcatheter Aortic Valve Implantation (TAVI)/Transcatheter Aortic Valve Replacement (TAVR):an expert consensus document of the society of cardiovascular computed tomography[J]. JACC Cardiovasc Imaging,2019,12(1):1-24.
[7] Pibarot P,Herrmann HC,Wu C,et al. Standardized definitions for bioprosthetic valve dysfunction following aortic or mitral valve replacement:JACC state-of-the-art review[J]. J Am Coll Cardiol,2022,80(5):545-561.
[8] Capodanno D,Petronio AS,Prendergast B,et al. Standardized definitions of structural deterioration and valve failure in assessing long-term durability of transcatheter and surgical aortic bioprosthetic valves:a consensus statement from the European Association of Percutaneous Cardiovascular Interventions (EAPCI) endorsed by the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)[J]. Eur Heart J,2017,38(45):3382-3390.
[9] Dvir D,Bourguignon T,Otto CM,et al. Standardized definition of structural valve degeneration for surgical and transcatheter bioprosthetic aortic valves[J]. Circulation,2018,137(4):388-399.
[10] Zoghbi WA,Chambers JB,Dumesnil JG,et al. Recommendations for evaluation of prosthetic valves with echocardiography and Doppler ultrasound[J]. J Am Soc Echocardiogr,2009,22(9):975-1014.
[11] Jilaihawi H,Asch FM,Manasse E,et al. Systematic CT methodology for the evaluation of subclinical leaflet"thrombosis[J]. JACC Cardiovasc Imaging,2017,10(4):461-470.
[12] Delgado V,Ajmone Marsan N,de Waha S,et al. 2023 ESC Guidelines for the management of endocarditis[J]. Eur Heart J,2023,44(39):3948-4042.
[13] del Val D,Trottier M,Alperi A,et al. 18F-Fluorodeoxyglucose uptake pattern in noninfected transcatheter aortic valves[J]. Circ Cardiovasc Imaging,2020,13(11):e011749.
[14] ?olc AJ,Línková H,Tou?ek P. Transcatheter aortic valve durability,predictors of bioprosthetic valve dysfunction,longer-term outcomes—A review[J]. Expert Rev Med Devices,2024,21(1-2):15-26.
[15] Kostyunin AE,Yuzhalin AE,Rezvova MA,et al. Degeneration of bioprosthetic heart valves:update 2020[J]. J Am Heart Assoc,2020,9(19):e018506.
[16] Schoen FJ,Levy RJ. Calcification of tissue heart valve substitutes:progress toward understanding and prevention[J]. Ann Thorac Surg,2005,79(3):1072-1080.
[17] Arzani A,Mofrad MRK. A strain-based finite element model for calcification progression in aortic valves[J]. J Biomech,2017,65:216-220.
[18] Hioki H,Watanabe Y,Kawashima H,et al. Predictors of bioprosthetic valve dysfunction after transcatheter aortic valve implantation[J]. AsiaIntervention,2023,9(1):87-94.
[19] Pibarot P,Weissman NJ,Stewart WJ,et al. Incidence and sequelae of prosthesis-patient mismatch in transcatheter versus "surgical valve replacement in high-risk patients with severe aortic stenosis:a PARTNER trial cohort--A analysis[J]. J Am Coll Cardiol,2014,64(13):1323-1334.
[20] Adams DH,Popma JJ,Reardon MJ,et al. Transcatheter aortic-valve replacement with a self-expanding prosthesis[J]. N Engl J Med,2014,370(19):1790-1798.
[21] Ramlawi B,Bedeir K. Overcoming the transcatheter aortic valve replacement Achilles heel:paravalvular leak[J]. Ann Cardiothorac Surg,2020,9(6):499-501.
[22] Fukui M,Bapat VN,Garcia S,et al. Deformation of transcatheter aortic valve prostheses:implications for hypoattenuating leaflet thickening and clinical outcomes[J]. Circulation,2022,146(6):480-493.
[23] Khodaee F,Barakat M,Abbasi M,et al. Incomplete expansion of transcatheter aortic valves is associated with propensity for valve thrombosis[J]. Interact Cardiovasc Thorac Surg,2020,30(1):39-46.
[24] Midha PA,Raghav V,Sharma R,et al. The fluid mechanics of transcatheter heart valve leaflet thrombosis in the neosinus[J]. Circulation,2017,136(17):1598-1609.
