〔摘要〕 目前,臨床上對胃腸道惡性腫瘤的治療仍然以放化療為主,但是患者對放化療藥物易產(chǎn)生耐藥性,嚴重影響患者的生活質(zhì)量。研究發(fā)現(xiàn),腫瘤化療藥物的耐藥性是由鐵的累積和氧化還原穩(wěn)態(tài)失調(diào)所造成,也許調(diào)控鐵死亡途徑可以為胃腸道惡性腫瘤耐藥的治療帶來新的機遇。本文對鐵死亡的特征、調(diào)控機制進行了系統(tǒng)的總結(jié)與分析,同時概述了鐵死亡不同途徑對改善胃腸道惡性腫瘤細胞耐藥性的研究進展,旨在為胃腸道惡性腫瘤耐藥患者的治療提供新的思路和方向。
〔關(guān)鍵詞〕 胃腸道惡性腫瘤;鐵死亡;耐藥;脂質(zhì)過氧化代謝;谷胱甘肽代謝;氨基酸代謝;鐵代謝
〔中圖分類號〕R246.5" " " " "〔文獻標志碼〕A" " " " " 〔文章編號〕doi:10.3969/j.issn.1674-070X.2024.08.030
Research progress on ferroptosis-related pathways in reducing
drug resistance of gastrointestinal malignant tumor cells
CHEN Xinyuan1, TANG Meiwen1,2*, WU Chengting1, XIONG Changzhou1, WANG Ting1,
CUI Yinhang1,3, XIE Jiacheng1
1. Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China; 2. Department of Spleen and Stomach Diseases, Xianhu Branch of the First Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China; 3. Ruikang Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China
〔Abstract〕 At present, the clinical treatment of gastrointestinal malignant tumors primarily relies on radiotherapy and chemotherapy, but patients are prone to developing drug resistance to these treatments, which seriously affects their quality of life. Studies have found that resistance to tumor chemotherapeutic drugs is caused by iron accumulation and redox homeostasis imbalance. Perhaps the regulation of ferroptosis pathways could bring new opportunities for reducing drug resistance in gastrointestinal malignant tumors. This paper systematically summarizes and analyzes the characteristics and regulatory mechanisms of ferroptosis, and outlines the research progress of different ferroptosis pathways in reducing drug resistance of gastrointestinal malignant tumor cells, aiming to provide new ideas and directions for" treating patients with drug resistance of gastrointestinal malignant tumors.
〔Keywords〕 gastrointestinal malignant tumors; ferroptosis; drug resistance; lipid peroxidation metabolism; glutathione metabolism; amino acid metabolism; iron metabolism
