【摘要】自主神經(jīng)系統(tǒng)在調(diào)節(jié)心血管功能方面起著非常重要的作用,完整的神經(jīng)支配是心血管功能正常的基礎(chǔ)。心臟神經(jīng)系統(tǒng)的改變通常出現(xiàn)在臨床癥狀之前。心臟交感神經(jīng)顯像可直觀顯示心臟交感神經(jīng)的完整性和功能狀態(tài),是評價心臟交感神經(jīng)功能的靈敏指標(biāo),能夠靈敏地反映心臟自主神經(jīng)功能的完整性、神經(jīng)元的分泌功能及活性,對心臟疾病的早期診斷和及時干預(yù)有重要的臨床價值。近年來18F-MFBG新型正電子心臟交感神經(jīng)顯像劑發(fā)展迅速,具有潛在的良好應(yīng)用前景,現(xiàn)綜述該顯像劑相關(guān)研究的最新進(jìn)展。
【關(guān)鍵詞】氟放射性同位素;放射性示蹤劑;正電子發(fā)射體層成像;心臟;交感神經(jīng)系統(tǒng)
基金項目:天津市醫(yī)學(xué)重點學(xué)科(專科)建設(shè)項目(TJYXZDXK-020A);天津市濱海新區(qū)衛(wèi)生健康委員會科技項目(2023BWKY022)
通信作者:李劍明,E-mail:ichlijm@163.com
【DOI】10.16806/j.cnki.issn.1004-3934.2024.09.008
Update Research of 18F-MFBG Novel Positron Cardiac Sympathetic Imaging Agent
WANG Jiao,LI Jianming
(Department of Nuclear Medicine,TEDA International Cardiovascular Hospital,Tianjin 300457,China)
【Abstract】The autonomic nervous system plays a vital role in regulating cardiovascular function,complete innervation is the basis of normal cardiovascular function.Changes in the cardiac nervous system usually occur before clinical symptoms.Cardiac sympathetic imaging can directly display the integrity and functional status of the cardiac sympathetic nerve and is a sensitive index to evaluate cardiac sympathetic nerve function.It can sensitively reflect the integrity of cardiac autonomic nerve function and the secretory function and activity of neurons.It has significant clinical value for early diagnosis and timely heart disease intervention.In recent years,18F-MFBG novel positron cardiac sympathetic imaging agent has developed rapidly and has good potential application prospects.This article reviews the latest research progress on this agent.
【Keywords】Fluorine radioisotopes;Radioactive tracer;Positron emission tomography;Heart;Sympathetic nervous system