[25] Montalescot G,Redheuil A,Vincent F,et al. Apixaban and valve thrombosis after transcatheter aortic valve replacement:the ATLANTIS-4D-CT randomized clinical trial substudy[J]. JACC Cardiovasc Interv,2022,15(18):1794-1804.
[26] Del Val D,Panagides V,Mestres CA,et al. Infective endocarditis after transcatheter aortic valve replacement:JACC state-of-the-art review[J]. J Am Coll Cardiol,2023,81(4):394-412.
[27] Tang G,Zaid S,Kleiman NS,et al. Explant vs redo-TAVR after transcatheter valve failure:mid-term outcomes from the EXPLANTORREDO-TAVR international registry[J]. JACC Cardiovasc Interv,2023,16(8):927-941.
[28] Fukuhara S,Tanaka D,Brescia AA,et al. Aortic valve reintervention in patients with failing transcatheter aortic bioprostheses:a statewide experience[J]. J Thorac Cardiovasc Surg,2023,165(6):2011-2020.
[29] Landes U,Richter I,Danenberg H,et al. Outcomes of redo transcatheter aortic valve replacement according to the initial and subsequent valve type[J]. JACC Cardiovasc Interv,2022,15(15):1543-1554.
[30] Mack MJ,Leon MB,Thourani VH,et al. Transcatheter aortic-valve replacement in low-risk patients at five years[J]. N Engl J Med,2023,389(21):1949-1960.
[31] Forrest JK,Deeb GM,Yakubov SJ,et al. 4-Year outcomes of patients with aortic stenosis in the Evolut low risk trial[J]. J Am Coll Cardiol,2023,82(22):2163-2165.
[32] Garcia S,Ye J,Webb J,et al. Transcatheter treatment of native aortic valve regurgitation:the North American "experience with a novel device[J]. JACC Cardiovasc Interv,2023,16(16):1953-1960.
[33] Huded CP,Allen KB,Chhatriwalla AK. Counterpoint:challenges and limitations of transcatheter aortic valve implantation for aortic regurgitation[J]. Heart,2021,107(24):1942-1945.
[34] Rahmani B,Tzamtzis S,Sheridan R,et al. A new transcatheter heart valve concept (the TRISKELE):feasibility in an acute preclinical model[J]. EuroIntervention,2016,12(7):901.
[35] Singh SK,Kachel M,Castillero E,et al. Polymeric prosthetic heart valves:a review of current technologies and future directions[J]. Front Cardiovasc Med,2023,10:1137827.
[36] Appa H,Park K,Bezuidenhout D,et al. The technological basis of a balloon-expandable TAVR system:non-occlusive deployment,anchorage in the absence of calcification and polymer leaflets[J]."Front Cardiovasc Med,2022,9:791949.
[37] Pibarot P,Ternacle J,Jaber WA,et al. Structural deterioration of transcatheter versus surgical aortic valve bioprostheses in the PARTNER-2 trial[J]. J Am Coll Cardiol,2020,76(16):1830-1843.
[38] Thyregod HGH,J?rgensen TH,Ihlemann N,et al. Transcatheter or surgical aortic valve implantation:10-year outcomes of the NOTION trial[J]. Eur Heart J,2024,45(13):1116-1124.
[39] Okuno T,Tomii D,Lanz J,et al. 5-Year outcomes with self-expanding vs balloon-expandable transcatheter aortic valve replacement in patients with small annuli[J]."JACC Cardiovasc Interv,2023,16(4):429-440.
[40] Abdel-Wahab M,Landt M,Neumann FJ,et al. 5-Year outcomes after TAVR with balloon-expandable versus self-expanding valves:results from the CHOICE randomized clinical trial[J]. JACC Cardiovasc Interv,2020,13(9):1071-1082.
[41] O'Hair D,Yakubov SJ,Grubb KJ,et al. Structural valve deterioration after self-expanding transcatheter or surgical aortic valve implantation in patients at intermediate or high risk[J]. JAMA Cardiol,2023,8(2):111-119.
[42] Didier R,Eltchaninoff H,Donzeau-Gouge P,et al. Five-year clinical outcome and valve durability after transcatheter aortic valve replacement in high-risk patients[J]. Circulation,2018,138(23):2597-2607.
收稿日期:2024-04-07