胃腸道惡性腫瘤包括胃癌(gastric cancer,GC)、結(jié)直腸癌(colorectal cancer,CRC)、十二指腸癌(duodenal cancer,DC)和闌尾癌(appendiceal cancer,AC)在內(nèi)的一類消化系統(tǒng)疾病,其發(fā)生與家族遺傳史、胃腸道慢性炎癥、飲食、飲酒等有關(guān)[1-2]。胃腸道惡性腫瘤的發(fā)病率、死亡率在全球癌癥死亡率中名列前茅,嚴重威脅人們身體健康和生命安全[3-5]。多數(shù)胃腸道惡性腫瘤患者確診時病情已步入中晚期,此時常用的治療藥物有順鉑(Cisplatin,CDDP)、索拉菲尼(Sorafenib,SRF)、5氟尿嘧啶(5-fluorouracil,5-FU)、奧沙利鉑(Oxaliplatin,OxPt)、卡培他濱(Capecitabine,CAPE)[6-7]。癌細胞具有抵抗細胞死亡且無限復制的能力[8],容易對治療藥產(chǎn)生耐藥性,進而影響胃腸道惡性腫瘤的治療效果[9-10]。有研究指出,誘導鐵死亡使癌細胞內(nèi)發(fā)生鐵積累和氧化反應能夠改善惡性腫瘤的耐藥性[11-15],這為胃腸道惡性腫瘤耐藥的治療帶來新的機遇。因此,本文對鐵死亡的特征、調(diào)控機制進行了系統(tǒng)的總結(jié)與分析,同時概述了鐵死亡不同途徑對改善胃腸道惡性腫瘤細胞耐藥性的研究進展。
1 鐵死亡的定義及機制
2012年,美國哥倫比亞大學生物化學家Brent Stockwell教授提出當細胞發(fā)生鐵死亡時會出現(xiàn)細胞連接中斷、線粒體皺縮、嵴皺縮和線粒體外膜破裂等獨特的形態(tài)學變化[16]和活性氧(reactive oxygen species,ROS)和丙二醛(malondialdehyde,MDA)等標志性產(chǎn)物。在鐵死亡發(fā)生時,細胞內(nèi)鐵離子水平會升高,產(chǎn)生大量的ROS,同時會引起谷胱甘肽過氧化物酶4(glutathione peroxidase 4,GPx 4)的耗竭、脂質(zhì)代謝產(chǎn)物的積累[17],其主要代謝途徑為鐵代謝、脂質(zhì)過氧化代謝、谷胱甘肽代謝、氨基酸代謝[18],詳見圖1。
在鐵代謝途徑中,細胞外鐵(Fe3+)結(jié)合轉(zhuǎn)鐵蛋白(transferrin,TF)及轉(zhuǎn)鐵蛋白受體(transferrin receptor,TFRC)后,經(jīng)過二價金屬離子轉(zhuǎn)運蛋白1(divalent metal transporter 1,DMT1)的轉(zhuǎn)運進入細胞內(nèi)還原為Fe2+,F(xiàn)e2+易與細胞內(nèi)的過氧化氫反應產(chǎn)生羥基自由基,引發(fā)強氧化反應,這一反應也被稱為芬頓反應,芬頓反應可損傷DNA、蛋白質(zhì)和膜脂,促進脂質(zhì)過氧化,誘發(fā)鐵死亡[19-20]。通過對鐵的攝取、輸出、利用和儲存機制的調(diào)節(jié),能夠?qū)﹁F死亡的易感性進行調(diào)節(jié)[21]。
脂質(zhì)過氧化物聚集是鐵死亡發(fā)生的核心環(huán)節(jié)[22],多不飽和脂肪(polyunsaturated fatty acid,PUFA)是脂質(zhì)過氧化途徑中的核心分子,PUFA受?;o酶A合成酶長鏈家族成員4(acyl-coA synthetase long chain family member 4,ACSL4)、溶血磷脂酰膽堿?;D(zhuǎn)移酶3(lysophosphatidylcholine acyltransferase 3,LPCAT3)和脂肪氧合酶(Lipoxygenase,LOX)調(diào)控,在這三種酶的催化下氧化成為脂質(zhì)過氧化物[23]。GPx4是鐵死亡脂質(zhì)過氧化代謝途徑中的明星分子,具有很強的抗氧化能力,它能夠?qū)⒍拘缘闹|(zhì)氫過氧化物轉(zhuǎn)化為無毒的脂質(zhì)醇,抑制脂質(zhì)活性氧的形成,從而減輕脂質(zhì)過氧化,保護細胞膜免受損傷。因此,若GPx4含量降低,脂質(zhì)過氧化水平會增加,鐵死亡即會增強[24]。
谷胱甘肽代謝系統(tǒng)通過調(diào)控谷胱甘肽(glutathione,GSH)進而調(diào)控鐵死亡。GSH是哺乳動物細胞內(nèi)最主要的抗氧化劑,也是GPx4催化反應的底物,可將還原型GSH轉(zhuǎn)化為氧化型GSH,從而減輕氧化應激損傷[25]。核因子-紅細胞2相關(guān)因子2(nuclear factor erythroid 2-related factor 2,Nrf2)是GSH代謝途徑中的的關(guān)鍵基因,它位于人染色體2q31.2,其編碼的蛋白是一種具有亮氨酸拉鏈結(jié)構(gòu),能夠調(diào)控細胞內(nèi)穩(wěn)態(tài)的平衡和GSH的合成,還能對抗機體外源性和內(nèi)源性氧化損傷,在鐵死亡中發(fā)揮重要作用[26]。