自主神經(jīng)系統(tǒng)在控制心臟穩(wěn)態(tài)和調(diào)節(jié)心率、血壓和收縮能力等方面起著重要作用。心臟自主神經(jīng)系統(tǒng)主要包括交感神經(jīng)系統(tǒng)(sympathetic nervous system,SNS)和副交感神經(jīng)系統(tǒng),交感神經(jīng)通過釋放去甲腎上腺素(norepinephrine,NE)提供興奮性刺激,而副交感神經(jīng)則通過釋放乙酰膽堿(acetlycholine,ACh)產(chǎn)生相反的作用[1-2]。刺激SNS會增強心臟功能,如使心率增快、心肌收縮能力增強;刺激副交感神經(jīng)系統(tǒng)則會抑制心臟功能,如使心率減慢、心肌收縮能力減弱等[3-4]。在慢性心力衰竭、心肌梗死、心律失常和心源性猝死中,自主神經(jīng)調(diào)節(jié)喪失,導(dǎo)致交感神經(jīng)活動增強和迷走神經(jīng)功能減弱[5]。因此,交感神經(jīng)功能障礙被認(rèn)為是許多病理的核心,自主神經(jīng)的分子成像被設(shè)計用來研究心血管疾病的機制和進(jìn)行危險分層[2,6-7]。
1" 交感神經(jīng)概述
1.1" 交感神經(jīng)的作用機制
交感神經(jīng)節(jié)前神經(jīng)元起源于第1~5胸椎水平的脊髓外側(cè)角,并與交感神經(jīng)鏈中的節(jié)后神經(jīng)元進(jìn)行突觸聯(lián)系,這些神經(jīng)節(jié)后神經(jīng)元發(fā)出心臟交感傳出神經(jīng),交感神經(jīng)元在心臟的分布相對均勻,在心室交感神經(jīng)元沿著外膜冠狀動脈血管分布,最終穿透單個心肌細(xì)胞之間的終端軸突,跟隨主要冠狀動脈的走行穿透心?。?]。
SNS的外周效應(yīng)主要由突觸前神經(jīng)末梢釋放NE介導(dǎo)。交感神經(jīng)末梢釋放的NE,有80%~90%通過去甲腎上腺素轉(zhuǎn)運蛋白(norepinephrine transporter,NET)-1反饋到突觸前神經(jīng)末梢[9]。交感神經(jīng)末梢是NE形成、代謝、釋放和突觸后調(diào)節(jié)的主要途徑。在突觸前神經(jīng)末梢,酪氨酸通過酪氨酸羥化酶轉(zhuǎn)化為二羥基苯丙氨酸,二羥基苯丙氨酸通過二羥基苯丙氨酸脫羧酶轉(zhuǎn)化為多巴胺,多巴胺通過囊泡單胺轉(zhuǎn)運蛋白2轉(zhuǎn)運到突觸小泡中,然后經(jīng)多巴胺β-羥化酶轉(zhuǎn)化為NE。神經(jīng)沖動通過胞吐作用向突觸間隙釋放NE,NE作用于心肌細(xì)胞的α和β腎上腺素受體,也作用于突觸前α2腎上腺素受體,抑制NE的進(jìn)一步釋放。有80%~90%的NE被NET-1吸收到突觸前神經(jīng)元的胞質(zhì)中,而后可能通過囊泡單胺轉(zhuǎn)運蛋白2被重新包裝到儲存囊泡中,或者被單胺氧化酶氧化成二羥基苯基乙二醇[2]。
1.2" 心臟交感神經(jīng)的病理生理機制
心肌缺血和心肌梗死是導(dǎo)致患者死亡最常見的心血管事件[10]。早期診斷及治療可有效降低心源性死亡率,研究表明心肌缺血時心肌細(xì)胞會發(fā)生一系列變化,包括灌注減少、神經(jīng)分布異常、葡萄糖代謝增強和脂肪酸攝取減少等。交感神經(jīng)在調(diào)節(jié)心臟功能方面有著重要的作用,當(dāng)冠狀動脈狹窄引起心肌缺血時,與血流灌注的變化相比,心臟交感神經(jīng)顯像可更早、更準(zhǔn)確地發(fā)現(xiàn)心臟的損傷。心肌缺血介導(dǎo)的心臟交感神經(jīng)損傷在早期冠狀動脈疾病無心肌梗死的患者中已有報道[11-12]。神經(jīng)元通過NET-1攝取NE的過程依賴能量,需要氧氣才能正常運作,這種攝取機制對缺血的敏感性更高。冠狀動脈疾病的交感神經(jīng)功能障礙可能與神經(jīng)元休克[13]、細(xì)胞功能下降(即NET-1減少)[14]和/或失神經(jīng)支配有關(guān)。