氨基酸是腫瘤細胞生長所需的必要營養(yǎng),若氨基酸無法進入細胞內(nèi),則腫瘤生長受阻[27]。氨基酸代謝途徑主要通過胱氨酸-谷氨酸反轉(zhuǎn)運蛋白(cystine/glutamate transporter,system XC-)系統(tǒng)影響氨基酸的跨膜轉(zhuǎn)運進而調(diào)控鐵死亡,該系統(tǒng)由溶質(zhì)轉(zhuǎn)運家族7A11(solute carrier family 7 member 11,slc7A11)和溶質(zhì)轉(zhuǎn)運家族3A2(solute carrier family 3 member 2,slc3A2)組成,負責將胱氨酸還原為半胱氨酸,合成細胞內(nèi)主要的抗氧化劑GSH,阻止細胞外環(huán)境中的胱氨酸的獲取從而導致鐵死亡[28]。
2 鐵死亡是改善胃腸道腫瘤耐藥性的重要途徑
鐵死亡能夠抑制胃腸道惡性腫瘤細胞的增殖、轉(zhuǎn)移能力[29-33],還能改善胃腸道惡性腫瘤由于鐵的累積和氧化還原穩(wěn)態(tài)失調(diào)所引起的耐藥性[11-13]。下文就鐵死亡相關(guān)途徑改善胃腸道惡性腫瘤細胞耐藥性的研究進展及作用機制展開論述,詳見表1。
2.1" 脂質(zhì)過氧化代謝途徑
脂質(zhì)過氧化是鐵死亡發(fā)生的主要途徑,MDA和GPx4分別是其代謝的主要產(chǎn)物和代謝途徑中的明星分子。Wnt/β-catenin信號通路在GC耐藥細胞和GC患者組織中都呈高表達,與胃腸道腫瘤的治療及腫瘤耐藥都密切相關(guān)[34-36]。WANG等[37]研究發(fā)現(xiàn),當Wnt/β-catenin信號通路被激活時,ROS隨之減少,GPx4水平上升,GC細胞的鐵死亡被抑制;相反,使用一種名為LF3的Wnt/β-catenin信號通路抑制劑處理GC耐藥細胞后,細胞中的Wnt/β-catenin蛋白信號會抑制,ROS的表達會增強,使GPx4水平下調(diào),從而改善CRC細胞對CDDP的耐藥。除LF3分子外,傳統(tǒng)中藥穿心蓮也能改善CRC細胞的耐藥性。研究發(fā)現(xiàn),穿心蓮聯(lián)合5-FU對CRC細胞的抑制作用優(yōu)于單獨使用5-FU時對細胞抑制作用,這可能與抑制Wnt/β-catenin通路、激活CRC中的鐵死亡有關(guān)[38]。因此抑制Wnt/β-catenin信號通路可能成為改善胃腸道惡性腫瘤耐藥的潛在治療策略。
黃芩苷是從黃芩中提取的有效活性成分,其具有抗腫瘤、抗氧化作用[39]。YUAN等[40]研究發(fā)現(xiàn),黃芩苷聯(lián)合5-Fu對GC細胞的抑制作用優(yōu)于二者單獨使用,黃芩苷協(xié)同5-Fu,提高了5-Fu的療效,增加了細胞內(nèi)ROS水平,下調(diào)了GPx4水平,誘導了鐵死亡,從而改善了GC細胞對5-Fu的耐藥ADP核糖基化因子6(adp-ribosylation factor 6,ARF6)是大鼠肉瘤病毒(kirsten rat sarcoma,KRAS)超家族的成員,參與調(diào)節(jié)囊泡運輸、膜脂質(zhì)重塑和轉(zhuǎn)導信號通路,能夠影響癌細胞的侵襲,轉(zhuǎn)移和增殖能力[41]。GENG等[42]研究發(fā)現(xiàn),敲除ARF6能夠減輕GC細胞對卡培他濱的耐藥性,敲除ARF6之后GC細胞脂質(zhì)過氧化水平增強,誘導了鐵死亡。
C820納米顆粒是一種由順鉑、氧氣共同組裝而成的納米平臺,能夠提高脂質(zhì)過氧化水平,誘導鐵死亡,改善CRC細胞對CDDP的耐藥,在體外實驗中發(fā)現(xiàn),在該納米平臺的作用下,各實驗組均以劑量依賴的方式抑制了CRC細胞的存活,降低了CRC細胞中GPx4的蛋白水平,從而誘導鐵死亡,改善CRC細胞的耐藥性,并能抑制小鼠體內(nèi)腫瘤的復發(fā)[43]。
程序性死亡受體1(programmed death 1, PD-1)與程序性死亡受體-1配體(PD-L1,Programmed death-Ligand 1)結(jié)合后會導致腫瘤細胞免疫逃逸和腫瘤進展[44],在一項臨床研究中顯示,PD-1的耐藥性嚴重影響CRC患者治療效果[45]。有研究指出,抑制細胞色素P450 1B1(cytochrome p450 family 1 subfamily b member 1 gene,CYP1B1)能夠改善PD-1的耐藥性。CYP1B1是在肝臟中表達的一種血紅素-硫代單加氧酶,參與脂肪酸的代謝、炎癥的發(fā)生、腫瘤細胞耐藥性[46]。CHEN等[47]人研究發(fā)現(xiàn),CYP1B1在CRC腫瘤組織中高表達,且與不良預后呈正相關(guān),CYP1B1表達越高,CRC細胞的耐藥性越強,相反若CYP1B1缺失會增強鐵死亡,從而改善CRC細胞對PD-1的耐藥性,而這一結(jié)果的發(fā)生,是通過抑制脂質(zhì)代謝基因ACSL4降解實現(xiàn)的。
2.2" 谷胱甘肽代謝途徑
谷胱甘肽代謝通過下調(diào)GSH而誘發(fā)鐵死亡,Nrf2是GSH代謝途徑中的明星分子。HUANG等[48]研究發(fā)現(xiàn),益氣化瘀解毒湯通過AKT/GSK3β/NRF2通路抑制GPx4,誘導CDDP耐藥GC細胞的鐵死亡,從而減弱GC中的CDDP耐藥性。轉(zhuǎn)錄因子3(activating transcription factor 3,ATF3)是一種抗腫瘤基因[49]。FU等[50]研究發(fā)現(xiàn),ATF3表達與GC患者的總生存率呈正相關(guān),在GC順鉑耐藥細胞中,上調(diào)ATF3,能夠抑制Nrf2/Keap1/XC-信號,減少細胞內(nèi)GSH的合成,誘發(fā)鐵死亡,改善GC細胞耐藥性。
抗衰老酶(sirtuins 6,SIRT6)是一種去乙?;?,在癌癥的發(fā)生中發(fā)揮重要作用[51],CAI等[52]發(fā)現(xiàn),在索拉菲尼(sorafenib, SRF)GC耐藥細胞中,SIRT6呈高表達,當敲低SIRT6后,SRF誘導了更多的GC細胞死亡,加入鐵死亡抑制劑可以阻斷細胞死亡,與對照組的GC耐藥細胞相比,敲低SIRT6后的GC耐藥細胞中的ROS、Fe2+和MDA的表達增加,GSH、GPx4表達減少,說明敲低SIRT6后GC耐藥細胞發(fā)生了鐵死亡,這一過程可能與Keap1/Nrf2/GPx4信號通路失活有關(guān)。
YANG等[53]經(jīng)研究發(fā)現(xiàn),KIF20A是一個與GPx4顯著相關(guān)基因,在OxPt耐藥細胞系中呈高表達。通過沉默KIF20A基因可增強CRC細胞鐵死亡,進而改善CRC細胞中OxPt的耐藥性,這一過程與促癌激酶NUAK家族激酶11(nuak family kinase 1,NUAK1)有關(guān),其機制是由于KIF20A可以促進NUAK1的活化,上調(diào)GPx4水平,抑制鐵死亡,從而使CRC對OxPt耐藥。因此,抑制KIF20A/NUAK1/Nrf2/GPx4信號通路,下調(diào)GPx4水平,誘導鐵死亡,這一機制可能成為改善CRC細胞對OxPt的耐藥性的潛在策略。
2.3" 氨基酸代謝途徑
氨基酸代謝途徑主要通過XC-系統(tǒng)來調(diào)控鐵死亡,該系統(tǒng)負責將胱氨酸還原為半胱氨酸,合成細胞內(nèi)主要的抗氧化劑GSH,阻止胱氨酸進入細胞內(nèi)從而導致鐵死亡。FAM98A (family with sequence similarity 98 member A)是一種參與細胞增殖和遷移的微管相關(guān)蛋白,F(xiàn)AM98A蛋白的N端為發(fā)散的NN-CH樣結(jié)構(gòu)域,與C端RGG(精氨酸-甘氨酸-甘氨酸)重復序列相連,形成一個卷曲的線圈結(jié)構(gòu)[54]。HE等[55]發(fā)現(xiàn)FAM98A在CRC組織和細胞系中均呈高表達,其表達量與CRC細胞的活性呈正相關(guān),能夠促進CRC細胞的增殖、侵襲遷移能力。下調(diào)FAM98A可以顯著增強CRC細胞中的鐵死亡,增強CRC細胞對5-FU的化療敏感性,同時在Western Blot蛋白檢測中證實這一過程由SLC7A11和GPx4兩個蛋白調(diào)控,說明FAM98A過表達是通過調(diào)節(jié)XC-系統(tǒng)而實現(xiàn)的。
OU等[56]研究發(fā)現(xiàn)健脾解毒湯(由黃芪、茯苓、薏苡仁等組成)和5-FU聯(lián)合處理可通過抑制XC-/GSH/GPx4軸促進鐵死亡來逆轉(zhuǎn)CRC細胞對5-FU的耐藥性。
龍須菜多糖提取自中藥海藻,具有抗腫瘤活性[57],CAI等[58]研究發(fā)現(xiàn),龍須菜多糖和CDDP聯(lián)合治療能夠增強荷瘤小鼠的抗腫瘤療效,縮小腫瘤體積,其機制是通過靶向SLC7A11/GPx4通路來誘導鐵死亡,增強化療效果,這為改善CRC中CDDP藥物耐藥性提供了一個新的思路。