心肌缺血和/或梗死后,損傷區(qū)內(nèi)和周圍存活的心肌細(xì)胞發(fā)生NE刺激性肥大,以補償因心肌細(xì)胞損傷而損失的收縮單位[15]。然而,過度激活交感神經(jīng)和持續(xù)的高NE濃度可引起心肌細(xì)胞毒性,最終導(dǎo)致心肌細(xì)胞凋亡和腎上腺素受體的改變[16]。Yang 等[17]在18F標(biāo)記的苯胍類似物作為NET示蹤劑診斷心肌梗死的初步研究中發(fā)現(xiàn),在小鼠心肌梗死的正電子發(fā)射體層成像(positron emission tomography,PET)圖像中觀察到早期(術(shù)后1~2 d)缺血和/或梗死區(qū)域周圍顯像劑的攝取逐漸增加。隨著心肌梗死病理進(jìn)展和交感神經(jīng)功能缺損的發(fā)生(術(shù)后3 d),梗死區(qū)周圍心臟組織對顯像劑的攝取減少。此外,研究還發(fā)現(xiàn)小鼠心肌梗死圖像的本底較高,這可能與心肌梗死引起的全身血管炎癥和代謝紊亂有關(guān)。由于小鼠心肌梗死模型是通過手術(shù)結(jié)扎建立的,損傷組織的許多炎癥介質(zhì)和代謝物可在損傷后進(jìn)入血液循環(huán),導(dǎo)致代謝紊亂、內(nèi)皮功能受損、全身性且持續(xù)性的血管炎癥以及血管通透性增加[18]。心臟交感神經(jīng)功能的改變?nèi)缧呐K交感神經(jīng)腎上腺素釋放增加、NE再攝取減少等常發(fā)生在心力衰竭早期[19-20]。研究發(fā)現(xiàn)在心力衰竭患者中NET功能受損較為普遍[20-21],心力衰竭和由心力衰竭導(dǎo)致的心源性猝死也與心臟交感神經(jīng)功能異常有關(guān)[22-23]。
2" 心臟交感神經(jīng)放射性核素顯像劑
2.1" 傳統(tǒng)顯像劑
心臟核醫(yī)學(xué)成像提供了一種無創(chuàng)和可重復(fù)的工具來測量心臟的分子變化,包括NET的功能變化[24]。這些技術(shù)能在生理和病理條件下了解局部心臟SNS的一系列變化。目前用于心臟交感神經(jīng)分布的放射性核素顯像劑有123I-MIBG、11C-HED、18F-FDA和18F-LMI1195等[25-27]。這些顯像劑是NE神經(jīng)遞質(zhì)的類似物[28],它們在NET的作用下從血漿被轉(zhuǎn)運至交感神經(jīng)元的細(xì)胞外基質(zhì),神經(jīng)元攝取這些類神經(jīng)遞質(zhì)顯像劑從而使心臟顯影清晰[29],可直觀地反映心臟交感神經(jīng)的功能和分布??偟膩碚f,這些心臟交感神經(jīng)顯像劑能在體外無創(chuàng)地評價心臟交感神經(jīng)突觸前神經(jīng)末梢的功能和完整性。
目前使用最廣泛的示蹤劑123I-MIBG和11C-HED是靶向突觸前神經(jīng)末梢,其中123I-MIBG是第一個用于心臟交感神經(jīng)突觸前末梢的神經(jīng)顯像劑,123I-MIBG單光子發(fā)射計算機斷層成像可直觀、定量地觀察心臟交感神經(jīng)末梢分布的完整性和功能狀態(tài)[30-31]。既往文獻(xiàn)[32]描述了123I-MIBG平面顯像的使用,并證明了其預(yù)后價值,盡管這是一種提供心臟交感神經(jīng)狀態(tài)的全心肌測量的直接方法,但123I-MIBG成像具有明顯的局限性,包括二維空間成像,檢查時間長,第1天注射、24 h后成像,123I-MIBG注射前還需服用過飽和碘化鉀保護甲狀腺等。此外,與PET相比,123I-MIBG成像還有圖像空間分辨率較差且定量測定精確度有限的缺點。而PET成像空間分辨率高、具有完整的衰減校正,能準(zhǔn)確地定量組織示蹤劑濃度,具有卓越的定量評估異常區(qū)域的能力,因此PET在這方面優(yōu)勢更大。11C-HED作為正電子心臟交感神經(jīng)顯像劑,其放射性半衰期短(約20 min),而且11C-HED的生產(chǎn)合成需依賴現(xiàn)場回旋加速器,使其臨床應(yīng)用受限。目前11C-HED的合成前體屬于易制毒類,受到國家嚴(yán)格管控,致相關(guān)研究、應(yīng)用受限,而18F-FDA制備工藝?yán)щy、產(chǎn)率低,18F-LMI1195尚處于研究初期,均未能廣泛應(yīng)用[33]。
2.2" 18F-MFBG交感神經(jīng)顯像劑