多聚ADP核糖聚合酶抑制劑[poly (adp-ribose) polymerase inhibitor,PARPi]能夠啟動和調(diào)節(jié)DNA修復途徑,保護細胞免受放療或化療引起的DNA損傷和細胞死亡,尼拉帕尼(Niraparib)屬于PARPi類藥物[59]。SHEN等[60]研究發(fā)現(xiàn),尼拉帕尼能夠通過環(huán)鳥苷-腺苷合成酶(cyclic GMP-AMP synthase,cGAS)信號通路來抑制TF3/SLC7A11/GPx4軸驅(qū)動鐵死亡,改善CRC的耐藥性。
2.4" 鐵代謝途徑
鐵代謝途徑誘發(fā)鐵死亡是治療腫瘤耐藥的有效手段,通過增加細胞內(nèi)游離鐵的含量,引發(fā)芬頓反應誘導腫瘤細胞死亡。王寧等[33]研究發(fā)現(xiàn),GC組織中TFRC基因表達增高,能夠改善CDDP、5-FU等化療藥物對腫瘤的耐藥性。
五味子蛋白A是從五味子中分離出來的生物活性木質(zhì)素化合物,具有神經(jīng)保護、肝保護、抗炎、抗腫瘤和抗氧化特性[61-62],HU等[63]研究發(fā)現(xiàn),五味子蛋白A聯(lián)合5-FU誘導鐵死亡,能改善GC細胞的耐藥性,五味子蛋白A協(xié)同5-FU治療的過程中,轉(zhuǎn)鐵蛋白受體表達增加,芬頓反應被誘發(fā),鐵死亡由此發(fā)生,從而改善GC細胞耐藥性。
鐵基納米材料是癌癥靶向治療的理想載體,能夠靶向腫瘤部位釋放鐵離子,誘導芬頓反應,促進鐵死亡。鄧靈玲[64]將化療與化學動力療法相結(jié)合,將甘油醚與油酸修飾的氧化鐵納米顆粒(O-SPIONs)結(jié)合,形成O-SPIONs@PG-Pt-LA納米膠束,引發(fā)芬頓反應,使細胞內(nèi)的ROS和MDA含量增加,誘導細胞鐵死亡改善化療耐藥性。GUAN等[65]開發(fā)了抗腫瘤納米顆粒-SRF@MPDA-SPIO,將索拉非尼(Sorafenib,SRF)裝入納米顆粒,刺激鐵離子釋放,引發(fā)芬頓反應,誘導鐵死亡,增加SRF對CRC細胞的治療作用。
3 小結(jié)
在胃腸道惡性腫瘤的診治過程中,遭遇化療藥物耐藥性是一個常見的難題。然而,鐵死亡途徑的研究為解決這一難題提供了新的方向。鐵死亡的發(fā)生與脂質(zhì)過氧化物積累、谷胱甘肽代謝失衡、氨基酸代謝紊亂以及鐵離子積累等機制緊密相關(guān),這些機制與腫瘤耐藥性的產(chǎn)生也密不可分。目前,通過誘導鐵死亡來改善胃腸道惡性腫瘤細胞耐藥性的研究尚處于基礎(chǔ)研究階段,從基礎(chǔ)研究到臨床應用的道路雖然漫長,但充滿了希望。為此,在今后的研究中,廣大學者可積極探索新型材料與天然產(chǎn)物的開發(fā)與利用,以期將基礎(chǔ)研究成果轉(zhuǎn)化為臨床實踐,為解決胃腸道惡性腫瘤的耐藥性問題提供更多可能。
參考文獻
[1] 赫" 捷, 陳萬青, 李兆申, 等. 中國胃癌篩查與早診早治指南(2022, 北京)[J]. 中國腫瘤, 2022, 31(7): 488-527.
[2] ITZKOWITZ S H, YIO X. Inflammation and cancer Ⅳ. Colorectal cancer in inflammatory bowel disease: The role of inflammation[J]. American Journal of Physiology Gastrointestinal and Liver Physiology, 2004, 287(1): G7-G17.
[3] XIE Y M, SHI L S, HE X S, et al. Gastrointestinal cancers in China, the USA, and Europe[J]. Gastroenterology Report, 2021, 9(2): 91-104.
[4] XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants[J]. Chinese Medical Journal, 2022, 135(5): 584-590.
[5] PATEL S G, KARLITZ J J, YEN T, et al. The rising tide of early-onset colorectal cancer: A comprehensive review of epidemiology, clinical features, biology, risk factors, prevention, and early detection[J]. The Lancet Gastroenterology amp; Hepatology, 2022, 7(3): 262-274.