近年來18F標(biāo)記的新型正電子交感神經(jīng)顯像劑18F-MFBG逐漸成為研究熱點,被寄予很大希望。18F-MFBG最早被開發(fā)用于腫瘤成像,作為替代123I-MIBG單光子發(fā)射計算機斷層成像掃描的PET示蹤劑。從分子構(gòu)象上,18F-MFBG是最接近123I-MIBG的結(jié)構(gòu)類似物,雖然類似于123I-MIBG,但與131I-MIBG成像相比,18F-MFBG具有以下3個顯著優(yōu)點。首先,在化學(xué)結(jié)構(gòu)上18F-MFBG更親水,導(dǎo)致其與血漿蛋白的結(jié)合率更低[34],而且18F-MFBG在體內(nèi)產(chǎn)生放射性標(biāo)記的代謝產(chǎn)物極少[35],可忽略不計的放射性代謝產(chǎn)物量簡化了對結(jié)果的定量計算,從而避免了使用具有2個輸入函數(shù)的復(fù)雜房室模型,能更可靠地估計心肌的真實攝取情況。Grkovski 等[36]的研究中,18F-MFBG的心臟攝取率為90%。其次,18F-MFBG在心臟中的攝取速度、背景清除速度更快[37]。動態(tài)18F-MFBG PET可在1 h內(nèi)完成,而且18F-MFBG PET前不需要預(yù)先準(zhǔn)備碘來阻斷甲狀腺。最后,18F-MFBG PET具有更高的空間分辨率、靈敏度和更容易的定量測定。
18F-MFBG在20世紀(jì)90年代被首次報道,但此后并未被用于心臟SNS成像[37]。國外較早開展18F-MFBG的臨床研究,Pandit-Taskar 等[38]首次進(jìn)行了18F-MFBG PET的人體研究,以評估18F-MFBG在神經(jīng)內(nèi)分泌腫瘤中的安全性、可行性、藥代動力學(xué)和劑量學(xué),研究報道的18F-MFBG總有效劑量為0.023 mSv/MBq,表明其安全性良好,并具有良好的生物分布和藥代動力學(xué),病灶靶向性好。使用18F-MFBG能在當(dāng)天對神經(jīng)內(nèi)分泌腫瘤進(jìn)行成像,18F-MFBG在神經(jīng)內(nèi)分泌腫瘤特別是神經(jīng)母細(xì)胞瘤患者的影像學(xué)檢查中具有很好的應(yīng)用前景。近期歐洲進(jìn)行了一項單中心前瞻性研究[39],對14例神經(jīng)母細(xì)胞瘤患兒分別進(jìn)行131I-MIBG和18F-MFBG掃描,患兒在注射18F-MFBG后1 h和2 h進(jìn)行全身PET掃描,共進(jìn)行了20次131I-MIBG和18F-MFBG掃描,結(jié)果顯示注射18F-MFBG耐受性良好,無相關(guān)不良事件發(fā)生,18F-MFBG的掃描時間明顯短于131I-MIBG,并且能檢測到更多的腫瘤病變。該研究證明了18F-MFBG PET為神經(jīng)母細(xì)胞瘤的分期和療效評估提供了應(yīng)用前景。目前國內(nèi)葉偉健等[40]通過自動化合成18F-MFBG,用于嗜鉻細(xì)胞瘤患者行PET,結(jié)果表明18F-MFBG靶向性較強,有助于發(fā)現(xiàn)嗜鉻細(xì)胞瘤的轉(zhuǎn)移灶。
18F-MFBG是NE類似物,可聚集在神經(jīng)末梢,定位于心臟交感神經(jīng)元,用于評估心臟交感神經(jīng)分布的完整性。Turnock等[41]使用18F-MFBG監(jiān)測神經(jīng)母細(xì)胞瘤模型經(jīng)治療干預(yù)后NET表達(dá)的變化,對18F-MFBG的生物分布研究表明,在交感神經(jīng)組織中放射性示蹤劑的攝取特別高,包括心臟、棕色脂肪組織和小腸。Ismailani等[42]使用18F-MFBG對大鼠心臟SNS進(jìn)行PET,研究發(fā)現(xiàn)18F-MFBG在大鼠心臟中的攝取依賴于NET-1和細(xì)胞外轉(zhuǎn)運體,具有較快的心肌清除速度和更慢的再攝取速度。此外,通過藥物阻斷實驗和化學(xué)交感神經(jīng)切除實驗證明,18F-MFBG的攝取主要是通過NET介導(dǎo),這些結(jié)果表明18F-MFBG是一種有潛力的放射性示蹤劑,可用于小動物中神經(jīng)元功能異常的成像。雖類似卻不同于131I-MIBG,現(xiàn)有證據(jù)表明,與131I-MIBG相比,18F-MFBG對NET的親和力及與血清蛋白的結(jié)合率降低[34]。鑒于這些特性,18F-MFBG可能表現(xiàn)出較慢的組織攝取,其分布對組織灌注的依賴性較小,這一假設(shè)與18F-MFBG人體成像中觀察到的心肌洗脫相一致[38]。