[6] 國家衛(wèi)生健康委員會醫(yī)政司, 中華醫(yī)學會腫瘤學分會. 中國結(jié)直腸癌診療規(guī)范(2023版)[J]. 協(xié)和醫(yī)學雜志, 2023, 14(4): 706-733.
[7] 中華人民共和國國家衛(wèi)生健康委員會醫(yī)政醫(yī)管局. 胃癌診療指南(2022年版)[J]. 中華消化外科雜志, 2022, 21(9): 1137-1164.
[8] HANAHAN D, WEINBERG R A. Hallmarks of cancer: The next generation[J]. Cell, 2011, 144(5): 646-674.
[9] JOHNSTON F M, BECKMAN M. Updates on management of gastric cancer[J]. Current Oncology Reports, 2019, 21(8): 67.
[10] MARTINI G, CIARDIELLO D, VITIELLO P P, et al. Resistance to anti-epidermal growth factor receptor in metastatic colorectal cancer: What does still need to be addressed?[J]. Cancer Treatment Reviews, 2020, 86: 102023.
[11] NIE Z Y, CHEN M, GAO Y H, et al. Ferroptosis and tumor drug resistance: Current status and major challenges[J]. Frontiers in Pharmacology, 2022, 13: 879317.
[12] CHEN S J, KUO C C, PAN H Y, et al. Desferal regulates hCtr1 and transferrin receptor expression through Sp1 and exhibits synergistic cytotoxicity with platinum drugs in oxaliplatin-resistant human cervical cancer cells in vitro and in vivo[J]. Oncotarget, 2016, 7(31): 49310-49321.
[13] YANG W S, KIM K J, GASCHLER M M, et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(34): E4966-E4975.
[14] LIU Q, WANG K Z. The induction of ferroptosis by impairing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin[J]. Cell Biology International, 2019, 43(11): 1245-1256.
[15] SHAO Z C, ZHU B H, HUANG A F, et al. Docosahexaenoic acid reverses epithelial-mesenchymal transition and drug resistance by impairing the PI3K/AKT/Nrf2/GPX4 signalling pathway in docetaxel-resistant PC3 prostate cancer cells[J]. Folia Biologica, 2022, 68(2): 59-71.
[16] DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5): 1060-1072.
[17] XIE Y, HOU W, SONG X, et al. Ferroptosis: Process and function[J]. Cell Death and Differentiation, 2016, 23(3): 369-379.
[18] FRIEDMANN ANGELI J P, SCHNEIDER M, PRONETH B, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice[J]. Nature Cell Biology, 2014, 16(12): 1180-1191.
[19] YANG W S, KIM K J, GASCHLER M M, et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(34): E4966-E4975.
[20] YAN B, AI Y W, SUN Q, et al. Membrane damage during ferroptosis is caused by oxidation of phospholipids catalyzed by the oxidoreductases POR and CYB5R1[J]. Molecular Cell, 2021, 81(2): 355-369.e10.
[21] WANG Y, LIU Y, LIU J, et al. NEDD4L-mediated LTF protein degradation limits ferroptosis[J]. Biochemical and Biophysical Research Communications, 2020, 531(4): 581-587.
[22] CONRAD M, PRATT D A. The chemical basis of ferroptosis[J]. Nature Chemical Biology, 2019, 15(12): 1137-1147.
[23] DOLL S, PRONETH B, TYURINA Y Y, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nature Chemical Biology, 2017, 13(1): 91-98.
[24] HIRSCHHORN T, STOCKWELL B R. The development of the concept of ferroptosis[J]. Free Radical Biology amp; Medicine, 2019, 133: 130-143.
[25] ZHOU B S, WANG H L, ZHANG B, et al. Licochalcone B attenuates neuronal injury through anti-oxidant effect and enhancement of Nrf2 pathway in MCAO rat model of stroke[J]. International Immunopharmacology, 2021, 100: 108073.
[26] BELLEZZA I, GIAMBANCO I, MINELLI A, et al. Nrf2-Keap1 signaling in oxidative and reductive stress[J]. Biochimica et Biophysica Acta Molecular Cell Research, 2018, 1865(5): 721-733.
[27] FAUBERT B, SOLMONSON A, DEBERARDINIS R J. Metabolic reprogramming and cancer progression[J]. Science, 2020, 368(6487): 324-330.
[28] STOCKWELL B R, FRIEDMANN ANGELI J P, BAYIR H, et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273-285.
[29] PARK S, OH J, KIM M, et al. Bromelain effectively suppresses Kras-mutant colorectal cancer by stimulating ferroptosis[J]. Animal Cells and Systems, 2018, 22(5): 334-340.
[30] GUAN Z H, CHEN J, LI X L, et al. Tanshinone IIA induces ferroptosis in gastric cancer cells through p53-mediated SLC7A11 down-regulation[J]. Bioscience Reports, 2020, 40(8): BSR20201807.
[31] XIAN Z Y, HU B, WANG T, et al. CircABCB10 silencing inhibits the cell ferroptosis and apoptosis by regulating the miR-326/CCL5 axis in rectal cancer[J]. Neoplasma, 2020, 67(5): 1063-1073.
[32] ZHAO L Y, PENG Y M, HE S X, et al. Apatinib induced ferroptosis by lipid peroxidation in gastric cancer[J]. Gastric Cancer, 2021, 24(3): 642-654.
[33] 王" 寧, 康華麗, 薛金慧, 等. 鐵死亡相關(guān)基因TFRC在胃癌組織中的表達及其與化療藥物敏感性的關(guān)系[J]. 現(xiàn)代腫瘤醫(yī)學, 2023, 31(22): 4183-4189.
[34] PERRY J M, TAO F, ROY A, et al. Overcoming Wnt-β-catenin dependent anticancer therapy resistance in leukaemia stem cells[J]. Nature Cell Biology, 2020, 22(6): 689-700.
[35] FLANAGAN D J, VINCAN E, PHESSE T J. Wnt signaling in cancer: Not a binary ON: OFF switch[J]. Cancer Research, 2019, 79(23): 5901-5906.
[36] NUSSE R, CLEVERS H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities[J]. Cell, 2017, 169(6): 985-999.
[37] WANG Y, ZHENG L X, SHANG W J, et al. Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer[J]. Cell Death and Differentiation, 2022, 29(11): 2190-2202.
[38] SHARMA P, SHIMURA T, BANWAIT J K, et al. Andrographis-mediated chemosensitization through activation of ferroptosis and suppression of β-catenin/Wnt-signaling pathways in colorectal cancer[J]. Carcinogenesis, 2020, 41(10): 1385-1394.
[39] MOGHADDAM E, TEOH B T, SAM S S, et al. Baicalin, a metabolite of baicalein with antiviral activity against dengue virus[J]. Scientific Reports, 2014, 4: 5452.
[40] YUAN J W, KHAN S U, YAN J F, et al. Baicalin enhances the efficacy of 5-Fluorouracil in gastric cancer by promoting ROS-mediated ferroptosis[J]. Biomedecine amp; Pharmacotherapie, 2023, 164: 114986.
[41] KATSUMATA O, MORI M, SAWANE Y, et al. Cellular and subcellular localization of ADP-ribosylation factor 6 in mouse peripheral tissues[J]. Histochemistry and Cell Biology, 2017, 148(6): 577-596.
[42] GENG D H, WU H Y. Abrogation of ARF6 in promoting erastin-induced ferroptosis and mitigating capecitabine resistance in gastric cancer cells[J]. Journal of Gastrointestinal Oncology, 2022, 13(3): 958-967.
[43] JIANG H, TIAN H L, WANG Z H, et al. Laser-activatable oxygen self-supplying nanoplatform for efficiently overcoming colorectal cancer resistance by enhanced ferroptosis and alleviated hypoxic microenvironment[J]. Biomaterials Research, 2023, 27(1): 92.
[44] JIANG Y S, CHEN M, NIE H, et al. PD-1 and PD-L1 in cancer immunotherapy: Clinical implications and future considerations[J]. Human Vaccines amp; Immunotherapeutics, 2019, 15(5): 1111-1122.
[45] LE D T, URAM J N, WANG H, et al. PD-1 blockade in tumors with mismatch-repair deficiency[J]. The New England Journal of Medicine, 2015, 372(26): 2509-2520.
[46] LI F, ZHU W F, GONZALEZ F J. Potential role of CYP1B1 in the development and treatment of metabolic diseases[J]. Pharmacology amp; Therapeutics, 2017, 178: 18-30.
[47] CHEN C C, YANG Y B, GUO Y G, et al. CYP1B1 inhibits ferroptosis and induces anti-PD-1 resistance by degrading ACSL4 in colorectal cancer[J]. Cell Death amp; Disease, 2023, 14(4): 271.
[48] HUANG W J, WEN F, YANG P P, et al. Yi-qi-Hua-yu-Jie-du decoction induces ferroptosis in cisplatin-resistant gastric cancer via the AKT/GSK3β/NRF2/GPX4 axis[J]. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 2024, 123: 155220.