Grkovski等[36]對16例神經(jīng)內(nèi)分泌腫瘤患者進(jìn)行18F-MFBG PET評估心臟交感神經(jīng)功能,研究發(fā)現(xiàn)18F-MFBG心肌攝取快速且持續(xù)時間長,心肌攝取在注射后30 s達(dá)到高峰,并在整個動態(tài)采集過程中保持較高攝取。初步研究顯示,注射后1 h圖像分辨率高,成像時間最佳。18F-MFBG PET不僅顯示與123I-MIBG相似的生物分布和心臟等器官的高對比度攝取,而且18F-MFBG具有更快的心肌清除速度和更小的再攝取潛力,它可提供交感神經(jīng)變化的關(guān)鍵信息,并改善神經(jīng)元功能障礙的量化測定[43]。18F-MFBG具有較長的放射性半衰期(約110 min),在生產(chǎn)、運輸和使用中更加實用,可進(jìn)行小分子標(biāo)記、動態(tài)成像和區(qū)域運輸,能在模型研究中提供很大的靈活性,設(shè)計延遲成像或延長成像時間,促進(jìn)基礎(chǔ)研究和臨床應(yīng)用[42,44-45]。
3" 展望
目前18F-MFBG多被用于神經(jīng)內(nèi)分泌腫瘤的成像研究,針對心臟SNS成像的研究較少。18F-MFBG是一種有前途的新型正電子交感神經(jīng)顯像劑,為NE類似物,可聚集在神經(jīng)末梢,定位于心臟交感神經(jīng)元,能直觀、定量地觀察心臟交感神經(jīng)末梢分布的完整性和功能狀態(tài),18F-MFBG PET成像有助于評估心臟交感神經(jīng)元功能失調(diào),對心臟疾病的早期診斷和及時干預(yù)有重要的臨床價值,預(yù)示該顯像劑未來有良好應(yīng)用前景。
參考文獻(xiàn)
[1]Jamali HK,Waqar F,Gerson MC.Cardiac autonomic innervation[J].J Nucl Cardiol,2017,24(5):1558-1570.
[2]Zelt JGE,deKemp RA,Rotstein BH,et al.Nuclear imaging of the cardiac sympathetic nervous system:a disease-specific interpretation in heart failure[J].JACC Cardiovasc Imaging,2020,13(4):1036-1054.
[3]Florea VG,Cohn JN.The autonomic nervous system and heart failure[J].Circ Res,2014,114(11):1815-1826.
[4]Kenney MJ,GantaCK.Autonomic nervous system and immune system interactions[J].Compr Physiol,2014,4(3):1177-1200.
[5]van der Bijl P,Knuuti J,Delgado V,et al.Cardiac sympathetic innervation imaging with PET radiotracers[J].Curr Cardiol Rep,2020,23(1):4.
[6]Farber G,Boczar KE,Wiefels CC,et al.The future of cardiac molecular imaging[J].Semin Nucl Med,2020,50(4):367-385.
[7]Boutagy NE,Sinusas AJ.Recent advances and clinical applications of PET cardiac autonomic nervous system imaging[J].Curr Cardiol Rep,2017,19(4):33.
[8]Triposkiadis F,Karayannis G,Giamouzis G,et al.The sympathetic nervous system in heart failure[J].J Am Coll Cardiol,2009,54(19):1747-1762.
[9]Schroeder C,Jordan J.Norepinephrine uptake mechanisms in cardiovascular disease deserve our attention[J].J Cardiovasc Pharmacol,2011,58(4):406-408.
[10]Raffel DM,Wieland DM.Assessment of cardiac sympathetic nerve integrity with positron emission tomography[J].Nucl Med Biol,2001,28(5):541-559.
[11]Simula S,Vanninen E,Viitanen L,et al.Cardiac adrenergic innervation is affected in asymptomatic subjects with very early stage of coronary artery disease[J].J Nucl Med,2002,43(1):1-7.
[12]Luisi AJ,Suzuki G,Haka MS,et al.Regional 11C-hydroxyephedrine retention in hibernating myocardium:chronic inhomogeneity of sympathetic innervation in the absence of infarction[J].J Nucl Med,2005,46(8):1368-1374.
[13]Gutterman DD,Morgan DA,Miller FJ.Effect of brief myocardial ischemia on sympathetic coronary vasoconstriction[J].Circ Res,1992,71(4):960-969.
[14]Fernandez SF,Ovchinnikov V,Canty JM,et al.Hibernating myocardium results in partial sympathetic denervation and nerve sprouting[J].Am J Physiol Heart Circ Physiol,2013,304(2):H318-H327.
[15]Li HT,Long CS,Rokosh DG,et al.Chronic hypoxia differentially regulates alpha 1-adrenergic receptor subtype mRNAs and inhibits α 1-adrenergic receptor-stimulated cardiac hypertrophy and signaling[J].Circulation,1995,92(4):918-925.
[16]Kawai H,Mohan A,Hagen J,et al.Alterations in cardiac adrenergic terminal function and β-adrenoceptor density in pacinginduced heart failure[J].Am J Physiol Heart Circ Physiol,2000,278(5):H1708-H1716.
[17]Yang L,Yin L,Hu M,et al.Preliminary evaluation of 18F-labeled benzylguanidine analogs as NET tracers for myocardial infarction diagnosis[J].Mol Imaging Biol,2023,25(6):1125-1134.
[18]Molitor M,Rudi WS,Garlapati V,et al.Nox2+ myeloid cells drive vascular infammation and endothelial dysfunction in heart failure after myocardial infarction via angiotensinⅡreceptor type 1[J].Cardiovasc Res,2021,117(1):162-177.
[19]Snipelisky D,Chaudhry SP,Stewart GC.The many faces of heart failure[J].Card Electrophysiol Clin,2019,11(1):11-20.
[20]Minatoguchi S.Heart failure and its treatment from the perspective of sympathetic nerve activity[J].J Cardiol,2022,79(6):691-697.
[21]Ramchandra R,Hood SG,Xing D,et al.Mechanisms underlying the increased cardiac norepinephrine spillover in heart failure[J].Am J Physiol Heart Circ Physiol,2018,315(2):H340-H347.
[22]Floras JS.The 2021 Carl Ludwig Lecture.Unsympathetic autonomic regulation in heart failure:patient-inspired insights[J].Am J Physiol Regul Integr Comp Physiol,2021,321(3):R338- R351.
[23]Gupta S,Ama1ah A.Radionuclide imaging of cardiac sympathetic innervation in heart failure:unlocking untapped potential[J].Heart Fail Rev,2015,20(2):215-226.
[24]Wan N,Travin MI.Cardiac imaging with 123I-meta-iodobenzylguanidine and analogous PET tracers:current status and future perspectives[J].Semin Nucl Med,2020,50(4):331-348.
[25]Nakajima K,Scholte AJHA,Nakata T,et al.Cardiac sympathetic nervous system imaging with 123I-meta-iodobenzylguanidine:perspectives from Japan and Europe[J].J Nucl Cardiol,2017,24(3):952-960.
[26]Werner RA,Chen XY,Maya Y,et al.The impact of ageing on 11C-hydroxyephedrine uptake in the rat heart[J].Sci Rep,2018,8(1):11120.
[27]Langer O,Halldin C.PET and SPET tracers for mapping the cardiac nervous system[J].Eur J Nucl Med Mol Imaging,2002,29(3):416-434.
[28]Fallavollita JA,Heavey BM,Luisi AJ,et al.Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy[J].J Am Coll Cardiol,2014,63(2):141-149.