[49] LIU J J, LU X Y, ZENG S Y, et al. ATF3-CBS signaling axis coordinates ferroptosis and tumorigenesis in colorectal cancer[J]. Redox Biology, 2024, 71: 103118.
[50] FU D Z, WANG C X, YU L, et al. Induction of ferroptosis by ATF3 elevation alleviates cisplatin resistance in gastric cancer by restraining Nrf2/Keap1/xCT signaling[J]. Cellular amp; Molecular Biology Letters, 2021, 26(1): 26.
[51] KHONGKOW M, OLMOS Y, GONG C, et al. SIRT6 modulates paclitaxel and epirubicin resistance and survival in breast cancer[J]. Carcinogenesis, 2013, 34(7): 1476-1486.
[52] CAI S N, FU S, ZHANG W K, et al. SIRT6 silencing overcomes resistance to sorafenib by promoting ferroptosis in gastric cancer[J]. Biochemical and Biophysical Research Communications, 2021, 577: 158-164.
[53] YANG C S, ZHANG Y, LIN S T, et al. Suppressing the KIF20A/NUAK1/Nrf2/GPX4 signaling pathway induces ferroptosis and enhances the sensitivity of colorectal cancer to oxaliplatin[J]. Aging, 2021, 13(10): 13515-13534.
[54] SCHOU K B, ANDERSEN J S, PEDERSEN L B. A divergent calponin homology (NN-CH) domain defines a novel family: Implications for evolution of ciliary IFT complex B proteins[J]. Bioinformatics, 2014, 30(7): 899-902.
[55] HE Z K, YANG J B, SUI C Y, et al. FAM98A promotes resistance to 5-fluorouracil in colorectal cancer by suppressing ferroptosis[J]. Archives of Biochemistry and Biophysics, 2022, 722: 109216.
[56] OU Q L, CHENG L, CHANG Y L, et al. Jianpi Jiedu Decoction reverses 5-fluorouracil resistance in colorectal cancer by suppressing the xCT/GSH/GPX4 axis to induce ferroptosis[J]. Heliyon, 2024, 10(5): e27082.
[57] 康亞妮, 孫" 雪, 徐年軍, 等. 龍須菜的藥用價值及其抗腫瘤活性[J]. 現(xiàn)代生物醫(yī)學進展, 2016, 16(11): 2175-2177, 2186.
[58] CAI B N, LUO L X, CHEN X D, et al. Structural characterization of a sulfated polysaccharide from Gracilariopsis lemaneiformis and its potentiation of cisplatin antitumor activity in Colon-26 carcinoma tumor-bearing mice by inducing ferroptosis[J]. Food amp; Function, 2023, 14(8): 3712-3721.
[59] LORD C J, ASHWORTH A. PARP inhibitors: Synthetic lethality in the clinic[J]. Science, 2017, 355(6330): 1152-1158.
[60] SHEN D Y, LUO J, CHEN L, et al. PARPi treatment enhances radiotherapy-induced ferroptosis and antitumor immune responses via the cGAS signaling pathway in colorectal cancer[J]. Cancer Letters, 2022, 550: 215919.
[61] XIAN H B, FENG W N, ZHANG J R. Schizandrin A enhances the efficacy of gefitinib by suppressing IKKβ/NF-κB signaling in non-small cell lung cancer[J]. European Journal of Pharmacology, 2019, 855: 10-19.
[62] SU X Y, GAO C C, SHI F F, et al. A microemulsion co-loaded with Schizandrin A-docetaxel enhances esophageal carcinoma treatment through overcoming multidrug resistance[J]. Drug Delivery, 2017, 24(1): 10-19.
[63] HU L Y, ZHANG Z Y, ZHU F, et al. Schizandrin A enhances the sensitivity of gastric cancer cells to 5-FU by promoting ferroptosis[J]. Cytotechnology, 2024, 76(3): 329-340.
[64] 鄧靈玲. 化療和化學動力療法聯(lián)合的診療一體化抗耐藥性結(jié)腸癌納米體系的構(gòu)建[D]. 天津: 天津理工大學, 2023.
[65] GUAN Q Q, GUO R M, HUANG S H, et al. Mesoporous polydopamine carrying sorafenib and SPIO nanoparticles for MRI-guided ferroptosis cancer therapy[J]. Journal of Controlled Release, 2020, 320: 392-403.
〔收稿日期〕2023-12-23
〔基金項目〕國家自然科學基金地區(qū)基金項目(82360959);廣西自然科學基金青年科學基金(2024GXNSFBA010160);廣西研究生教育創(chuàng)新計劃項目(YCBZ2023156)。
〔通信作者〕*唐梅文,男,教授,博士研究生導師,E-mail:tangmw@gxtcmu.edu.cn。