[29]Raffel DM,Corbett JR,del Rosario RB,et al.Sensitivity of [11C]phenylephrine kinetics to monoamine oxidase activity in normal human heart[J].J Nucl Med,1999,40(2):232-238.
[30]Travin MI.Cardiac autonomic imaging with SPECT tracers[J].J Nucl Cardiol,2013,20(1):128-143.
[31]Vallabhajosula S,NikolopoulouA.Radioiodinated metaiodoberzyl-guanidine (MIBG):radiochemistry,biology,and pharmacology[J].Semin Nucl Med,2011,41(5):324-333.
[32]Jacobson AF,Senior R,Cerqueira MD,et al.Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure[J].J Am Coll Cardiol,2010,55(20):2212-2221.
[33]何玉林,張錦明.心臟交感神經(jīng)正電子顯像劑的研究進(jìn)展[J].中華核醫(yī)學(xué)與分子影像雜志,2017,37(4):237-239.
[34]Zhang H,Huang R,Pillarsetty N,et al.Synthesis and evaluation of 18F-labeled benzylguanidine analogs for targeting the human norepinephrine transporter[J].Eur J Nucl Med Mol Imaging,2014,41(2):322-332.
[35]Zhang H,Huang R,Cheung NK,et al.Imaging the norepinephrine transporter in neuroblastoma:a comparison of [18F]-MFBG and 123I-MIBG[J].Clin Cancer Res,2014,20(8):2182-2191.
[36]Grkovski M,Zanzonico PB,Modak S,et al.F-18 meta-fluorobenzylguanidine PET imaging of myocardial sympathetic innervation[J].J Nucl Cardiol,2022,29(6):3179-3188.
[37]Garg PK,Garg S,Zalutsky MR.Synthesis and preliminary evaluation of para- and meta-[18F]fluorobenzylguanidine[J].Nucl Med Biol,1994,21(1):97-103.
[38]Pandit-Taskar N,Zanzonico P,Staton KD,et al.Biodistribution and dosimetry of 18F-meta-fluorobenzylguanidine: a first-in-human PET/CT imaging study of patients with neuroendocrine malignancies[J].J Nucl Med,2018,59(1):147-153.
[39]Samim A,Blom T,Poot AJ,et al.[18F]mFBG PET-CT for detection and localisation of neuroblastoma:a prospective pilot study[J].Eur J Nucl Med Mol Imaging,2023,50(4):1146-1157.
[40]葉偉健,麻杰,董陳晨,等.去甲腎上腺素轉(zhuǎn)運蛋白顯像劑18F-mFBG的自動化合成及其用于嗜鉻細(xì)胞瘤PET/CT顯像的效果評估[J].中華核醫(yī)學(xué)與分子影像雜志,2023,43(9):543-548.
[41]Turnock S,Turton DR,Martins CD,et al.18F-meta-fluorobenzylguanidine (18F-mFBG) to monitor changes in norepinephrine transporter expression in response to therapeutic intervention in neuroblastoma models[J].Sci Rep,2020,10(1):20918.
[42]Ismailani US,Buchler A,F(xiàn)arber G,et al.Cardiac sympathetic positron emission tomography imaging with meta-[18F] fluorobenzylguanidine is sensitive to uptake-1 in rats[J].ACS Chem Neurosci,2021,12(22):4350-4360.
[43]Zelt JGE,Britt D,Mair BA,et al.Regional distribution of fluorine-18- flubrobenguane and carbon-11-hydroxyephedrine for cardiac PET imaging of sympathetic innervation[J].JACC Cardiovasc Imaging,2021,14(7):1425-1436.
[44]Chen X,Werner RA,Koshino K,et al.Molecular imaging-derived biomarker of cardiac nerve integrity-introducing high NET affinity PET probe 18F-AF78[J].Theranostics,2022,12(9):4446-4458.
[45]Werner RA,Chen X,Rowe SP,et al.Moving into the next era of PET myocardial perfusion imaging:introduction of novel 18F-labeled tracers[J].Int J Cardiovasc Imaging,2019,35(3):569-577.
收稿日期:2024-05-27